
Barycentric and Plücker coordinates using projective Geometric algebra

Vaclav Skala
Dept. of Computer Science and Engineering,

University of West Bohemia, Pilsen, Czech Republic
http://www.VaclavSkala.eu ORCID[0000-0001-8886-4281]

Abstract: This paper presents the computation of the barycentric coordinates and Plücker co-
ordinates using the projective extension of the Euclidean space and geometric algebra. Using the
projective extension, it also presents a relationship between linear systems of equations Ax=b and
Ax=0 using the projective extension. An application of the principle of duality enables solving dual
problems efficiently. The given approach uses vector notation leading to efficient implementation
on GPU or efficient use of SSE instructions. As the presented approach is based on projective no-
tation, the division operation is postponed and the proposed method leads to higher computational
robustness.
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INTRODUCTION

Linear algebra and geometry are closely related research fields and many algorithms have been de-
veloped. Geometric calculus evolved from Euclid’s geometry(300 BC), Descartes geometry(1637),
Hamilton’s Algebra of quaternions(1843), Grassmann’s Extensive algebra(1844), Cayley’s Ma-
trix algebra (1854), Clifford’s algebra(1878), Gibbs Vector algebra(1881), Ricci’s Tensor calcu-
lus(1890) and Pauli&Dirac’s Spin algebra to Geometric Algebra&Calculus, which was formulated
by Hesteness[12] as Space-time algebra in 1996 1.
Since then the Geometric Algebra (GA) has developed to the universal multi-dimensional calculus,
see Calvet[5], Macdonald[21], Kanatani[17], Gunn[10]. The geometric algebra is used in many
fields, e.g. physics Doran[6], computer graphics Dorst[7][8], Hildebrand[13], Vince[30][31], elec-
trical engineering Joot[16], Esch[9], geometry Calvet[5], motion interpolation Halma[11] robotics
Bayro-Corrochano[4][2], quantum computing Alves[1], applications Li[20], Perwass[23] etc.
The geometric algebra was extended to the Conformal Geometric Algebra(CGA), see Doran[6],
Bayro-Corrochano[3], Li[19], Hildenbrand[14], etc. 2

Today’s linear algebra uses the Gibbs vector algebra and Cayley’s matrix notation, which leads
to problems if multi-dimensional formulation is to be used.

1 GEOMETRIC ALGEBRA

The vector algebra (Gibbs algebra) used nowadays uses two fundamental operations on two vectors
a,b in En, i.e. the inner product (scalar product or dot product) c = a ·b, where c is a scalar value

1http://geocalc.clas.asu.edu/html/Evolution.html
2A brief introduction to the CGA: https://en.wikipedia.org/wiki/Conformal geometric algebra
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and outer product c = a∧b (the cross-product c = a×b in E3 ), 3 where c is a bivector and it has
different properties than a vector as it represents an oriented area in n-dimensional space.

The Geometric Algebra (GA) uses a “new” product called Geometric product defined as:

ab = a ·b+a∧b (1)

where ab is a geometric product.
In the case of the n-dimensional space, vectors are defined as a = (a1e1 + ...+ anen), b =

(b1e1 + ...+bnen) and the ei vectors form orthonormal basis vectors in E3 then we get:

1 0-vector (scalar) e12, e23, e31 2-vectors (bivectors)
e1,e2,e3, 1-vector (vectors) e123 3-vector (pseudoscalar)

It can be easily proved that the following operations are valid, including an inverse of a vector.

a ·b =
1
2
(ab+ba) a∧b =−b∧a a−1 = a/||a||2 (2)

It can be seen, that geometric algebra is anti-commutative and the “pseudoscalar” I in E3 has the
basis e1e2e3, i.e.

eie j =−e jei eiei = 1 e1e2e3 = I a∧b∧ c = q (3)

where q is a scalar value and a short notation eie j = ei j can be used
In general, the geometric product is represented as:

ab =
n,n

∑
i, j=1

aieib je j a ·b =
n,n

∑
i=1

aieibiei (4)

a∧b =
n,n

∑
i, j=1&i̸= j

aieib je j =
n

∑
i, j=1,&i> j

(aib j −a jbi)eie j (5)

It is not a “friendly user” notation for a practical application and causes problems in practical
implementations, primarily due to the anti-commutativity of the geometric product.

However, the geometric product can be easily represented by the tensor product, which can be
represented by a matrix. As the homogeneous coordinates will be used in the following, the tensor
product for the 4-dimensional case is presented 4 :

ab ⇐=⇒
repr

abT = a⊗b = Q =


a1b1e1e1 a1b2e1e2 a1b3e1e3 a1b4e1e4
a1b2e2e1 a2b2e2e2 a2b3e2e3 a2b4e2e4
a1b3e3e1 a3b2e3e2 a3b3e3e3 a3b4e3e4
a1b4e4e1 a4b2e4e2 a4b3e4e3 a4b4e4e4

= B+U+D (6)

where B+U+D are Bottom triangular, Upper triangular, Diagonal matrices, a4,b4 are the homo-
geneous coordinates, i.e. actually wa,wb (will be explained later), and the operator ⊗ means the
anti-commutative tensor product.

3Massey[22] and Silagadze[24] use multi-dimensional cross-product term
4The vector basis eie j , etc. will not be used explicitly
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2 PROJECTIVE EXTENSION AND PRINCIPLE OF DUALITY

Let us consider the projective extension of the Euclidean space and the use of homogeneous coor-
dinates. 5.

Figure 1: Projective extension and dual space

It uses homogeneous coordinates and two equivalent forms can be found:

• the form [x1, . . . ,xn : xw] is mostly used in computer graphics-related fields, namely [x,y : w]
in the case of P2, resp. [x,y,z : w] in the case of P3, where w is the homogeneous coordinate.

• the form [x0 : x1, . . . ,xn] is used in the mathematical fields and the x0 is the homogeneous
coordinate. This form has the advantage that the homogeneous coordinate is on the first
position.

It should be noted that ”:” is used to emphasize that the xw, resp x0 has a different meaning as it is
the ”scaling factor”, i.e. without a physical unit, while x1, . . . ,xn has different physical units, e.g.
meters[m] etc.

The mutual conversion between the Euclidean space and projective space is given as:

Xi =
xi

x0
x0 ̸= 0 , resp. Xi =

xi

xw
xw ̸= 0 , i = 1, . . . ,n (7)

where Xi are coordinates in the Euclidean space.
In the case of the E2 space

X =
x
x0

Y =
Y
x0

x0 ̸= 0 , resp. X =
x
w

Y =
y
w

w ̸= 0 (8)

where (X ,Y ), resp.[x,y : w] are coordinates in the Euclidean space E2, resp.in the projective space
P2. The extension to the E3, resp. En space is straightforward, see Vince[31], Yamaguchi[32].
The geometrical interpretation of the Euclidean (xw = 1, resp. x0 = 1) and the projective spaces is
presented at Fig.1.
It should be noted, that a distance of a point X = (X ,Y ), i.e. x = [x,y : w]T from a line in the E2 is
defined as

dist =
aX +bY + c√

a2 +b2
=

ax+by+ cw

w
√

a2 +b2
(9)

where (a,b) is the normal vector (actually it is a bivector) of the line.
5The concept of the projective extension for the CAD/CAM systems was deeply described in Yamaguchi[32]
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2.1 Inner and outer products

The inner product and outer product, i.e. the dot-product and cross-product in the E3, are known.
However, if the projective extension of the Euclidean space is used, there are slightly different in-
terpretations.

Let us consider vectors a = [a1,a2,a3 : a4]
T and b = [b1,b2,b3 : b4]

T in the projective space. They
represents actually vectors (a1/a4,a2/a4,a3/a4) and (b1/b4,b2/b4,b3/b4) in the E3 space. It can
be seen, that the diagonal of the matrix Q actually represents the inner product in the projective
representation:

a ·b = [(a1b1 +a2b2 +a3b3) : a4b4]
T ≜

a1b1 +a2b2 +a3b3

a4b4
(10)

where ≜ means projective equivalence. The inner product represents the trace tr(Q) of the matrix
Q and a ·b means a scalar value expressed using homogeneous coordinates.

The outer product in the E3 —textitvector space is represented respecting anti-commutativity as:

a∧b ⇐=⇒
repr

3,3

∑
i, j=1&i> j

(aib jeie j −bia jeie j) =
3,3

∑
i, j&i> j

(aib j −bia j)eie j (11)

where a,b ∈ E3 vector space.

However, if the projective extension is used,

a∧b =⇐=⇒
repr

4,4

∑
i, j=1&i> j

(aib jeie j −bia jeie j)≜
∑

3,3
i, j&i> j(aib j −bia j)eie j

a4b4e4e4
(12)

where eie j = 1. It means, that the result of the outer product c = a ∧ b is represented as c =
[c1, . . . ,c3 : c4]

T , where (c1, . . . ,c3), i.e. by a bivector (normal vector) of a plane in E3, while
c4 = a4b4 is actually a scaling factor.

It should be noted, that the outer product can be used for a solution of a linear system of equa-
tions Ax = b or Ax = 0, too.

2.2 Principle of duality

The principle of duality is essential principle, in general. Its application in geometry in connection
with the implicit representation using projective geometry brings some new formulations or even
new ones, see Johnson[15].

The duality principle for basic geometric entities and operators are presented by Tab.1 and Tab.2.
It the E2 case, a point is dual to a line and vice versa, the intersection of two lines is dual to a union
of two points, i.e. line given by two points, similarly for the E3 case.
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Table 1: Duality of geometric entities

Duality of geometric entities
Point in E2 ⇐===⇒

DUAL
Line in E3 Point in E3 ⇐===⇒

DUAL
Plane in E3

Table 2: Duality of operators

Duality of operators
Union ∪ ⇐===⇒

DUAL
Intersection ∩

3 COMPUTATION WITH HOMOGENEOUS REPRESENTATION

The geometric algebra (GA) presented above has been formulated for vectors in the Euclidean
space, as presented above. However, the concept can be extended using the projective extension of
the Euclidean space. It enables handling geometric entities like points, lines and planes, efficiently.

3.1 SOLUTION OF LINEAR SYSTEM OF EQUATIONS

A solution of a linear system of equations is a part of linear algebra and is used in many computa-
tional systems. It should be noted, that linear equations Ax = b can be transformed to an implicit
the homogeneous system, i.e. to the form Bξ = 0, where B = [A|−b], ξξξ = [ξ1, ...,ξn : ξw]

T ,
xi = ξi / ξw, i = 1, ...,n.

As the solution of a linear system of equations is equivalent to the outer product (generalized
cross-vector) of vectors formed by row vectors ai of the matrix B, the solution of the system is
defined as:

ξξξ = a1 ∧a2 ∧ ...∧an [A|−b]ξξξ = 0 ai = [ai,1, . . . ,ai,n,−bi] (13)

which is equivalent to a solution of the linear system of equations:a11 · · · a1n
... . . . ...

an1 · · · ann


x1

...
xn

=

b1
...

bn

 , i.e.

a11 · · · a1n −b1
... . . . ...

...
an1 · · · ann −bn




ξ1
...

ξn
ξw

=

0
...
0

 (14)

It is a significant result as a solution of a linear system of equations is formally the same for systems
for the both cases, i.e. Ax = 0 and Ax = b.
As the solution is formally determined, the formal linear operators can be used for further symbolic
processing using formula manipulation, as the geometry algebra is multi-linear. Even more, it is
capable to handle more complex objects generally in the n-dimensional space, i.e. oriented surfaces,
volumes, etc.

However, more general rules can be derived for the n-dimensional space and the outer prod-
uct application in Euclidean space. Let a matrix M is a n× n non-singular matrix representing a
geometric transformation, see the Eq.15.

(Ma)∧ (Ma2)∧ . . .∧ (Man) = det(M)n−1(M−1)T (a1 ∧a2 ∧ . . .∧an) (15)
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In the case pro of the projective extension of the Euclidean space, the Eg.15 is simplified to Eq.16
due to implicit representation, as the det(M)n−1 is only a multiplicative constant.

(Ma)∧ (Ma2)∧ . . .∧ (Man) = det(M)n−1(M−1)T (a1 ∧a2 ∧ . . .∧an)

≜ (M−1)T (a1 ∧a2 ∧ . . .∧an)
(16)

where ≜ means projective equivalence as we use the implicit formulation.

Now, it is possible to use the Functional analysis approach: “Let L is a linear operator, then the
following operation is valid....”. As there are many linear operators like derivation, integration,
Fourier and Laplace transforms etc., there is a wide variety of applications of those to the formal
solution of the linear system of equations, i.e. L(ξ ).
However, it is necessary to respect that in the case of the projective representation specific care is
to be taken for deriving rules for derivation etc., as a fraction is to be processed; similarly to other
operators.

3.2 Intersections and unions

The direct consequence of the principle of duality is that the intersection point x of two lines p1,p2,
resp. a line p passing two given points x1,x2, is given as:

x = p1 ∧p2 ⇐===⇒
DUAL

p = x1 ∧x2 (17)

where pi = [ai,bi : ci]
T , x = [x,y : w]T (w is the homogeneous coordinate), i = 1,2; similarly in the

dual case.
In the case of the E3 space, a point is dual to a plane and vice versa. It means that the intersection

point x of three planes ρρρ1,ρρρ2,ρρρ3, resp. a plane ρρρ passing three given points x1,x2,x3 is given as:

x = ρρρ1 ∧ρρρ2 ∧ρρρ3 ⇐===⇒DUAL
ρρρ = x1 ∧x2 ∧x3 (18)

where x = [x,y,z : w]T , ρρρ i = [ai,bi,ci : di]
T , i = 1,2,3.

It can be seen that the above formulae is equivalent to the “extended” cross-product, which in
natively supported by GPU architecture. For an intersection computation, we get:

x = p1 ∧p2 =

e1 e2 ew
a1 b1 c1
a2 b2 c2

 x = ρρρ1 ∧ρρρ2 ∧ρρρ3 =


e1 e2 e3 ew
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 (19)

Due to the principle of duality, a dual problem solution is given as:

p = x1 ∧x2 =

e1 e2 ew
x1 y1 w1
x2 y2 w2

 ρρρ = x1 ∧x2 ∧x3 =


e1 e2 e3 ew
x1 y1 z1 w1
x1 y2 z2 w2
x3 y3 z3 w3

 (20)
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(a) Duality of a point and a line in E2 (b) Barycentric coordinates in E2

Figure 2: Duality in E2: Lines and points, union and intersection, barycentric coordinates

The above-presented formulae prove the strength of the geometric algebra approach 6.
There is a natural question: What is the more convenient computation of the geometric product, as
computation with the outer product, i.e. extended cross-product, using basis vector approach is not
simple. Fortunately, the geometric product of ρρρ1,ρρρ2, resp. of x1 and x2 vectors using homogeneous
coordinates given as anti-commutative tensor product is given as:

ρρρ1ρρρ2 a2 b2 c2 d2
a1 a1a2 a1b2 a1c2 a1d2
b1 b1a2 b1b2 b1c2 b1d2
c1 c1a2 c1b2 c1c2 a1d2
d1 d1a2 d1b2 d1c2 d1d2

x1x2 x2 y2 z2 w2
x1 x1x2 x1y2 x1z2 x1w2
y1 y1x2 y1y2 y1z2 y1w2
z1 z1x2 z1y2 z1z2 x1w2
w1 w1x2 w1y2 w1z2 w1w2

3.3 Plücker coordinates

A line in the E3 space is given as an intersection of two planes or in a parametric form, see Eq.21:

ρ1 : a1X +b1Y + c1Z +d1 = 0
ρ2 : a2X +b2Y + c2Z +d2 = 0

, or X(t) = X1 +(X2 −X1) t (21)

where: ρ1 : nT
1 X+d1 = 0 and ρ2 : nT

2 X+d2 = 0.
The question is how to compute a line p ∈ E3 given as an intersection of two planes ρρρ1, ρρρ2, which
is dual to a line determination given by two points x1, x2 as those problems are dual.

The parametric solution can be easily obtained using standard Plücker coordinates 7. The above-
given formula is difficult to derive 8 and not easy to understand and computation is complex.

q(t) =
ω ×v
||ω||2

+ωt L = x1xT
2 −x2xT

1 ω = [l41, l42, l43]
T v = [l23, l31, l12]

T (22)

In 1871, Klein[18] derived that ωv = 0, i.e. there is a dimension reduction, see Skala[25] for
details.

6See Skala[28][29]
7The ”reference” point of a line is the closest point to the origin of the coordinate system, which is a substantial

property, e.g. in robotics and mechanical engineering
8https://en.wikipedia.org/wiki/Plücker coordinates
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Figure 3: Plücker coordinates

However, using the outer product the formulation is easy and easy to understand, see Fig.3:

s = n1 ∧n2 ρρρ0 = [sT : 0]T x0 = ρρρ1 ∧ρρρ2 ∧ρρρ0 (23)

where s is the directional vector of and x0 is a ”reference” point of a line, which is the closest point
to the origin.

For the intersection of two planes, the principle of duality can be applied directly.
However, using geometric algebra, the principle of duality and projective representation, we

can directly write:
p = ρ1 ∧ρ2 ⇐===⇒

DUAL
p = x1 ∧x2 (24)

It can be seen, that the formula given above keeps the duality in the final formulae, too.
From the formal point of view, the geometric product for the both cases is given as:

ρρρ1ρρρ2 ⇐=⇒repr
ρρρ1 ⊗ρρρ2 =


a1a2 a1b2 a1c2 a1d2
b1a2 b1b2 b1c2 b1d2
c1a2 c1b2 c1c2 c1d2
d1a2 d1b2 d1c2 d1d2

 (25)

The dual problem formulation:

x1x2 ⇐=⇒repr
x1 ⊗x2 =


x1x2 x1y2 x1z2 x1w2
y1x2 y1y2 y1z2 y1w2
z1x2 z1y2 z1z2 z1w2
w1x2 w1y2 w1z2 w1w2

 (26)

It means that we have computation of the Plücker coordinates for both cases, i.e. for the compu-
tation of a line p = ρρρ1 ∧ρρρ2 given as an intersection of two planes in E3 and a line given by two
points, i.e. as a union of two points, in E3 as p = x1∧x2 using the projective representation and the
principle of duality. It should be noted that the given approach offers: significant simplification of
computation of the Plücker coordinates as it is simple and easy to derive and explain, uses vector-
vector operations, which is especially convenient for SSE and GPU application one code sequence
for the both cases.
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The Plücker coordinates are also in mechanical engineering applications, especially in robotics,
due to their simple displacement and momentum specifications. In other fields simple explanation
and derivation are important arguments for GA approach application.

3.4 Barycentric coordinates

The barycentric coordinates are often used in many applications, not only in geometry. The
barycentric coordinates computation, see Fig.2b, leads to a solution of a system of linear equa-
tions.

X1λ1 +X2λ2 +λ3X3 = X Y1λ1 +Y2λ2 +λ3Y3 = Y λ1 +λ2 +λ3 = 1 (27)

In the matrix form:X1 X2 X3
Y1 Y2 Y3
1 1 1

λ1
λ2
λ3

=

X
Y
1

 , resp.

x1 x2 x3
y1 y2 y3
w1 w2 w3

λ1
λ2
λ3

=

X
Y
w

 (28)

where X = (X ,Y ) ∈ E2 and x = [x,y : w]T ∈ P2, i.e. in the projective space.
However, a solution of linear system equations is equivalent to the outer product application, as
explained above; Skala[25][26]. Therefore, it is possible to compute the barycentric coordinates
using the outer product, which is recommendable especially for the GPU oriented applications.

Let us consider the E2 case and the barycentric interpolation between three points (a triangle
vertices) given generally in the projective space as xi = [xi,yi : wi]

T , i = 1, . . . ,3 & wi ̸= 0, of the
given triangle, and vectors:

ξξξ = [x1,x2,x3,x] ηηη = [y1,y2,y3,y] ωωω = [w1,w2,w3,w] (29)

Then the barycentric coordinates µ in the homogeneous coordinates of the point x = [x,y : w]T are
given as:

ξξξ

ηηη

ωωω




µ1
µ2
µ3
µw

=

0
0
0

 , i.e. µµµ = ξξξ ∧ηηη ∧ωωω (30)

where µµµ = [µ1,µ2,µ3 : µw]
T and the barycentric coordinates in the Euclidean space λ are given as:

λλλ = (λ1,λ2,λ3) = (− µ1

µw
,− µ2

µw
,− µ3

µw
) (31)

Similarly, for other dimensions, see Skala[27] for details. How simple and elegant solution!
It can be seen, that the presented computation of barycentric coordinates is simple and conve-

nient for GPU or SSE applications. As we have assumed from the very beginning, there is no need
to convert the coordinates of points from homogeneous coordinates to Euclidean coordinates. As a
direct consequence of that, we save a lot of division operations and increase the robustness of the
computation.
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4 CONCLUSION

This contribution briefly presents geometry algebra, which is not generally known and used. How-
ever, it offers simple and efficient solutions to many computational problems if combined with the
principle of duality and projective notation.
As the result of this contribution, a new formulation of the Plücker coordinates, often used in me-
chanical engineering and robotics, is given. As the operations are based on standard linear algebra
formalism, it is simple to use. The presented approach supports direct GPU application with signifi-
cant speed-up and parallelism potential. Also, the approach is applicable to d-dimensional problem
solutions, as geometric algebra is multi-dimensional.
The presented approach efficiently computes the barycentric coordinates of a point in the given
convex simplex, the Plücker coordinates of a line given by two points or two planes in the E3

space. As the division operation is postponed, higher robustness of computation can be achieved.
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Appendix

The GPU implementation of the outer product for the E3 case using the homogeneous coordinate is
quite simple. It should be noted that only 4 clocks for the outer product and 4 clocks for the inner
product are needed.

float4 a;
a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw));
a.y = - dot(x1.xzw, cross(x2.xzw, x3.xzw));
a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw));
a.w = - dot(x1.xyz, cross(x2.xyz, x3.xyz));
return a;

or more compactly as:
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float4 cross_4D(float4 x1, float4 x2, float4 x3)
return(

dot(x1.yzw, cross(x2.yzw, x3.yzw)),
- dot(x1.xzw, cross(x2.xzw, x3.xzw)),
dot(x1.xyw, cross(x2.xyw, x3.xyw)),
- dot(x1.xyz, cross(x2.xyz, x3.xyz))

);
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