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Pilsen City

(a) St.Bartolomew Church
1295

(b) FAV building (c) The 2nd largest in
Europe
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Pilsen City

(a) Radbusa river & Museum (b) even dogs drink a beer

Plzen is an old city [first records of Plzen castle 976] city of culture, industry, and
brewery
City, where today’s beer fermentation process was invented that is why today’s
beers are called Pilsner - world wide
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Pilsen City

“Real science” in the XXI century

The mysterious castle in the Carpathians 1

1Courtesy of the Czech Film, Barrandov
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Introduction

Data interpolation and approximation is a frequent task in many areas. Usually
the interpolation is used for data sets hi = f (xi), where hi is a value at xi ∈ Ω,
where Ω is the data domain in Ed and d = 2,3 mostly. The data domain is
somehow tessellated, but not necessarily by the Delaunay triangulation(DT). The
values hi might be scalar or vector values, e.g. a wind velocity (vx ,vy ,vz). In the
case of spatio-temporal data, the ”framing” is implicitly expected with the fixed
known correspondence of points.
It leads to spatio-temporal meshes with the fixed connectivity of points in frames
ti and ti+1, if the domain tessellation is used. It should be noted that if the spatial
domain Ω ∈ E 3 then in the spatio-temporal case a tessellation for E 4 is to be used.
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Introduction

A usual tessellation technique is the Delaunay triangulation(DT). However, the
computational complexity is O(n⌈d/2+1⌉), i.e. O(n2) for d = 2, O(n3) for d = 3,4.
Due to numerical robustness issues, the complexity of the DT implementation
grows significantly with the dimensionality. Also, the smoothness of the final
interpolation of the hi values is a fundamental requirement, which is not an easy
task if triangular or tetrahedral meshes are used to represent the data domain.
This approach can be used in the spatio-temporal case, when the data are
”framed” for the given ”time-slice” ti and with fixed and known connectivity of
points.
However, there are many areas when an interpolation of scattered spatio-temporal
”non-framed” data are required, e.g. sensor networks, floating buoys with sensors
on sea, when data sources are not constantly on-line and sending data occasionally
only, e.g. tsunami detection, ships and submarine identification. Such sensors are
connected only shortly. It leads to energy savings and hard detection of those.
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Spatio-temporal data classification

Interpolation and approximation is usually made for the ”ordered” data domains,
e.g. rectangular, triangular and tetrahedral meshes, etc. In the CAD systems, the
parametric space is used for interpolation, e.g. for parametric curves and surfaces.
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Spatio-temporal data classification

The data domain can be classified as:

ordered
structured

regular, e.g. a rectangular mesh where all elements have same size, triangular
meshes with a constant vertex valency,
irregular, e.g. a rectangular mesh, but elements have different size triangular
meshes with non-constant vertex valencies,

unstructured, e.g. general triangular or tetrahedral meshes,

unordered

clustered - points form clusters in the data domain,
scattered - points are scattered across the domain, generally.
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Spatio-temporal data classification

Temporal property
Static Dynamic

Spatial property Static h = f (x) h = f (x, t)
Dynamic h = f (x(t)) h = f (x(t), t)

Table: Classification of spatio-temporal data sets

The domain data can also be classified as static or dynamic in space and time, see
Tab.1. It can be seen that the case h = f (x(t), t) represents interpolation of a
scalar value h on the d-dimensional domain of x(t) ∈ Ω(t), where the position
x(t) is changing within time t. It should be noted that the Ω(t) is not constant in
time, generally.
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Spatio-temporal data classification

Now, the case of the scattered spatio-temporal domain is dynamic in both, i.e.
h(t) = f (x(t), t), can be classified further as:

framed in time - points lie on a hyperplane ρ ∈ Ed for the given time slice ti ,

framed in space - all points for the given slice in the given Ed space are given
(limited to the (x , t) case, i.e. x ∈ R1),

unframed in space and time - just an unordered ”heap of points” scattered in
space-time.

Also, the points in the Ω domain might also be with known mutual point
correspondences, i.e. a geometrical trajectory of a point can be reconstructed, e.g.
using the buoys ID, or without any similar information, i.e. the buoys ID is not
available. In the following, a general approach to interpolation is described and
the radial basis functions (RBF) are used for interpolation.
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Introduction

The Radial Basis Functions (RBF) interpolation is based on the mutual distances
of points in the data domain Ω.
The RBF interpolation is given in the form:

h(x) =
N

∑
j=1

λjϕ∥x−xj∥) =
N

∑
j=1

λjϕ(rj) (1)

where rj is the distance from a point x to the point xj . As the parameter r of the
function ϕ(r) is a distance of two points in the d-dimensional space, the
interpolation is non-separable by a dimension. The RBF function ϕ(r) will be
described in detailed later on.
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Introduction

For each point, xi the interpolating function has to have the value hi . It leads to
a system of linear equations:

h(xi ) =
N

∑
j=1

λjϕ(∥xi −xj∥) =
N

∑
j=1

λjϕ(rij) (2)

where λj are unknown weights for each radial basis function, N is the number of
given points and ϕ(r) is the radial basis function itself.
The Eq.2 can be written if the matrix form as Aλ= h or using ϕij = ϕ(rij) as:

ϕ11 · · · ϕ1j · · · ϕ1N
...

. . .
...

. . .
...

ϕi1 · · · ϕij · · · ϕiN
...

. . .
...

. . .
...

ϕN1 · · · ϕNj · · · ϕNN




λ1
...

λi
...

λN

=


h1
...
hi
...
hN

 (3)
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Introduction

The interpolated value at a point x is computed using the Eq.1. However, due to
numerical robustness and stability, additional polynomial conditions are usually
added.
It can be seen, that the size of the matrix is nearly independent of the dimension
and matrix size is ≈ (N×N) only.
In the case of an additional polynomial Pk(xi ) of a degree k, we obtain:

h(xi ) =
N

∑
j=1

λjϕ(||xi −xj ||)+Pk(xi ) (4)

In the case of a bilinear polynomial P1(x ,y):

P1(x ,y) = a0+a1x+a2y +a3xy (5)

the additional orthogonal conditions are to be used:

N

∑
j=1

λj = 0
N

∑
j=1

λjxj = 0
N

∑
j=1

λjyj = 0
N

∑
j=1

λjxjyj = 0 (6)
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Introduction

Then the RBF interpolation with the additional orthogonal conditions can be
rewritten as in a more compact way:[

A P
PT 0

][
λ
a

]
=

[
h
0

]
(7)

where the matrix P represents the polynomial, λ is the vector of the RBF weights,
the vector a contains resulting the polynomial coefficients and h are given values
at the given points. The matrix PT represents the additional orthogonal
conditions, see Eq.6. From the geometrical point of view, the polynomial Pk(x)
actually represents a rough approximation of the given data.
It should be noted that if the polynomial Pk(x) is used:

the RBF interpolation is not invariant to rotation and translation,

interpolation, i.e. λ and a, depends on physical units used for the vector x,

it might be actually counterproductive in the case of large range of domain.

It can be seen that the RBF interpolation leads to a linear system Ax= b.
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Introduction

The rij = ∥xi −xj∥ is the distance between points xi and xj , i.e. in the case of:

spatial data (time independent) - usually the Euclidean norm is used:

rij = ∥xi −xj∥=

√√√√ d

∑
k=1

(kxi − kxj)2 (8)

where kxi means the kth element of the vector xi ,

spatio-temporal data (time varying)

rij = ∥(x, t)i − (x, t)j∥=

√√√√ d

∑
k=1

(kxi − kxj)2+β 2(ti − tj)2 (9)

where kxi means the kth element of the vector xi .
The coefficient β has physical unit [m/s] and reflects the speed of the
physical phenomena, e.g. speed of sound in water, speed of light, etc.
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Introduction

Another possibility is to use the ϕ(r) RBF with a multiplicative exponential time
term as:

φ(r(t), t) = ϕ(r) e−kt or φ(r(t), t) = ϕ(r) e(−k1t
2−k2t)

where k, k1 and k2 are some positive constants, see Ku.
It should be noted, that if the points x are not static, i.e. x= x(t) then the
mutual distances of points are not constant, i.e. r = r(t).
The above-mentioned radial basis functions are used for interpolation and
approximation, solution of ordinary differential equations (ODE) and partial
differential equations (PDE), etc.
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Introduction

Normalized RBF is another modification of the ”standard” RBF. The Normalized
RBF (N-RBF) is given in the form:

h(x) =
∑
N
j=1 λjϕ∥x−xj∥)
∑
N
j=1 ϕ∥x−xj∥

=
∑
N
j=1 λjϕ(rj)

∑
N
j=1 ϕ(rj)

(10)

where rj is the distance from a point x to the point xj .
The N-RBF are used especially in the RBF neural networks applications. However,
some functions ϕ(r) used for the interpolation and approximation are not strictly
positive, e.g. r2 ln(r) (Thin-Plate Spline - TPS) which is negative on the interval
(0,1), the Euclidean norm should be used for robustness of computation, see
Eq.11.
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Squared Normalized RBF

The Squared Normalized RBF (SN-RBF) is given in the form:

h(x) =
∑
N
j=1 λjϕ(∥x−xj∥)√
∑
N
j=1 ϕ2(∥x−xj∥)

=
∑
N
j=1 λjϕ(rj)√
∑
N
j=1 ϕ2(rj)

(11)

Vaclav Skala: (UWB) University of West Bohemia 2023 18 / 34



Squared Normalized RBF

This is actually the Euclidean normalization of each row of the matrix A in Eq.3.

N

∑
j=1

λjϕ(∥xi −xj∥) = h(x)

√√√√ N

∑
j=1

ϕ2(rij) i = 1, . . . ,N (12)

where rij = ∥xi −xj∥.
It should be noted, that O(N2) division operations are replaced by O(N)
multiplications; the given values h(xi ) are just multiplied by the values√

∑
N
j=1 ϕ2(rij). This also leads to higher robustness of computation for high N.

In the case of interpolation a polynomial of a degree k Pk(x) can be added:

h(x) =
∑
N
j=1 λjϕ∥x−xj∥)√

∑
N
j=1 ϕ2(rj)

+Pk(x) (13)

and some orthogonal conditions have to be added as well, see Eq.6.
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Squared Normalized RBF

The polynomial Pk(x) improves the conditionality of the matrix A and also roughly
approximate the given data. The Eq.13 can be modified similarly as the Eq.12 to:

N

∑
j=1

λjϕ∥xi −xj∥)+Pk(xi )

√√√√ N

∑
j=1

ϕ2(rij) = h(xi )

√√√√ N

∑
j=1

ϕ2(rij) i = 1, . . . ,N (14)

As the qi =
√

∑
N
j=1 ϕ2(rij) is constant for the i th row (i = 1, . . . ,N) in the Eq.3,

the Eq.14 can be simplified to:

N

∑
j=1

λjϕ∥xi −xj∥)+qi Pk(xi ) = qi h(xi ) i = 1, . . . ,N (15)
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Squared Normalized RBF

The matrix for the SN-RBF interpolation has form:

ϕ11 . . . ϕ1N q1 q1x1 q1y1 q1x1y1
...

. . .
... 1

...
...

...
ϕN1 . . . ϕNN qN qNxN qNyN qNxnyN
1 1 1 0 0 0 0
x1 . . . xN 0 0 0 0
y1 . . . yN 0 0 0 0
x1y1 . . . xNyN 0 0 0 0





λ1
...

λN

a0
a1
a2
a3


=



q1h1
...

qNhN
0
0
0
0


(16)

[
A QP
PT 0

][
λ
a

]
=

[
Qh
0

]
(17)

where Q= diag [q1, . . . ,qN ] is a diagonal matrix and qi > 0, i = 1, . . . ,N.
However, in the approximation case, i.e. the matrix A is (N×M),N >M, the
polynomial part has to be handled differently and the Least Square Method (LSE)
cannot be used directly.
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Squared Normalized RBF Functions

There are several radial basis functions and can be divided into two major groups:

”global” RBFs having global influence, e.g.

Polyharmonic spline:
ϕ(r) = rk , k = 1,3,5, . . .
ϕ(r) = rk ln r , k = 2,4,6, . . .

Thin plate spline [TPS](a special polyharmonic spline): ϕ(r) = r2 ln r ,

Gaussian: ϕ(r) = e−αr2

Multiquadric:
√
1+αr2

Inverse quadratic: 1
1+αr2

Inverse multiquadratic: 1√
1+αr2

where α > 0 is a shape parameter, r ∈< 0,∞).
The RBF matrix is usually full and the matrix can be very ill conditioned.

”local” RBFs - Compactly Supported RBF (CS-RBF) have a non-zero
positive value on the interval < 0,1) only. The RBF matrix is usually sparse
and it depends on the shape parameter α.
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Compactly supported RBF

Figure: Compactly Supported RBF - CSRBF
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Squared Normalized RBF

There are other RBFs used, e.g. the ”bumb CS-RBF” based on Gaussian:

ϕ(r) =

{
e
− 1

1−r2 r ∈< 0,1)

0 r ≥ 1

Buhmann proposed CS-RBF in the form:

ϕ(r) =

{
1
3 + r2− 4

3 r
3+2r2 log r r ∈< 0,1)

0 r ≥ 1

and Manandro proposed two new rational CS-RBF classes.
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Squared Normalized RBF

RBF interpolation example For demonstration of the RBF spatio-temporal
scattered data interpolation properties, the Rainfall data of the Peninsular
Malaysia from the Malaysian Meteorology Department in 2007 were taken. The
data are static from the spatial point of view and dynamic from the temporal one.
One possible approach is to make the domain tessellation, then subdivide the
mesh and then smooth it.
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Squared Normalized RBF

Ali used Delaunay triangulation on 25 major meteorological stations and used
cubic Timmer triangular patches for the surface representation and interpolation.

It should be noticed, that additional operations are need in order to obtain a
smooth surface over the triangular mesh generated by the Ali’s algorithm.
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Experimental Results

In the following, a solution based on the RBF interpolation is presented.

March 2007 May 2007

The RBF approach leads to smooth surface automatically, however, interpolation
on borders might not be reliable.
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Experimental Results

The 3D views of the Rainfall interpolated data are presented in Fig.4 and Fig.5. It
should be noted that the α shape parameter has to be set reasonably.

Figure: Interpolation of the Rainfall data March 2007
the Gauss function used, shape parameter α = 0.255
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Experimental Results

Figure: Interpolation of the Rainfall data May 2007
the Gauss function used, shape parameter α = 0.2550
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Squared Normalized RBF

In general, the RBF interpolation benefits from the following properties:

the final interpolation is naturally smooth,

if CS-RBFs are used, the RBF matrix is sparse,

computational complexity is nearly independent of the dimensionality,
depends on the number of points,

an explicit formal analytical formula of the final interpolation is obtained,

if the RBF function ϕ(r) is positive definite, iterative methods for solving
linear system of equations can be used,

the SN-RBF increases the numerical stability as it actually normalizes each
row of the RBF matrix,

as a solution of linear system of equations is equivalent to the outer product
(extended cross product) use, the standard symbolic operations can be used
for further processing without need of the numerical evaluation,

the block matrix decomposition might be used in the case of large data,

the domain decomposition can be applied, which leads to faster computation.
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Conclusions

This contribution briefly presents a new form of normalized RBF, the Squared
Normalized RBF SN-RBF, for the spatio-temporal data and a perspective of use
in sensor networks, when sensors do not have a fixed position and data are not
synchronized in time, i.e. in the time-slots. The proposed SN-RBF formulation
leads to better RBF matrix conditionality, too.
The presented SN-RBF interpolation method is especially convenient for scattered
spatio-temporal interpolation of data cases, e.g. when the sensors are transmitting
data only in the case, when physical phenomena reach values outside the expected
range and/or changing their positions, e.g. surveillance sensors in the sea, etc.
Future work is to be targeted to analysis of the β parameter setting and its
sensitivity, to the TPS (r2 ln r) function applicability for large data sets,
conditionality of the resulting RBF matrices and to methods for visualization of
spatio-temporal data for 2D+T and 3D+T data as they cannot be visualized
using methods like contour plots or 3D projections.
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	Algorithm based on triangulation and Timmer patches

