
A Novel Line Convex Polygon Clipping
Algorithm in E2 with Parallel Processing

Modification ?

Vaclav Skala[0000−0001−8886−4281]

Dept. of Computer Science and Engineering
University of West Bohemia

CZ 301 00 Pilsen, Czech Republic
skala@kiv.zcu.cz http://www.VaclavSkala.eu

1 Abstract

This paper presents a new approach to line clipping by a convex polygon problem
solution. The algorithm is based on a separation function, which separates the
polygon vertices to the left or right hand side of the given line. It leads to
numerically robust algorithms in comparison to the well-known Cyrus-Beck’s
algorithm and its modifications.

The proposed algorithm has O(N) complexity, but supports parallel process-
ing and simple implementation in hardware.

The presented approach has also impact to the algorithm design methodology
and importance of a detailed analysis in algorithm development, if the algorithm
robustness and efficiency is required.

Keywords: Line clipping · Line segment clipping · Cyrus-Beck algorithm · Con-
vex polygon clipping · Homogeneous coordinates · Projective representation ·
Duality

2 Introduction

There are many algorithms for a line clipping or a line segment clipping by a
convex polygon with many modifications. Probably the mostly published algo-
rithms are devoted to a line or line segment clipping by a rectangular window
in E2, which was motivated by computer graphics output devices and Window-
Viewport operations. , the Cohen-Sutherand’s (CS)[8] and Liang-Barsky (LB)[12]
algorithms are the most known for line segment and line segment clipping in E2

with several modification and improvements, e.g. Nicholl-Lee-Nicholl[13], Bui[2],
Skala[16][33], Andreev[1], Day[5], Dörr[7], Duvalenko[6], Kaijian[10], Krammer[11],
Liang[12], Sobkow[35] and Zhang[36]. Line clipping in E2 using homogeneous
coordinates was introduced by Nielsen[14] and optimized line segment clipping

? Supported by the University of West Bohemia - Institutional research support
No.1311.

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



2 V. Skala

for the normalized window was published in Skala[31][26]. A new classification
scheme for the line segment end-points is introduced in Skala[32].

However, clipping by a convex polygon is a little bit more complicated prob-
lem as it depends on number of vertices of the given convex polygon. Probably
the Cyrus-Beck (CB)[4] algorithm is the most known for line segment and line
segment clipping in the E2 case having applicability also in the E3 case for
clipping by a convex polyhedron. The Cyrus-Beck algorithm has O(N) com-
putational complexity. The Cyrus-Beck algorithm was modified for non-convex
polygons with self-intersecting edges and quadratic curves in Skala[17][18]. A
line convex clipping algorithm based on space subdivision was introduced by
Slater[34]. A line clipping algorithm based on shearing transformation was pub-
lished by Huang[9], algorithm for a polygon clipping was published in Rap-
poport[15].

The algorithm for a line and line segment clipping by a convex polygon with
O(lgN) complexity was described in Skala[20]. Complexity decrease is possible
due to ”ordering” of vertex indexes of the convex polygon in the E2 case. Un-
fortunately, this is not extensible for the E3 case, i.e. line clipping by a convex
polyhedron, as in the E3 case no ordering of vertices is available. The algorithm
with Oexp(

√
N) was introduced by Skala[23] for the case when the polyhedron

is represented by a triangular mesh using information on the neighbours of tri-
angles. A line intersection algorithm with a non-convex polyhedron in E3 was
introduced in Skala[21][25].

In the E2 case, if the convex polygon is constant and many lines or line
segments are to be clipped, it is possible to pre-compute the convex polygon
using dual space representation and the point-in-convex polygon location strat-
egy Skala[24]. Then, the line segment clipping algorithm is Oexp(1) run-time
complexity, Skala[22].The algorithm was extended for the E3 case in Skala[23].

In the following, a new approach to the line clipping by a convex polygon in
E2 is described in comparison to the Cyrus-Beck’s algorithm.

3 Cyrus-Beck’s algorithm

The Cyrus-Beck’s(CB) algorithm is well known and is used in many computer
graphics courses due to its simplicity and applicability for the E3 case.

The Cyrus-Beck’s algorithm is based on direct intersection computation of
the given line p in the parametric form and a line on which the polygon
edge ei lies, see Fig.1, in the implicit form, i.e. on a solution of two linear equa-
tions (vector notation is used):

p : x(t) = xA + s t

ei : nT
i x + ci = 0

(1)

Solving those equations, the parameter t for the intersection point is obtained
as:

ei : nT
i xA + nT

i s t + ci = 0 (2)

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



A Novel Line Polygon Clipping in E2 with Parallel Processing 3

Fig. 1. Clipping against the convex polygon in E2

and therefore

t = −nT
i xA + ci
nT
i s

(3)

It can be seen, that there is an instability of the algorithm as if the line p is
parallel or nearly parallel to the edge ei, the expression nT

i s→ 0 and t→ ±∞.
The fraction computation might cause an overflow or high imprecision of the
computed parameter t value, see Fig.2.

It is hard to detect and solve reliably such cases and programmers usually
use a sequence like

if |nT
i s)| < eps then a singular case

which is incorrect solution as the value eps is a programmer choice. Unfortu-
nately, text books do not point this in spite of this dangerous construction as
far as the robustness and computational stability is concerned.

Fig. 2. Cyrus-Beck clipping algorithm against the convex polygon in E2

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



4 V. Skala

The modification of the Cyrus-Beck’s algorithm using the cross product for
more reliable detection of the ”close to singular” cases was described by Skala[19].
However, it is computationally more expensive and not solving the ”close to
singular” cases in total.

Algorithm 1 Cyrus-Beck’s Line Clipping Algorithm

1: for i := 0 to N-1 do
2: Compute ni and ci for all polygon edges
3: . pre-computation for the given convex polygon

4: procedure C-B-Clip(xA,xB); . line is given by two points
5: tmin := −∞; tmax :=∞; . set initial conditions for the parameter t
6: s := xB − xA; . computation of the line coefficients
7: for i := 0 to N − 1 do . for each edge
8: q := nT

i s; . pre-computation
9: if abs(q) < eps then NOP; . Singular case-usual solution

10: else
11: t = −(nT

i xA + ci)/n
T
i s;

12: if q < 0 then tmin := max(t, tmin);
13: else tmax := min(t, tmax);

14: end if
15: end if
16: end for . all convex polygon edges processed
17: if tmin < tmax then . intersection of a line and the polygon exists
18: { xB := xA + s t; xA := xA + s t; }
19: end if
20: end procedure

The Cyrus-Beck’s algorithm for a line clipping is described by the Algorithm1.
It can be easily modified for a line segment clipping just restricting the range of
the parameter t to < 0, 1 >, i.e.

< tmin, tmax >:=< tmin, tmax > ∩ < 0, 1 >

It can be seen, that that the algorithm complexity is of O(N) and the division
operation, which is the most consuming time operation in the floating point
representation, is used N times. However, only 2 values of the parameter t are
valid, i.e. N −2 computations of the parameter t are lost. Also reliable detection
of the ”close to singular” cases is difficult and time consuming.

In following, the S-Convex-Clip algorithms based on implicit formulation us-
ing projective representation will be presented. It is is based on the classification
of the window corners against the given line in the implicit form with high nu-
merical stability.

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



A Novel Line Polygon Clipping in E2 with Parallel Processing 5

4 Proposed Algorithm

The majority of of line clipping algorithms in the E2 and E3 cases have been
developed for the Euclidean space representation in spite of the fact, that geomet-
ric transformations, i.e. projection, translation, rotation, scaling and Window-
Viewport etc., use homogeneous coordinates, e.g. projective representation. This
results into necessity to convert the results of the geometric transformations to
the Euclidean space using division operation as follows:

X = (X,Y ) x = [x, y : w]T X =
x

w
Y =

y

w
w 6= 0 (4)

where (X,Y ) are the point coordinates in the Euclidean space E2, while
[x, y : w]T are in the homogeneous coordinates Skala[28][29][30]; similarly in the
E3 case. It should be noted, that ”:” is used in the notation to point out, that
the w is the homogeneous coordinate and has no physical unit in the contrary
of the x, resp. y which has a physical unit, e.g. meters [m].

If a point is given in the Euclidean space, its homogeneous coordinates are
given as x = [X,Y : 1]T , i.e. w = 1. The homogeneous coordinates also enable to
represent a point close or in infinity, i.e. when w → 0, and postpone the division
operations. It leads to better numerical robustness and computational speed-up
especially if GPU or SSE instructions are used.

5 S-Convex-Clip

Let us consider a typical example of a line clipping by the convex clipping win-
dow, see Fig.1, and a line p given in the implicit form using the projective
notation:

p : ax + by + cw = 0 , i.e. aTx = 0 (5)

where a = [a, b : c]T are coefficients of the given line p, x = [x, y : w]T is a point
on this line using projective notation (w is the homogeneous coordinate). It can
be seen, that if the Eq.5 is divided by w 6= 0, then:

a
x

w
+ b

y

w
+ c

w

w
= 0 , i.e. aX + bY + c = 0 (6)

The advantage of the projective notation is, that a line p passing two points xA,
xB or an intersection point x of two lines p1, p2 can be computed due to the
principle of duality as Coxeter[3] and Skala[30]:

p = xA ∧ xB , x = p1 ∧ p2 (7)

where a ∧ b is the outer product application on the vectors a, b using homoge-
neous coordinates (application the cross-product a× b is used)

The line p is given by two points as:

p = xA × xB = [a, b : c]T =

 i j k
xA yA wA

xB yB wB

 (8)

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



6 V. Skala

where i = [1, 0 : 0]T , j = [0, 1 : 0]T , k = [0, 0 : 1]T . Now, an intersection point of
two given lines is given as:

x = p1 × p2 = [x, y : w]T =

 i j k
a1 b1 c1
a2 b2 c2

 (9)

where i = [1, 0 : 0]T , j = [0, 1 : 0]T , k = [0, 0 : 1]T .
Let us consider an implicit function F (x) = aTx. The line p is then defined

as F (x) = 0. The clipping operation should determine intersection points
xi = [xi, yi : wi]

T , i = A,B, of the given line p with the convex polygon edges,
if any. The line p splits the E2 plane into two parts, see Fig.1. The corners xi,
i = 0, ..., N − 1, of the convex polygon are split into two groups according to the
sign value of the function F (xi), i = 0, . . . , N − 1. It means that the ith corner
is classified by a bit value ci as:

ci =

{
1 if F (xi) ≥ 0

0 otherwise
i = 0, . . . , N − 13 (10)

and it is actually an application of the dot product as aTx ≡ a • x.
This leads to the O(N) computational complexity of the S-Convex-Clip al-

gorithm without the division operation use at all, see Algorithm 2.
.

Algorithm 2 S-Convex-Clip - Line clipping algorithm by the convex polygon

1: procedure S-Convex-Clip(xA,xB); . line is given by two points
2: . xk = [xk, yk : wk]T ; i = A,B
3: p := xA ∧ xB ; . computation of the line coefficients - use the cross product
4: for i := 0 to N − 1 do . to be done in parallel par for
5: if pTxi ≥ 0 then ci := 1 else ci := 0; . codes computation

6: end for
7: . the bit vector c contains code of all polygon vertices against the line p
8: if c 6= [0...0]T and c 6= [1...1]T then . line intersects the window
9: i := TAB1[c]; xA := p ∧ ei; . first intersection point

10: j := TAB2[c]; xB := p ∧ ej ; . second intersection point
11: output(xA,xB) . operator ∧ means the cross-product application
12: else
13: NOP . line does not intersect the window
14: end if
15: end procedure

As the indexes of the intersected are known at the lines 9 and 10 of the
S-Convex-Clip algorithm, the relevant parameter t can be determined similarly
as in the original Cyrus-Beck’s algorithm or the coordinates of the intersection
points computed directly using the outer product as shown in the algorithm.

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



A Novel Line Polygon Clipping in E2 with Parallel Processing 7

It can be seen, that the S-Convex-Clip algorithm, see Algorithm 2, is quite
simple. Computational complexity O(N) is needed to determine the code vector
c using dot product and only two intersection computations are needed, if an
intersection exists. It means, that the algorithm requires:

– dot product operations: N (line 5)
– comparison operations in the floating point: N (line 5)
– cross product operations: 2 (lines 3 and 9,10)

The S-Convex-Clip algorithm is significantly computationally simpler than
the Cyrus-Beck’s algorithm and the causes of instability of the Cyrus-Beck’s
algorithm were removed.

It should be noted, that in the GPU and SSE instructions use, the algo-
rithm gets much faster as the cross product and dot products takes one clock
on GPU. Also the points of intersections remain in the projective notation, i.e.
xA = [xA, yA : wA]T and xB = [xB , yB : wB ]T , which can be used for further
processing without direct need to converting them to the Euclidean space. In
this case, no division operations are needed at all.

c c TAB1 TAB2 MASK c c TAB1 TAB2 MASK
0 0000 None None None 15 1111 None None None
1 0001 0 3 0100 14 1110 3 0 0100
2 0010 0 1 0100 13 1101 1 0 0100
3 0011 1 3 0010 12 1100 3 1 0010
4 0100 1 2 0010 11 1011 2 1 0010
5 0101 N/A N/A N/A 10 1010 N/A N/A N/A
6 0110 0 2 0100 9 1001 2 0 0100
7 0111 2 3 1000 8 1000 3 2 1000

Table 1. All cases for N = 4; N/A - Non-Applicable (impossible) cases

The values in TAB, illustrative table for N = 4 is presented by Table 1, can
be generated synthetically for general N . As the table is symmetrical in some
sense, only 1/2 of the cases are needed to be generated; the other cases can be
determined using the bit-wise negation, i.e. not c, and swapping columns TAB1
and TAB2.

It should be noticed, that there is no need to generate the whole Table 1
for the given N , especially if N is higher, as the intersected edges of the convex
polygon can be easily detected from the bit vector c. It can be seen, that if there
is a sequence ”. . . 0, 1 . . .” or ”. . . 1, 0 . . .” the relevant convex polygon edges are
intersected. The Table 1 generation is to be used in the case of several lines
and constant N of the convex polygon clipping, while the second possibility, i.e.
finding ”. . . 0, 1 . . .” and ”. . . 1, 0 . . .”, is to be used in cases, when N is changing.
As the clipping polygon is convex, the only two edges might be intersected.
It means, that only one sequence . . . 0, 1 . . . and . . . 1, 0 . . . can occur, which
simplifies detection of the edges intersected, if it is made ”on the fly”, not by

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



8 V. Skala

using pre-generated table. Identification of those sequences is simple, just using
binary shift and binary mask operations.

The proposed S-Convex-Clip algorithm can be easily modified also for the line
segment clipping case similarly as in line segment against rectangular window
Skala[27]. In this case, the MASK column of the Table 1 is used and this can be
again generated for the given N or determined on the fly case by case.

It can be seen, that the proposed S-Convex-Clip algorithm is computationally
robust, limiting unnecessary computations in the floating point representation.
In addition, it does not use the division operation, if the resulting coordinates of
the end-points of intersections are not needed to be converted to the Euclidean
space.

6 Conclusion

This contribution describes shortly a new robust line clipping algorithm against
a convex polygon with O(N) computational complexity. It eliminates instabil-
ity of ”close to singular” cases, which causes instability in the Cyrus-Beck’s
algorithm. It also significantly reduces the floating point operations, especially
division operations.

As the proposed algorithm uses projective notation, there is no need to con-
vert points and polygon vertices from the homogeneous coordinates to the Eu-
clidean space, which requires unnecessary division operations as well.

The algorithm is convenient for implementations using GPU or/and SSE in-
structions as it supports parallel processing and additional speed up as the cross
product and dot product are implemented in hardware. Experiments proved over
10 − 15% speedup against the original Cyrus-Becks algorithm for small N and
grows with the convex polygon vertices N substantially due to saving unneces-
sary intersection computation in the floating point representation.

7 Acknowledgment

The author would like to thank to colleagues at the University of West Bohemia
for fruitful discussions and to anonymous reviewers for their comments and hints,
which helped to improve the manuscript significantly. A special thanks belong
to recent students of computer Science and the University of West Bohemia at
Pilsen, who made many tests of line clipping algorithms developed and modified
at the site.

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



A Novel Line Polygon Clipping in E2 with Parallel Processing 9

Appendix A

The TABLE generation for a general N is a little bit tricky, but it is simple
from the algorithm point of view. Let us consider N = 6 as an example. Then
all the cases which can occur, except of lines that do no not intersect the convex
polygon, are geometrically presented in the Tab.5. It can be seen, that they are
invariant to rotation, from the geometrical point of view. Analyzing all those

case C5 C4 C3 C2 C1 C0 i0 i1
S0 0 0 0 0 0 0 N N

S1 0 0 0 0 0 1 5 0

S2 0 0 0 0 1 1 5 1

S3 0 0 0 1 1 1 5 2

S4 0 0 1 1 1 1 5 3

S5 0 1 1 1 1 1 5 4

S6 1 1 1 1 1 1 N N

case C5 C4 C3 C2 C1 C0 i0 i1
S0 0 0 0 0 0 0 N N

S1 0 0 0 0 1 0 0 0

S2 0 0 0 1 1 0 0 1

S3 0 0 1 1 1 0 0 2

S4 0 1 1 1 1 0 0 3

S5 1 1 1 1 1 0 0 4

S6 1 1 1 1 1 1 N N

Table 2. Cases I & II; N means Non-Applicable N/A case

case C5 C4 C3 C2 C1 C0 i0 i1
S0 0 0 0 0 0 0 N N

S1 0 0 0 1 0 0 1 0

S2 0 0 1 1 0 0 1 1

S3 0 1 1 1 0 0 1 2

S4 1 1 1 1 0 0 1 3

S5 1 1 1 1 0 1 1 4

S6 1 1 1 1 1 1 N N

case C5 C4 C3 C2 C1 C0 i0 i1
S0 0 0 0 0 0 0 N N

S1 0 0 1 0 0 0 2 0

S2 0 1 1 0 0 0 2 1

S3 1 1 1 0 0 0 2 2

S4 1 1 1 0 0 1 2 3

S5 1 1 1 0 1 1 2 4

S6 1 1 1 1 1 1 N N

Table 3. Cases III & IV; N means Non-Applicable N/A case

case C5 C4 C3 C2 C1 C0 i0 i1
S0 0 0 0 0 0 0 N N

S1 0 1 0 0 0 0 3 0

S2 1 1 0 0 0 0 3 1

S3 1 1 0 0 0 1 3 2

S4 1 1 0 0 1 1 3 3

S5 1 1 0 1 1 1 3 4

S6 1 1 1 1 1 1 N N

case C5 C4 C3 C2 C1 C0 i0 i1
S0 0 0 0 0 0 0 N N

S1 1 0 0 0 0 0 4 0

S2 1 0 0 0 0 1 4 1

S3 1 0 0 0 1 1 4 2

S4 1 0 0 1 1 1 4 3

S5 1 0 1 1 1 1 4 4

S6 1 1 1 1 1 1 N N

Table 4. Cases V & VI; N means Non-Applicable N/A case

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



10 V. Skala

cases, a simple pattern of similarity can be detected, see Tab.2, Tab.3 and Tab.4.
The cases S0 and S6 represent the cases, when a line does not intersect the convex
polygon. The TABLE Tab.1 for a general N -sided convex polygon is has 2N − 1
entries and many of those are the non applicable cases. However, the number of
the ”applicable” cases, which can occur in the line clipping, is N ∗ (N − 1) + 2,
only. In the case N = 6, we have 30 possible different intersections and 2 cases
for the ”not intersecting” cases, as we have to respect line segment orientation.

Algorithm 3 S-Convex-Clip-Table-Generator

1: # This is a sequence for generating the TABLE #
2: # This sequence can be further optimized #
3: M := 2N − 1; . M is a bit vector of ”1” of the length N
4: for i := 0 to M do . initialization of the TABLE
5: TAB1[i] := -1; TAB2[i] := -1; . ”-1” means the ”N’ or ”N/A” cases

6: end for
7: TAB1[0] := -1; TAB2[0] := -1; . settings for the ”non-intersecting” cases
8: TAB1[M] := -1; TAB1[M] := -1;

. bit-vectors are 2N bit long independently of the unsigned integer length
9: Cones := M; . 2N long bit mask . Cones = [111...111]

10: Czeros := 0; . Czeros = [000...000]
11:
12: CA := Czeros + 1; . setting the bit C0 to ”1”
13: k := N-1; . setting index if the index of the last edge - avoiding mod operation
14: for ii := 0 to N − 1 do . for the each case I, II, ..., V, VI do
15: . CA contains bit vector setting for the S1 for all the cases I,..,VI
16: Generate Sequences(CA, ii, k);
17: CA := (CA shl 1); . shift left without carry - setting for all the S1 cases
18: k := ii;

19: end for
20:
21: procedure Generate Sequences(CA, ii, k); . generation if the ii-table
22: Ctemp := CA;
23: for i := 1 to N − 1 do . setting the i-th row of the TABLE for the Si case
24: index := Ctemp; . code Ctemp converted to the unsigned integer
25: TAB1[index] := k; TAB2[index] := i;
26: carry := Ctemp[N − 1]; . set carry to the most left bit of the Ctemp

27: . simulates the ”circular shift” on N bits
28: Ctemp := (Ctemp shl 1) + carry; . shift left with carry transfer to the

Ctemp[0] bit

29: end for
30: end procedure

It should be noted, that the generated codes respect the line, resp. line seg-
ment orientation as well Skala[27][31].

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



A Novel Line Polygon Clipping in E2 with Parallel Processing 11

Cases I Cases II

Cases III Cases IV

Cases V Cases VI

Table 5. All possible cases for N = 6 except of lines passing out the convex polygon

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



12 V. Skala

References

1. R. Andreev and E. Sofianska. New algorithm for two-dimensional line clipping.
Computers and Graphics, 15(4):519–526, 1991.

2. D. Bui and V. Skala. Fast algorithms for clipping lines and line segments in E2.
Visual Computer, 14(1):31–37, 1998.

3. H. Coxeter. Introduction to geometry. The Mathematical Gazette, 48(365):343,
1964.

4. M. Cyrus and J. Beck. Generalized two- and three-dimensional clipping. Computers
and Graphics, 3(1):23–28, 1978.

5. J. Day. A new two dimensional line clipping algorithm for small windows. Computer
Graphics Forum, 11(4):241–245, 1992.

6. V. Duvanenko, W. Robbins, and R. Gyurcsik. Line-segment clipping revisited. Dr.
Dobb’s Journal, 21(1):107–110, 1996.

7. M. Dörr. A new approach to parametric line clipping. Computers and Graphics,
14(3-4):449–464, 1990.

8. D. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer graphics: principles
and practice. Addison-Wesley, 1990.

9. Y. Huang and Y. Liu. An algorithm for line clipping against a polygon based on
shearing transformation. Computer Graphics Forum, 21(4):683–688, 2002.

10. S. Kaijian, J. Edwards, and D. Cooper. An efficient line clipping algorithm. Com-
puters and Graphics, 14(2):297–301, 1990.

11. G. Krammer. A line clipping algorithm and its analysis. Computer Graphics
Forum, 11(3):253–266, 1992.

12. Y.-D. Liang and B. Barsky. A new concept and method for line clipping. ACM
Transactions on Graphics (TOG), 3(1):1–22, 1984.

13. T. M. Nicholl, D. Lee, and R. A. Nicholl. Efficient new algorithm for 2D line
clipping: Its development and analysis. Computer Graphics (ACM), 21(4):253–
262, 1987.

14. H. Nielsen. Line clipping using semi-homogeneous coordinates. Computer Graphics
Forum, 14(1):3–16, 1995.

15. A. Rappoport. An efficient algorithm for line and polygon clipping. The Visual
Computer, 7(1):19–28, 1991.

16. V. Skala. Algorithm for 2D line clipping. New Advances in Computer Graphics,
NATO ASI, pages 121–128, 1989.

17. V. Skala. Algorithms for 2D Line Clipping. EG 1989 proceedings, 1989.
18. V. Skala. Algorithms for clipping quadratic arcs. In T.-S. Chua and T. L. Kunii,

editors, CG International ’90, pages 255–268, Tokyo, 1990. Springer Japan.
19. V. Skala. An efficient algorithm for line clipping by convex polygon. Computers

and Graphics, 17(4):417–421, 1993.
20. V. Skala. O(lg N) line clipping algorithm in E2. Computers and Graphics,

18(4):517–524, 1994.
21. V. Skala. An efficient algorithm for line clipping by convex and non-convex poly-

hedra in E3. Computer Graphics Forum, 15(1):61–68, 1996.
22. V. Skala. Line clipping in E2 with O(1) processing complexity. Computers and

Graphics (Pergamon), 20(4):523–530, 1996.
23. V. Skala. Line clipping in e3 with expected complexity O(1). Machine Graphics

and Vision, 5(4):551–562, 1996.
24. V. Skala. Trading time for space: An O(1) average time algorithm for point-in-

polygon location problem. theoretical fiction or practical usage? Machine Graphics
and Vision, 5(3):483–494, 1996.

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1



A Novel Line Polygon Clipping in E2 with Parallel Processing 13

25. V. Skala. A fast algorithm for line clipping by convex polyhedron in E3. Computers
and Graphics (Pergamon), 21(2):209–214, 1997.

26. V. Skala. A new line clipping algorithm with hardware acceleration. Proc. of
Computer Graphics International Conference - CGI, pages 270–273, 2004.

27. V. Skala. A new approach to line and line segment clipping in homogeneous
coordinates. Visual Computer, 21(11):905–914, 2005.

28. V. Skala. Length, area and volme computation in homogeneous coordinates. Int.
Journal of Image and Graphics, 6(4):625–639, 2006.

29. V. Skala. Barycentric coordinates computation in homogeneous coordinates. Com-
puters and Graphics (Pergamon), 32(1):120–127, 2008.

30. V. Skala. Intersection computation in projective space using homogeneous coordi-
nates. Int. Journal of Image and Graphics, 8(4):615–628, 2008.

31. V. Skala. Optimized line and line segment clipping in E2 and geometric algebra.
Annales Mathematicae et Informaticae, 52:199–215, 2020.

32. V. Skala. A new coding scheme for line segment clipping in e2. Lecture Notes in
Computer Science, LNCS-accepted for publication ICCSA 2021:xx–xx, 2021.

33. V. Skala and D. Bui. Extension of the Nicholls-Lee-Nichols algorithm to three
dimensions. Visual Computer, 17(4):236–242, 2001.

34. M. Slater and B. Barsky. 2D line and polygon clipping based on space subdivision.
The Visual Computer, 10(7):407–422, 1994.

35. M. Sobkow, P. Pospisil, and Y.-H. Yang. A fast two-dimensional line clipping
algorithm via line encoding. Computers and Graphics, 11(4):459–467, 1987.

36. M. Zhang and C. Sabharwal. An efficient implementation of parametric line and
polygon clipping algorithm. In ACM Symposium on Applied Computing, pages
796–800. ACM, 2002.

 ICCSA 2021 proceedings, Part V, LNCS Vol.12953, pp.3-15, , Springer, 2021

DOI: 10.1007/978-3-030-86976-2_1




