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Abstract. This contribution briefly describes some1

”dangerous” features of the Least Square Error (LSE)2

methods, which are not generally known, but often used3

in applications, and researchers are not aware of those.4

The LSE is usually used in approximations of acquired5

data to find ”the best fit” of the data, especially in financial6

economics and related fields. However, the LSE method7

is not invariant to some standard basic operations used8

within a solution of a linear system of equations.9

Keywords. Least square error, system of linear10

equations, numerical mathematics, over determined11

system, invariant operations.12

1 Introduction13

The Least Square Error (LSE) is usually used14

for finding ”the best fit” of measured data, which15

leads to a solution of an over-determined system of16

linear equations Ax = b. The LSE method is very17

often used in financially oriented applications using18

linear and non-linear regressions. In some specific19

cases, the total least square method is to be20

used, mostly related to the implicit representation21

[1][6][9][10].22

However, the LSE method’s result depends on23

the physical units of the data domain used in the24

polynomial regression case.25

1.1 Linear System of equations26

In the case of the linear system of equations27

Ax = b, when the matrix A (n×n) is non-singular,28

there are several standard methods for solving a29

linear system of equations [4]. However, solution of30

the linear system of equations Ax = b and Ax = 031

is equivalent to the outer product (extended cross32

product)[8], and the modified Gauss elimination33

method can be used without division operation34

[7]. Some operations are used quite frequently,35

especially in connection with preconditioning or36

in a solution of the linear system, e.g. a row37

multiplication, a row swap, etc.38

PAD D−1x = Pb (1)

where: P and D are non-singular matrices (n×n).39

A simple preconditioning method for a large system40

of equations uses diagonal matrices P and D [15].41

Multiplication of the i-th row of the extended matrix42

[A|b] by pi 6= 0 is invariant to the linear system’s43

solution. The multiplication of the j-th column of44

the matrix A by dj 6= 0 represents the unit change45

of the xj , see Eq.1.46

2 Over-determined systems47

In the case of the over-determined linear system,48

the matrix A is (n × m), n > m, the vector b49

is (m × 1), the LSE is usually used to obtain an50

approximate solution. However, in many cases,51

users are not aware of the LSE properties [17]. It is52

well known, that a result of the LSE approximation53

depends on physical units used, if polynomial54

regression is used, e.g. in the estimation of55

processing time, etc.56

Let us consider a regression function ϕ(t):57

ϕ(t) = a0 + a1t+ a2t log(t) + a3t
2 + . . . (2)

If the time unit [s] is used, the results are different58

from the case, when the unit [ms] is used. Also,59

the element a0, which represents a value for60

t = 0, causes some problems; detected also in61
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interpolation and approximation using Radial Basis62

Function (RBF) [2][5] [13][14].63

In the case of the linear regression, the LSE64

method is usually applied directly to the data set65

using pseudo-inverse as follows:66

ATAx = ATb , i.e. x = (ATA)−1ATb (3)

Let us consider the LSE formulation as in Eq.1, but67

modified for an over-determined system of linear68

equations. Then the LSE use leads to:69

(PAD)
T
PAD D−1x = (PAD)

T
Pb (4)

where P(n × n) and D(m × m) are non-singular70

diagonal matrices. Using algebraic operations:71

DTATPT PAD D−1x = DTATPT Pb (5)

As the matrix D is diagonal and non-singular, it is72

possible to multiply Eq.5 from the left by (DT )
−1. It73

results to:74

ATQA D D−1x = ATQ b (6)

where Q = PTP is a diagonal matrix of p2i row75

multipliers.76

If ξ = D−1x, then Eq.6 can be rewritten as:77

ATQA D ξ = ATQ b (7)

then the solution of Eq.7 using LSE method:

ξ = (ATQA D)−1 ATQ b

= D−1(ATQA)−1 ATQ b (8)
x = Dξ (9)

Therefore in the case of linear regression, the LSE78

method, Eq.3:79

— is invariant to physical units used, if the80

transformation x = Dξ is used,81

— is not invariant to row multiplications due to82

dependency on the matrix P, resp. Q, which83

represents multipliers of rows.84

3 Example85

Let us consider two simple examples of the86

LSE use for two different simple cases with a87

modification, when the first row of the extended88

matrix [A|b] is multiplied by the value 10:89

— the first case - a function is given as90

z = a1x + a2y, i.e. a plane passing the91

origin, and values of (x, y, z) are given as92

(1, 2, 1), (2, 2, 2), (3, 7, 7)93 1 3
2 2
3 7

[a1
a2

]
=

12
7

 10 30
2 2
3 7

[a1
a2

]
=

102
7


(10)

The solutions are x = [11/21, 2/3]T and94

x = [275/129,−46/129]T .95

96

— the second case - a function is given as97

y = kx + q, i.e. a line in E2 not passing98

the origin, and values of (x, y) are given as99

(1, 1), (2, 2), (3, 7).100 1 1
2 1
3 1

[k
q

]
=

12
7

 10 10
2 1
3 1

[k
q

]
=

102
7


(11)

The solutions are x = [3,−3/4]T and101

x = [435/167,−808/501]T .102

These elementary examples serve to understand103

the limitations of the LSE use. The results are104

valid for d-dimensional space, in general. In105

the first case, usually, users are not aware of106

that. The second case can be easily understood107

as the k represents a normal vector generally108

in a higher dimension, while q is related to a109

distance from the origin. The solution of Eq.3110

might be unstable, as the matrix ATA is generally111

numerically ill-conditioned [3][11][13][14].112

It should be noted, that in many cases the Total113

Least Square Error (TLSE) should be used instead.114

However, it leads to more complicated computation115

[9][16].116

A simple preconditioning [12][15] should be117

considered. Also, the modified Gauss elimination118

method [7][8] can be used as a solution of a linear119

system is equivalent to the outer product use.120
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4 Conclusion121

This contribution describes selected mostly un-122

known properties of the Least Square Error for123

the approximation of acquired data. The LSE124

method is non-invariant to the multiplication of a125

row of the extended matrix [A|b]. Also, in the126

case of non-existent metric between parameters,127

like a distance and a normal vector, the LSE based128

approximation should not be used.129
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