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Abstract We propose a new approach for meshless multi-level radial basis
function (ML-RBF) approximation which offers data sensitive compression
and progressive details visualization. It leads to an analytical description of
compressed vector fields, too. The proposed approach approximates the vector
field in multiple levels of details. The low level approximation removes minor
flow patterns while the global character of the flow remains unchanged. And
conversely, the higher level approximation contains all small details of the
vector field. The ML-RBF has been tested with a numerical forecast data set
to prove its ability to handle data with complex topology. Comparison with the
Fourier vector field approximation has been made and significant advantages,
i.e. high compression ratio, accuracy, extensibility to a higher dimension etc.,
of the proposed ML-RBF were proved.

Keywords Radial basis functions · adaptive shape parameter · vector field ·
approximation · Gaussian low-pass filter · Fourier transform

1 Introduction

In applied sciences, interpolation and approximation are probably the most
frequent techniques used [8]. In this paper, we propose a new approach for
meshless multi-level radial basis function (ML-RBF) approximation which of-
fers data sensitive compression, progressive details visualization and leads to
analytical description of compressed vector fields. It is capable to handle vector
data fields with complex topology as well.
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A vector field is a function that assigns to each point a vector. Vector fields
come mostly from numerical simulations, i.e. Computational Fluid Dynamics
(CFD) [17], [18], [1] and Finite Element Method (FEM) [29], [6]. The analysys
of the vector field can be done at any location of the vector field [15], [46],
[42]. However the most important places of the vector field are so-called critical
points [15].

Topology-based flow visualization is well known technique [22]. However,
the result can be a cluttered image which is difficult to interpret, when the
topology-based technique is used in complex and information-rich data sets.
One solution of this problem is described in the paper [47], which optimizes
the topology. The Multi-level topology visualization of vector field data sets is
presented in [25]. The algorithm visualizes the topology without excessive clut-
tering while maintaining the global structure of the flow. Another approach [4]
uses fully adaptive multiresolution schemes for strongly degenerate parabolic
equations with discontinuous flux. The paper [50] uses a multi-scale model for
solute transport in a wavy-waled channnel. This approach concerns steady flow
and identifies conditions under which is the approximation uniformly valid in a
full channel flow. The paper [39] simplifies the vector field using the reduction
of critical points according to a quantitative measure of their stability, which
is computed as the minimum amount of vector field perturbation that is re-
quired to remove the critical point. This leads to a hierarchical simplification
scheme that encodes flow magnitude in its perturbation metric. A topological
denoising technique based on a global energy optimization is proposed in [14],
which allows the topology-controlled denoising of scalar fields. The algorithm
for topology-controlled denoising of scalar fields, which processes small patches
of the domain independently, is presented in [14]. It is based on a global energy
optimization and avoids the introduction of new critical points. The paper [5]
describes a numerical comparison between RBF local and global methods and
highlights the possible advantage of using local methods for the approxima-
tion of vector fields. The vector field approximation for two-dimensional vector
fields that preserves their topology and significantly reduces the memory foot-
print is presented in [21]. This approximation is based on a segmentation and
the flow within each segmentation region is approximated by an affine linear
function. The paper [24] reduces the size degree of the complexity of density
variations. This approach is compared with a phase-field method [20].

The Fourier transform decomposes a function into the frequencies that
make it up. It can be used for vector field analysis and approximation or sim-
plification. The Clifford Fourier transform in [9] allows a frequency analysis of
vector fields and the behavior of vector-valued filters. In frequency space, vec-
tors are transformed into general multivectors of the Clifford Algebra. Many
basic vector-valued patterns, such as source, sink, saddle points, and potential
vortices, can be described by a few multivectors in frequency space. A two-
dimensional filtering operation, involving both curl and divergence, is applied
in [28] to the 2D Clifford Fourier Transform in order to simultaneously en-
hance important features of a 2D vector field, such as vortices and pairs of
sources and sinks. The approach [32] defines convolution operators on vector
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fields using geometric algebra. This includes a corresponding Clifford Fourier
transform of a spatial vector or multivector data. This approach is used for the
analysis of the fluid flow. There are also different approaches to transforming
vector-valued data using a Fourier transform [3], [16] and [10].

The proposed (ML-RBF) vector field approximation method has variety of
uses. The vector field data sets come mostly from the numerical simulations
and contains very large number of sample points, i.e. the data set is very large.
This data sets need to be stored for future use and backup. Thus, the approx-
imation techniques are used to compress the vector field data sets. For this
reason, we propose a new technique for vector field ML-RBF approximation.
The ML-RBF technique is suitable for fast preview of the vector field data set
as visualization can be done using only first level of details or few first levels of
details. This is also useful for mobile devices as the data set does not need to
be transferred whole at once and the data transfer can be reduced to only first
level of details. The additional levels of details can be transferred additionally;
one by one when they are needed. Another use of the proposed ML-RBF vec-
tor field approximation is the exploration and the insight of the vector field
as the vector field is visualized without excessive cluttering while maintaining
the global structure of the vector field. Next, the compressed vector field is in
the form of an analytical description which can be used for further vector field
analysis and symbolic manipulation.

2 Radial Basis Functions

Radial basis function (RBF) is a real-valued function whose value depends
only on some distances. i.e. the RBF interpolation [30] and approximation [11],
[35], [45] of scattered data is invariant under all Euclidean transformations.
The RBF interpolation and approximation is widely used in many scientific
disciplines, e.g. for solution of partial differential equations [23], [52], image
reconstruction [48], neural networks [19], [13], [51], GIS systems [26], optics
[31], vector fields approximation [44], [43], [40], [41], etc.

The RBF interpolation or approximation leads to a system of linear equa-
tions Ax = b which is to be solved. It should be noted, that if the RBF is
used for interpolation or approximation of data with large span, additional
numerical problems can be expected [36], [38], [37].

There exist two groups of radial basis functions according to their influence.
The first group are “global” RBFs [34]. The second group are “local” RBFs.
Application of global RBFs usually leads to ill-conditioned system, especially
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in the case of large data sets with a large span [27], [38]. The following global
RBFs will be used in our experiments:

Thin Plate Spline (TPS) ϕ1(r) = r2 log r

Gauss function ϕ2(r) = e−(εr)2

Inverse Quadric (IQ) ϕ3(r) =
1

1 + (εr)2

Inverse Multiquadric (IMQ) ϕ4(r) =
1√

1 + (εr)2

Multiquadric (MQ) ϕ5(r) =
√

1 + (εr)2

(1)

“Local” RBFs were introduced in [49] as compactly supported RBF (CSRBF).
They satisfy the following condition:

ϕ(r) = (1− r)q+P (r)

=

{
(1− r)qP (r) 0 ≤ r ≤ 1

0 r > 1

(2)

where P (r) is a polynomial function and q is a parameter. The following local
RBFs will be used in our experiments:

ϕ6(r) = (1− r)+

ϕ7(r) = (1− r)3
+(3r + 1)

ϕ8(r) = (1− r)5
+(8r2 + 5r + 1)

ϕ9(r) = (1− r)2
+

ϕ10(r) = (1− r)4
+(4r + 1)

ϕ11(r) = (1− r)6
+(35r2 + 18r + 3)

ϕ12(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1)

(3)

3 Proposed approach

In this section we describe our new proposed approach for multi-level vector
field approximation using radial basis functions. The algorithm is composed
by three main steps. The first step is the calculation of approximation error,
the second one is the use of a Gaussian low-pass filter and the last one is the
approximation using RBF. The pseudo-code of the proposed approach is in
Algorithm 1. The algorithm is iterative and runs until the maximum level of
details is computed.

In the following, we describe the proposed method on a 2D vector field.
However, this algorithm is easy to extend to higher dimensions.
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Algorithm 1 The multi-level RBF approximation of vector field.
1: vectorF ield v = [vx,vy ] = [0,0] . Initialization
2: σ = initial value . Standard deviation
3: procedure Multi-levelRBF(Flow v̄ = [v̄x, v̄y ])
4: for i← 1, LevelCount do
5: Err = v̄ − v; . Error estimation
6: Err = Gauss(Err, σ) . Gaussian low-pass filter
7: e = Find extrema of Err
8: x0 = Find critical points of Err + v
9: RBF = RBF approximation (e, x0, Err)

10: v += RBF . Update vector field
11: σ /= 2 . Decrease σ

12: end for

The first step of the proposed method is the error estimation. We need to
compute the error for both components of a vector field

Errx = v̄x − vx,

Erry = v̄y − vy,
(4)

where Errx and Erry are error vectors, v̄x and v̄y are the x and y components
of input flow field vectors, vx and vy are the x and y components of actual flow
field approximation vectors. For the 0 (zero) level vector field approximation,
vx = 0 and vy = 0.

Vector fields can be very complex data sets with very large number of
critical points. The multi-level RBF vector field approximation aims to ap-
proximate vector field in several levels of details. The lowest level of details
should describe only the main global character of the flow. Each additional
level of details should add some more details into the approximation. Thus
with higher levels of details, the approximated vector field will contain more
and more critical points and smaller flow details as well.

The next step of the proposed multi-level RBF vector field approximation
is filtering the data set to obtain a simplified one. In our case, we filter the
2 1

2D error data from (4), i.e. 2D function with associated errors. The low-pass
Gaussian filter is used to filter the 21

2D data. The Gaussian filter can have
different scope and thus filter either small perturbations of the flow or large
changes of the flow. The Gaussian filter has the formula

G(x, y) =
1

2πσ2
g(x, y), (5)

where x and y are the location coordinates, σ is the standard deviation of the
Gaussian distribution and g(x, y) is defined as

g(x, y) = e−
x2+y2

2σ2 . (6)

For each level of approximation, a different value of σ is to be chosen. For
the first level of approximation we need to set up the initial value of σ. The
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Fig. 1 The right column represents Errx of a vector field for different levels of details,
i.e. from top to bottom: σ = 10, 5, 2.5, 1.25 and 0.625. The left column represents the vx

component of a vector field for different levels of details, i.e. vx is the sum of Errx from
the previous levels of details.

value of σ in every following level will always be half of the value σ from the
previous level. The initial value of standard deviation, i.e. σ1, can be selected
as

σ1 = sσ ·MIN(xmin − xmax, ymin − ymax), (7)

where xmin, xmax, ymin, ymax are minimal and maximal values of x and y
coordinates, and sσ is a constant reflecting the data size and sampling density.
A pragmatical choice is sσ = 1

10 . If this value sσ is smaller, then the first level
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vector field approximation will be even more simplified, and conversely. An
example of an application of a Gaussian low-pass filter on a vector field data
set1 [7] is in Fig. 1.

The next step of the proposed method is the RBF approximation, for which
we need the locations of radial basis functions, i.e. the centers. The centers
need to be in the location of critical points, i.e.

x0 = Find critical points(Err + v). (8)

Moreover at the extremes of vx, resp. vy, are located the additional centers of
radial basis functions. The number of extremes will increase with increasing
the level of approximation.

The radial basis function used for the RBF approximation is ϕ10(r) and
it was used to demonstrate the proposed approach. It was selected due to
continuity properties, computational complexity and it is the most adequate
radial basis function according the tests in chapter 5.1. The RBF function
ϕ10(r) is defined as

ϕ(r)10 = (1− εr)4
+(4εr + 1), (9)

where ε is the shape parameter of the radial basis function. The shape pa-
rameter is different for every level of approximation to capture different levels
of details of the vector field. The shape parameter should be selected in a
way that (9) has a similar shape as the Gaussian filter (6), i.e. the absolute
difference of these two functions is minimal. We performed tests to select the
best shape parameter, see Fig. 6 in “Results” section. For different standard
deviations σ in (6), the best shape parameter is

ε =
0.2694

σ
. (10)

Now, we can compute the RBF approximation for each x and y component
separately. To approximate Errx, the centers of radial basis functions will be
locations of critical points from (8) and extremes of Errx, similarly for Erry.

After the RBF approximation, we need to update the actual level vector
field

vx = vx + RBFx,

vy = vy + RBFy,
(11)

The algorithm is repeated until the required number of levels of details is
reached. With every additional level of details, the vector field RBF approxi-
mation is more accurate.

In the following chapter experimental results of the proposed multi-level
RBF method are presented.

1 Data set of wind flow at a height of 10m over the surface of the Czech Republic courtesy
of the Institute of Computer Science of the Czech Academy of Sciences.
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Fig. 2 Approximation errors for different shape parameters.

4 Results

The multi-level RBF (ML-RMB) vector field approximation is especially con-
venient for visualization purposes and vector field data understanding. The
numerical forecast data set taken from [7] was used to prove the multi-level
RBF approximation properties and for comparison with approximation based
on the Fourier transform. The data set consists of around 2.2 · 104 points.

4.1 Selection of the RBF

One of the most important and critical part in the RBF approximation is the
selection of the most adequate radial basis function [33], [27]. We tested the
radial basis functions in (1) and (3). We selected around 275 centers of RBF, so
that the compression ratio of the RBF approximation is 80 : 1. For each RBF
in (1) and (3) we tested the approximation error for different shape parameters.
The approximation error is computed using (16) and the results are presented
in Fig. 2. It can be seen that the “local” RBFs have all similar behavior and
the approximation error is low when using lower values of shape parameter.
In our case, we select a local RBF function, as the approximation matrix will
be sparse and better conditioned. Also we will be able to approximate larger
data sets compared to the case, when using “global” RBFs which leads to ill-
conditioned full matrices, in general. The best choice according to the results
in Fig. 2 is the radial basis function ϕ10(r) as it has the lowest approximation
error and is C2 continuous.

We also compared the selected RBF ϕ10(r) with other RBFs and computed
the difference histogram of approximation error, see Fig. 3. The test was per-
formed always for the best shape parameter for each RBF. The positive values
for small approximation errors mean that the approximation with the selected
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Fig. 3 Difference histograms of approximation errors. All difference histograms are blended
over each other.

RBF has much more smaller approximation errors. The negative values for
larger approximation errors mean that the approximation with the selected
RBF has much less larger approximation errors. This test clearly confirmed
the selection of ϕ10(r) as the most adequate RBF for our proposed approach.

4.2 Multi-level RBF Approximation

To compute the RBF approximation, we need to find the centers of radial
basis functions for every level of details. We tested the number of centers and
summarized this in Table 1.

Table 1 The number of centers for RBF approximation at every added level of details.

Level number σ
# of extreme
points in vx

# of extreme
points in vy

# of critical
points

1 10 28 27 2
2 5 58 54 2
3 2.5 161 176 10
4 1.25 517 539 25
5 0.625 1238 1249 49

It can be seen that even when computation is done until the last level
of details, we need for x and y components of the vector field approximately
2.1 · 103 centers of radial basis functions. This is approximately 9.5% of the
input data set and the resulting vector field approximation is very similar to
the original one.

At each level of RBF approximation, we approximate the 21
2D functions

Errx and Erry, see Fig. 4a,d,g,j,m for Errx and Fig. 5a,d,g,j,m for Erry. To
find the location of radial basis functions, we use a Gauss filter for smoothing
and then locate extremes of the resulting 21

2D function, see Fig. 4b,e,h,k,n for
Errx smoothing and Fig. 5b,e,h,k,n for Erry smoothing. These 21

2D functions
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(a) 1st level
Errx.

(b) Errx after
Gauss filter with
σ = 10.

(c) RBF ap-
proximation of
Errx.

(d) 2nd level
Errx.

(e) Errx after
Gauss filter with
σ = 5.

(f) RBF ap-
proximation of
Errx.

(g) 3rd level
Errx.

(h) Errx after
Gauss filter with
σ = 2.5.

(i) RBF ap-
proximation of
Errx.

(j) 4th level
Errx.

(k) Errx after
Gauss filter with
σ = 1.25.

(l) RBF ap-
proximation of
Errx.

(m) 5th level
Errx.

(n) Errx after
Gauss filter with
σ = 0.625.

(o) RBF ap-
proximation of
Errx.

Fig. 4 Errx function for each level of details, filtered Errx functions and the RBF ap-
proximation of Errx.

have the same global character as the original 21
2D functions Errx and Erry,

but they do not contain tiny details.

The shape parameter is different for every level of approximation to capture
different levels of details of the vector field. The shape parameter should be
selected in a way that (9) has a similar shape as the Gaussian filter (6), i.e.
the absolute difference of these two functions is minimal. We performed tests
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(a) 1st level
Erry .

(b) Erry after
Gauss filter with
σ = 10.

(c) RBF ap-
proximation of
Erry .

(d) 2nd level
Erry .

(e) Erry after
Gauss filter with
σ = 5.

(f) RBF ap-
proximation of
Erry .

(g) 3rd level
Erry .

(h) Erry after
Gauss filter with
σ = 2.5.

(i) RBF ap-
proximation of
Erry .

(j) 4th level
Erry .

(k) Erry after
Gauss filter with
σ = 1.25.

(l) RBF ap-
proximation of
Erry .

(m) 5th level
Erry .

(n) Erry after
Gauss filter with
σ = 0.625.

(o) RBF ap-
proximation of
Erry .

Fig. 5 Erry function for each level of details, filtered Erry functions and the RBF ap-
proximation of Erry .

to select the best shape parameter. The results in Fig. 6 are for a Gaussian
filter with σ = 1.

The best shape parameter is ε = 0.2694, see Fig. 6. For different standard
deviations σ, the best shape parameter is

ε =
0.2694

σ
. (12)
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Fig. 6 The average absolute difference of (5) with σ = 1 and (9) for different values of
shape parameter ε and r ∈ [0; 1/ε).

The RBF approximations of Errx are in Fig. 4c,f,i,l,o and approximations
of Erry are in Fig. 5c,f,i,l,o. The RBF approximations of Errx and Erry are
very close to the filtered 2 1

2D functions of Errx and Erry, as the placement of
radial basis function centers and the shape parameter of radial basis functions
are very well chosen.

The resulting multi-level RBF approximation of the vector field is visual-
ized in Fig. 7. It can be seen that with every additional level of details the
approximated vector field is closer to the original one. Even the first level
approximation has the same global characteristics as the original vector field.

To measure the quality of the vector field approximation, we compute the
approximation error at every point of the vector field using the following for-
mula

error(i) =

√(
v

(i)
x − v̄(i)

x

)2

+
(
v

(i)
y − v̄(i)

y

)2

, (13)

where v
(i)
x and v

(i)
y are approximated values, v̄

(i)
x and v̄

(i)
y are the original

values of the vector field and error(i) is the approximation error at the ith

point. The approximation error is color-coded in Fig. 8. It can be seen that
the approximation error is lower with every additional level of details.

4.3 Comparison With Existing Approach

The proposed approach needs to be compared with an other existing approach.
We selected the mostly used Fourier transform [12], [2]. The vector field is
approximated with the Fourier transform using the following formula

F (α, β) =

∫ ∞
−∞

∫ ∞
−∞

v(x, y)e−2πi(xα+yβ)dxdy, (14)

where α and β are frequencies (see Fig. 9). According to the required accuracy,
only some of the most important frequencies are selected to approximate the
vector field. This approximated vector field represented by a list o frequencies
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(a) 1st level, σmin = 10. (b) 2nd level, σmin = 5. (c) 3rd level, σmin = 2.5.

(d) 4th level, σmin = 1.25. (e) 5th level, σmin = 0.625. (f) Original vector field.

Fig. 7 The vector field approximation for different levels of details (a-e) and the original
vector field (f).

can be transformed back to the vector field using the following inverse Fourier
transform

v(x, y) =
1

(2π)
2

∫ ∞
−∞

∫ ∞
−∞

F (α, β)e2πi(xα+yβ)dαdβ. (15)

To compare the proposed approach for multi-level vector field approxima-
tion with the Fourier transform vector field approximation, we need to com-
pute and compare the vector field approximation errors. We can compute the
average difference approximation error using the following formula
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(a) 1st level. (b) 2nd level. (c) 3rd level.

(d) 4th level. (e) 5th level.

Fig. 8 The vector field approximation error for different levels of details. The approximation
error is computed using (13). All color bars have the same error range for better comparison.

(a) Frequency portrait. (b) Phase offset.

Fig. 9 Approximation of the vector field using Fourier transform.

Mathematics and Computers in Simulation, ISSN: 0378-4754, Vol.181, No.3, pp.522-538 
DOI: 10.1016/j.matcom.2020.10.009



Radial Basis Functions Application for Multi-level Vector Field Approximation 15

0.0

0.2

0.4

0.6

0.8

1.0

8:1 16:1 32:1 64:1 128:1 256:1 512:1

ap
pr

ox
im

at
io

n 
er

ro
r 

[m
/s

]

compression ratio
Fourier MultiRBF

(a) The average difference approximation error.

0

10

20

30

40

8:1 16:1 32:1 64:1 128:1 256:1 512:1

ve
ct

or
 le

ng
th

 e
rr

or
 [

%
]

compression ratio
Fourier MultiRBF

(b) The average vector length error.
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(c) The average angular displacement error.

Fig. 10 Visualization of approximation errors for different compression ratios.

Err =

∑N
i=1 ‖vi − v̄i‖

N
, (16)

where vi is the approximated vector, v̄i is the original vector and N is the
number of vectors in the original dataset. This error shows how much the
approximated vector field differs from the original one. The resulting error
has the same units as the vector field. Next, we can compute another kind of
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(a) Multilevel RBF approximation.

(b) Fourier approximation.

Fig. 11 Histograms of vector field approximation error for compression ratio 80 : 1.

approximation error. We can compute the average vector length error using
the following formula

Err =

∑N
i=1 | ‖vi‖ − ‖v̄i‖ |∑N

i=1 ‖v̄i‖
. (17)

This formula computes some kind of relative vector length error. The standard
formula for relative vector length error is

Err =
1

N

N∑
i=1

| ‖vi‖ − ‖v̄i‖ |
‖v̄i‖

. (18)

However, using this formula will give us incorrect result because of division
by numbers close to zero or even equal to zero. For this reason we use (17)
instead of the standard (18).

Last we will compute one more kind of approximation error, namely, the
average angular displacement error. This error is computed using the following
formula

Err =

∑N
i=1 acos

(
vi·v̄i
‖v‖‖v̄‖

)
N

. (19)
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We compared our proposed method with the Fourier method using three
types of approximation errors for different compression ratios. Computed ap-
proximation errors for our proposed multi-level vector field approximation and
for the Fourier vector field approximation are visualized in Fig. 10. It can
be seen, that for all three approximation errors computations, the proposed
method has lover approximation error for all compression ratios. To analyze
the approximation error more closely, we selected compression ratio 80 : 1 and
computed histograms of approximation error using (13), see Fig. 11. It can be
seen that most approximation errors are low and only a few errors are high.

Moreover to compare the two methods for vector field approximation, we
computed the difference histogram, see Fig. 12. It can be seen, that the pro-
posed method has much more lower approximation errors and much less higher
approximation errors than the Fourier approximation method. The experi-
ments made also proved similar behavior for other compression ratios.

Fig. 12 Difference histograms of approximation errors (“Multilevel RBF” - “Fourier”), see
Fig. 11, for compression ratio 80 : 1.

5 Conclusion

We proposed a new approach for multi-level vector field approximation. The
vector field is approximated in several levels of details, where each level of
details adds some additional information and refine the vector field approxi-
mation. The approach uses Radial basis function for approximation of vector
field. The centers of radial basis functions are placed according to the dis-
tribution of approximation error of the previous level of detail vector field
approximation. The proposed approach is especially convenient for approx-
imation and visualization of large and complex data sets, i.e. only needed
levels of details of the vector field can be transferred and visualized on the de-
vices (mobile phone, web browser, etc.) with high compression ratio. Another
advantage over existing approaches is the final analytical description of the
approximated vector field, which can be used for further processing.
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In the feature, the proposed approach for multi-level vector field approx-
imation will be extended to approximate the 3D vector fields as well. This
extension should be straightforward and easy to implement.
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