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1 Introduction

A new approach to the matrix conditionality and the solvability of the linear systems of equations is
presented. It is based on the application of the geometric algebra with the projective space representation
using homogeneous coordinates representation. There are two main groups:

• non-homogeneous systems of linear equations, i.e. Ax = b

• homogeneous system of equations, i.e. Ax = 0

Using the principle of duality and projective extension of the Euclidean space the first type of the linear
system, i.e. Ax = b, can be easily transformed to the second type, i.e. Ax = 0. The geometric algebra
offers more general formalism, which can be used for a better understanding of the linear system of
equations properties and behavior.

1.1 Geometric algebra

The Geometric Algebra (GA) uses a “new” product called geometric product defined as:

ab = a ·b+a∧b (1)

where ab is the new entity. It should be noted, that it is a "bundle" of objects with different dimen-
sionalities and properties, in general. In the case of the n-dimensional space, the vectors are defined as
a = (a1e1 + ...+anen), b = (b1e1 + ...+bnen) and the ei vectors form orthonormal vector basis in En. In
the E3 case, the following objects can be used in geometric algebra: [5]:

1 0-vector (scalar) e12, e23, e31 2-vectors (bivectors)
e1,e2,e3, 1-vector (vectors) e123 3-vector (pseudoscalar)

The significant advantage of the geometric algebra is, that it is more general that than the Gibbs alge-
bra and can handle all objects with dimensionality up to n. The geometry algebra uses the following
operations, including the inverse of a vector.

a ·b =
1
2
(ab+ba) a∧b =−b∧a a−1 = a/||a||2 (2)

It should be noted, that geometric algebra is anti-commutative and the “pseudoscalar” I in the E3case
has the basis e1e2e3 (briefly as e123), i.e.

eie j =−e jei eiei = 1 e1e2e3 = I a∧b∧ c = q (3)

where q is a scalar value (actually a pseudoscalar).
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2 Solution of linear systems of equations

The linear system of equations Ax = b can be transformed to the homogeneous system of linear equa-
tions, i.e. to the form Dξ = 0, where D = [A|−b], ξ = [ξ1, ...,ξn : ξw]

T , xi = ξi / ξw, i = 1, ...,n. If ξw 7→ 0
then the solution is in infinity and the vector (ξ1, ...,ξn) gives the "direction", only.

As the solution of a linear system of equations is equivalent to the outer product (generalized cross-
vector) of vectors formed by rows of the matrix D, the solution of the system Dξ = 0 is defined as:

ξ = d1∧d2∧ ...∧dn Dξ = 0 , i.e. [A|−b]ξ = 0 (4)

where: di is the i-th row of the matrix D, i.e. di = (ai1, ...,ain,−bi), i = 1, ...,n. The application of
the projective extension of the Euclidean space enables us to transform the non-homogeneous system of
linear equations Ax = b to the homogeneous linear system Dξ = 0, i.e.:a11 · · · a1n

...
. . .

...
an1 · · · ann


x1

...
xn

=

b1
...

bn

 ⇐=====⇒
conversion

a11 · · · a1n −b1
...

. . .
...

...
an1 · · · ann −bn




ξ1
...

ξn

ξw

=

0
...
0

 (5)

It is an important result as a solution of a linear system of equations is formally the same for both types,
i.e. homogeneous linear systems Ax = 0 and non-homogeneous systems Ax = b.

2.1 Angular criterion

Both types of the linear systems of equations, i.e. Ax = b (A is n× n) and Ax = 0 (A is (n+ 1)× n),
actually have the same form Ax = 0 (A is (n+ 1)× n), now, if the projective representation is used.
Therefore, it is possible to show the differences between the matrix conditionality and conditionality

Figure 1: Difference between matrix and linear system conditionality

(solvability) of a linear system of equations, see Fig.1.

The eigenvalues are usually used and the ratio ratλ = |λmax|/|λmin|& λ ∈C is mostly used as a criterion.
If the ration ratλ is high, the matrix is said to be ill-conditioned, especially in the case of large data with
a large span of data. There are two cases, which are needed to be taken into consideration:

• non-homogeneous systems of linear equations, i.e. Ax = b. In this case, the matrix conditionality
is considered as a criterion for the solvability of the linear system of equations. It depends on the
matrix A properties, i.e. on eigenvalues.
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Table 1: Conditionality of modified the Hilbert matrix: Experimental results (*with Octave warnings)

N cond(Horig) cond(Hnew) N cond(Horig) cond(Hnew)
3 5.2406e+02 2.5523e+02 7 4.7537e+08 1.4341e+08
4 1.5514e+04 6.0076e+03 8 1.5258e+10 6.0076e+03
5 4.7661e+05 1.6099e+05 9 4.9315e+11 1.3736e+11
6 1.4951e+07 5.0947e+06 10 1.6024e+13 4.1485e+12

20 1.6024e+13* 4.1485e+12

102 0 0
0 100 0
0 0 10−2


x1

...
x3

=

b1
...

b3

 (6)

A conditionality number κ(A) = |λmax|/|λmin| is usually used as the solvability criterion. In the
case of the Eq.6, the matrix conditionality is κ(A) = 102/10−2 = 104. However, if the 1st row is
multiplied by 10−2 and the 3rd row is multiplied by 102, then the conditionality is κ(A) = 1.

• a homogeneous system of equations Ax = 0, when the system of linear equations Ax = b is ex-
pressed in the projective space. In this case, the vector b is taken into account and bivector area
and bivector angles properties can be used for solvability evaluation.

The only angular criterion is invariant to the row multiplications, while only the column multiplication
changes angles of the bivectors. There are several significant consequences:

• the solvability of a linear system of equations can be improved by the column multiplications,
only, if unlimited precision is considered. Therefore, the matrix-based pre-conditioners might not
solve the solvability problems and might introduce additional numerical problems.

• the precision of computation is significantly influenced by addition and subtraction operations, as
the exponents must be the same for those operations with mantissa. Also, the multiplication and
division operations using exponent change by 2±k should be preferred.

2.2 Preconditioning simplified

There are several methods used to improve the ratio κ(A) = |λmax|/|λmin| of the matrix A of the linear
system, e.g. matrix eigenvalues shifting or preconditioning [1] [2]. The preconditioning is usually based
on solving a linear system Ax = 0:

PAS S−1x = Pb (7)

where P is a matrix, which can cover complicated computation, including Fourier transform. The inverse
operation, i.e. P, is computationally very expensive as it is of O(n3) complexity. Therefore, they are
not easily applicable for large systems of linear equations used nowadays. There are methods based on
incomplete factorization, etc., which might be used [3]. The proposed matrix conditionality improvement
method requires only the diagonal matrices values P and S, i.e. multiplicative coefficients pi 6= 0, s j 6= 0,
which have to be optimized. This is a significant reduction of computational complexity, as it decreases
the cost of finding sub-optimal pi, s j values. The proposed approach was tested on the Hilbert’s matrix as
conditionality can be estimated as κ(Hn)' e3.5n. The experimental results of the original conditionality
κ(Horig) and conditionality using the proposed method κ(Hnew) are presented in Tab.1.
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Table 2: Conditionality of modified the Hilbert matrix: Experimental results (*with Octave warnings)

N 3 4 5 6 7
κrat(Horig) 0.54464 0.39282 0.31451 0.26573 0.23195
κrat(Hnew) 0.98348 0.97740 0.98173 0.96283 0.87961

N 8 9 10 20
κrat(Horig) 0.20694 0.18755 0.17199 · · · 0.09917*
κrat(Hnew) 0.92500 0.96435 0.96322 · · · 0.74701*

The experiments proved, that the conditionality cond(Hnew) of the modified matrix using the proposed
approach was decreased by more than half of the magnitude for higher values of n, see Tab.1. This is
consistent with the recently obtained results [4], where the inverse Hilbert matrix computation using the
modified Gauss elimination without division operation was analyzed.

The Hilbert matrix conditionality improvement also improved the angular criterion based on maximizing
the ratio κrat(H) defined as:

κrat(H) =
cosγmin

cosγmax
κrat(H) =

cosβmin

cosβmax
(8)

It says, how the angles cosγi j, formed by the vectors ai j of the bivectors are similar, see Fig.1. It means,
that if the ratio κrat(A) ' 1 the angles of all bivectors are nearly equal. In the case of conditionality
assessment of the linear system of equations Ax = 0, the angles βi j, formed by the angels αi j have to
be taken into account, see Fig.1. The results presented in Tab.2 reflects the improvement of the Hilbert
matrix by proposed approach using the diagonal matrices P and S used as the multipliers.

3 Conclusion

The advantage of the angular criterion is that it is common for the conditionality evaluation of the matrix
and of the linear system of equations. It should be noted, that this conditionality assessment method
gives different values of conditionality of those two different cases, as in the first case only the matrix is
evaluated, while in the second one the value of the b in the Ax = b is taken into account.
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