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Abstract. Finding the smallest enclosing circle of the given points in
E2 is a seemingly simple problem. However, already proposed algorithms
have high memory requirements or require special solutions due to the
great recursion depth or high computational complexity unacceptable for
large data sets, etc. This paper presents a simple and efficient method
with speed-up over 100 times based on processed data reduction. It is
based on efficient preprocessing, which significantly reduces points used
in final processing It also significantly reduces the depth of recursion and
memory requirements, which is a limiting factor for large data processing.
The proposed algorithm is easy to implement and it is extensible to the
E3 case, too. The proposed algorithm was tested for up to 109 of points
using the Halton’s and "Salt and Pepper" distributions.

Keywords: Smallest enclosing circle · smallest enclosing ball · algorithm
complexity · preprocessing · convex hull · convex hull diameter.

1 Introduction

Algorithms for finding the smallest enclosing circle in the E2 case, or the en-
closing ball in the Ek general case, have been studied for a long time and many
algorithms have been published with many modifications. Sylvester[62] made the
first problem formulation in 1857 and later by others, see Elzinga[10]. Several
algorithms have been published, e.g. Megiddo’s algorithm[31] with an overview
of some other interesting solutions, Ritter[46], etc. A brief introduction to the
problem is available at WiKi[71][72].

An interesting approach was published by Welzl[67] in 1991. It is a "brute
force" recursive algorithm with a random selection of points. It leads to a signif-
icant speed-up due to random point selection. However, it is not directly usable
for large data sets due to the very deep recursion calls.
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Unfortunately, the originally proposed Welzl’s algorithm is partially incorrect
and Matoušek, Sharir, Welzl’s published the corrected version, as the MSW
algorithm[30] (the code available on WiKi[72]), see[70][72].

Algorithm 1 MSW - Matousek, Sharir, Welzl’s algorithm
Require: Finite sets P and R of points in the plane |R| = 3
Ensure: Minimal disk enclosing P ∪R

if P is empty then
return trivial(R)

end if
choose p in P ▷ randomly and uniformly
D := msw(P − {p}, R)
if p is in P then

return(D)
end if
q = nonbase(R ∪ {p})

▷ Welzl’s algorithm for 4 points could be used to find what would not be in R
return MSW (P − {p} ∪ {q}, R ∪ {p} − {q})

It should be noted, that there is no significant difference between the original
Welzl’s and MSW algorithms as far as the timing is concerned.

2 Proposed preprocessing

The smallest enclosing center problem is closely related to the diameter of the
convex hull problem. A simple algorithm with the Oexp(N) complexity for finding
a diameter of the convex hull of points using preprocessing was published by
Skala[53][55][58]. The algorithm based on polar space subdivision was introduced
in Skala,Smolik,Majdisova[59] and extended in Skala,Majdisova,Smolik[57] for
the E3 case.

2.1 Convex hull diameter estimation

It is based on a simple idea. The AABB points and points closest to the AABB
corners form a convex hull. The maximum distance d defines an estimation of
the convex hull diameter, i.e. radius r. Then the given points Ω are split to
Ω0, . . . , Ω4, see Fig.1.

It can be seen that the Ω0 points cannot contribute to the convex hull di-
ameter. Then points of Ω1 and Ω3 are processed and the value r is updated.
Similarly, updates of the radius r are made after Ω2 and Ω4, Ω1 and Ω2, Ω2 and
Ω3, Ω3 and Ω4, Ω4 and Ω1. This leads to significant reduction of points that
could form the final convex hull. Then the final diameter of the convex hull is
computed; see Skala[53][56][58] for details.
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Fig. 1: Maximum distance estimation

Other efficient algorithms for finding the convex hull of points in the E2 case
were published in Skala[55][59] and for the convex hull in E3 case was described
in Skala[57]. This preprocessing leads to significant speed up, see Skala[58] for
details. However, the polar subdivision used in Smolik[61] is quite complex to
implement.

The Welzl’s recursive algorithm is based on the "brute force" approach ac-
tually, but the randomized point heuristic selection use leads to the Oexp(N)
expected complexity, where N is a number of points. Unfortunately, it leads to
deep recursive calls, which is a very limiting factor for large data processing.

2.2 Theoretical analysis

The simplest acceleration of the smallest enclosing circle algorithm is to find
points that form the Axis Aligned Bounding Box (AABB), i.e. points A,B,C,D.
The worst case is when the AABB is a square and the points A,B,C,D are at
the middle of the edges, see Fig.2a. In this case, all points inside of the area
Ω0 can be removed from the future processing. However, if points closest to the
AABB corners are found, i.e. points E,F,G,H, all points inside of the convex
polygon A, . . . ,H can be removed. The points E,F,G,H are on an expected
distance r from corners and the radius r decreases with the number N of the
given points.

The Fig.2a presents a general case with a rectangular area. The closest point
to a corner of the AABB lies on a circle with the expected radius r. It should be
noted that only 1

4 of the circle area is inside of the AABB. The radius r depends
on the number of the given points N . If the regular orthogonal distribution of
points in the E2 case forms a mesh of

√
N×

√
N points. However, in the following

a uniform distribution of points is expected and the "Salt and Pepper" Chen[5]
and Halton’s[71] and distributions were used in experiments.
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(a) Convex hull estimation (b) Corner area

Fig. 2: Axis Aligned Bounding Box and convex polygon

Let P0 is the area of the square with edges of the length a. The P1 is the
area of the circular sector of the radius r, see Fig.2a, containing just one point.
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Then in the E2 case the expected radius r can be estimated as:

r =
2a

√
π
√
N

=
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≈ 1.1284
a√
N

(2)

The sizes of the corner’s areas Ψ1 + Ψ2 + Ψ3 can be estimated as:

P2 =
a

2

r√
N

(3)

It means, that the P2 area decreases with the value N significantly. If the total
number of points is N = 108, i.e.

√
N = 104, then

r ≈ 1.1284
a

104
= 0.00011284 a P2 ≈ 0.00011284

2
√
N

a2 (4)

It can be seen, that the estimated point reduction is very high. In the E3 case,
the number of points in the given set is N and only 1

8 of the corner ball volume
are inside of the AABB. The expected radius r can be estimated as:

pN = 1 p =
V1

V0
N

1
8
4
3πr

3

a3
= 1 r3 =

6a3

π 3
√
N

(5)
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In the E3 case, the expected radius r can be estimated as:

r =
3
√
6 a

3
√
π 3
√
N

≈ 1.2407
a

3
√
N

(6)

This gives some estimation of the efficiency of the proposed preprocesing.

2.3 Implementation notes

The algorithm for finding the convex polygon A, . . . ,H consists of four passes
with O(N) complexity (N is the total number of points). However, it should
be noted that after the second step a significant fraction of points is discarded
already.

Algorithm 2 Smallest enclosing circle algorithm
Require: All given points in the Ω set
Ensure: The smallest enclosing circle

FIND the points forming the AABB, i.e. A, . . . ,D.
SPLIT the points into four areas half-planes based on their position relative to the
line segments formed by the points A, . . . ,D.

▷ points that do not fit into any of the half-planes, i.e. quad
▷ points inside of ABCD quad, are promptly discarded

FIND points E, . . . ,H. ▷ distance of the points is measured only to the corner
▷ of their respective half-plane

REMOVE the remaining points inside of the convex polygon A, . . . ,H
▷ information about point’s half-plane is used to reduce further testing

▷ the points in Ω0 are removed as they cannot influence the final smallest ball
CALL the Welzl’s algorithm [MSW] for the remaining points ▷ see Fig.5a

This approach of discarding the significant fraction of points at the beginning
has proven to be superior to the simple point-in-polygon test, as such test needs
to find the whole polygon first, which, among other things, requires measuring
distance to all four AABB corners per point. 1

Further reduction of read/write operations can be achieved by using separate
data structure for storing the index of a region Ωi for a given point.

3 Experimental results

The proposed modification of the Welzl’s algorithm was tested for a large number
of points (up to N > 4 ∗ 108 points) in the E2 case. The Halton’s and "Salt
and Pepper" distributions were used for experiments. Experiments proved the
following expected properties:
1 Also, instead of computing the distance between points d, the

√
d2 should not be

used and d2 can be used for distance comparisons Skala[52][54]. Same idea can be
applied to the radius of a circumscribed circle in Welzl’s algorithm.
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– the proposed smallest enclosing circle with preprocessing algorithm is of the
Oexp(N) time complexity even for large data sets (the Halton’s and "Salt
and Pepper" distributions used),

– timing and significant speed up due to preprocessing, see Fig.3a and Fig.3b
respectively,

– the reduction ratio grows with the number of points O
√
N , see Fig.5a,

– the relative processing time time/N is nearly constant for N ≥ 104, see
Fig.4b,

– significant decrease in the recursion depth as the result of preprocessing,
which in turn leads to higher memory efficiency.

Implementation was done in C++, x64, compiler MSVC, Windows 10, 16GB
RAM, Intel i7-10750H, 2.60GHz, 6 Cores CPU.
One of the main advantages of the proposed preprocessing is the significant
reduction of the recursion depth. It can be seen that the depth recursion required
is nearly 104 less if the proposed preprocessing is used, see Fig.5b for N = 108

points. There is also a direct influence on the computational time required.

4 Conclusion

The proposed algorithm for the acceleration of finding the smallest enclosing
ball is simple, fast, robust and easy to implement. The significant advantages
over recent solutions are:

– significant speed-up up to 102 times and it grows with the number of points,
– significant reduction of the depth of recursion, which is a limiting factor of

the original algorithm for large data sets processing,
– significant data reduction before the final Welzl’s (MSW) algorithm use,
– simple extensibility of the preprocessing algorithm to the E3 case,
– better memory management, caching, during data processing,

The Halton’s and "Salt and Pepper" distributions were used and the experi-
mental results proved the speed-up expected. However, there is a potential for
additional speed-up using SIMD instructions or GPU, use of the more advanced
algorithms, e.g. the O(lgN) or O(1) point in the convex polygon algorithms
Skala[51], circumscribed sphere algorithm Skala[54]. 2
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(a) Timing of algorithms

(b) The corner area influence

Fig. 3: Timing and corner areas influence
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(a) Absolute processing time

(b) Relative processing time, i.e. time
N

Fig. 4: Absolute and relative processing times
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(a) Preprocessing point reduction factor

(b) Comparison of the recursive depth

Fig. 5: Reduction and recursive depth
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Appendix

This appendix presents related papers to the Smallest Enclosing Ball problem.

Agarwal[1], Cavaleiro[2][3], Cazals[4], Chen[5], Drager[6], Edelsbrunner[7], Efrat[8][9],
Elzinga[10], wiki:[71][70][72], Fischer[12][13][11], Friedman[14], Gaertner[15], Gao[16],
Goaoc[17], Har-Peled[18], Jiang[20][19], Kallberg[21], Karmakar[22][23], Krivosija[24],
Larsson[25], Li[26], Liu[27], Martinetz[28], Martyn[29], Matousek[30], Megiddo[31],
Mordukhovich[32], Mukherjee[33], Munteanu[34], Nam[35], Nielsen[38][39][40],
Nielsen[41][42][37][36], Nock[43], Pan[44], Pronzato[45], Ritter[46], Saha[47], Shen[48],
Shenmaier[49], Shi[50], Skyum[60], Smolik[61], Sylvester[62], Tao[63], Wang[64][65],
Wei[66], Welzl[67][68][69], Xu[74][73], Yildirim[75], Zhou[76][77][78].
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