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Abstract—Cubic parametric curves are used in many
applications including the CAD/CAM systems. Especially the
Hermite, Bézier and Coons formulations of a cubic parametric
curve are used in E2 and E3 space. This paper presents efficient
algorithm for the intersection computation of a cubic parametric
curve with the Axis Aligned Bounding Box (AAB Box). Usual
solution is to represent the cubic curve by a polyline, i.e. actually
by sampled points of the given curve. However, this approach is
dependent on the sampling frequency and can lead to problems
especially in CAD/CAM systems and numerically controlled
machines use.

Index Terms—CAD/CAM systems, cubic parametric curves,
Hermite curve, Bézier curve, Coons curve, parametric curve
clipping, intersection, clipping, Axis Aligned Bounding Box,
AAB Box, computer graphics, geometric modelling.

I. INTRODUCTION

This contribution describes a novel approach to intersection
computation of a cubic parametric curve with the Axis Aligned
Bounding Box (AAB Box) without resample the cubic curve to
a polyline which is then clipped by the AAB Box using some
standard clipping algorithms, e.g. Cohens-Sutherland clipping
in E2 and E3 with a significant computational overhead.

In computer graphics and geometric modelling courses,
mostly only the mathematical definition of the Bézier [1],
Hermite and Coons cubic parametric curves are presented,
see Solomon [2]. However, simple and understandable formal
derivation of the Hermite is crucial for understanding, see the
Appendix for relevant books.

The presented approach is based on the Bézier curve formu-
lation. Note, that the Hermite form can be easily reformulated
to the Bézier curve formulation.

If a parametric curve is to be rendered, the restriction of the
AAB Box is to be respected, i.e. a rectangular area in the E2

case or a volume in the E3 case.
Usually, the drawing packages just sample the points of the

given parametric curve forming a polyline, which is rendered
and each segment of the polyline is clipped by the given
AAB Box. This approach is simple, however, computations
of the curve parts outside of the AAB Box is lost and the
result depends on the parameter sampling frequency as well,
e.g. cubic curve clipping by the AAB Box, see Xuefeng [3].
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However, in some application such ”simple” approach can-
not be taken and the segments of a parametric curve inside of
the AAB Box have to be determined exactly, e.g. in the case
of numerically controlled machines etc.
Of course, the intersections can be computed as roots of a
cubic equation WiKi [4] using Cardano’s formula, however,
such computation requires √ and 3

√ computations, casus
irreducibilis, complex number representation and the algorithm
is quite complex.

Generally, the intersection computation of a cubic curve
with a line in the E2 case leads to a system of nonlinear
equations Eq.1:

x(u) = axu
3 + bxu

2 + cxu+ dx

y(u) = ayu
3 + byu

2 + cyu+ dy

curve ∈ E2 : c(u) = (x(u), y(u))

line ∈ E2 : αx+ βy + γ = 0

(1)

In the case of a cubic curve intersection with the AAB Box
computation is simplified as the intersection computation with
the horizontal lines and vertical lines which form the AAB Box
is needed, only.

In the E3 case, the AAB Box is formed by 6 bounding
planes and it leads to a system of nonlinear equations Eq.2

x(u) = axu
3 + bxu

2 + cxu+ dx

y(u) = ayu
3 + byu

2 + cyu+ dy

z(u) = azu
3 + bzu

2 + czu+ dz

curve ∈ E3 : c(u) = (x(u), y(u), z(u))

plane ∈ E3 : αx+ βy + γz + δ = 0

(2)

It should be noted that for the Bézier cubic curve or the Her-
mite cubic curve the parameter u is restricted to u ∈< 0, 1 >.
It means that the intersections computations can be further
simplified

It should be noted, that the Bézier curve of the degree n is
defined as:

(B)x(u) =
n∑

i=0

(
n

i

)
ui(1− u)n−ixi+1 (3)

where x1, . . . , xn are control points of the Bézier curve of
the degree n.
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Fig. 1. Hermite cubic curve (tangential vectors shortened)

The fundamental property of the Bézier curve is that all
points of the curve are inside of the convex hull of the Bézier
control points for all parameter values u ∈< 0, 1 >.

A. Hermite form

The Hermite form is based on cubic curve segment’s
end-points and tangential vectors in those points, see Fig.1
(tangential vectors are shortened). The Hermite form is not
practical for interaction, but it is useful in smooth joining of
cubic segments.

The tangential vectors of the Bézier form are defined as:

x′(0) = n(x2 − x1) x′(1) = n(xn − xn−1) (4)

From the Eq.4, it can be seen direct connection with the
Hermite cubic curve formulation as the tangential vectors of
the Hermite form are given as:

x′(0) = 3(x2 − x1) x′(1) = 3(x4 − x3) (5)

Therefore the ”inner” control points of the Bézier form using
the Hermite tangential vectors are given as:

{u, x2, } = {1
3
, x1 +

1

3
x′(0)}, x3 = {2

3
, x4 −

1

3
x′(1)}

(6)

where x′(0) and x′(1) are tangential vectors of the Hermite
form; similarly for the y-coordinate, resp. z-coordinate.
It means, that the points x2, resp. x3 have u coordinate u = 1

3 ,
resp. u = 2

3 in the Bézier cubic curve formulation.

B. General form

There is a general form for common description of the
Bézier, Hermite and Coons curves. It should be noted that
the parametric curve represents only the x(u)-coordinate and
for the other coordinates, i.e. y(u), z(u), it is similar.

Generally, for the E3 case, for a curve C(u) we can write:

C(u) = [P1,P2,P3,P4]
T MF [u3, u2, u, 1]T =

[P1,P2,P3,P4]
T MF u

(7)

where P1, . . . ,P4 are control values of the given form, i.e.
Bézier, resp. Hermite form.

• In the case of the Bézier form
P1 = [x1, y1, z1]

T , P2 = [x2, y2, z2]
T

P3 = [x3, y3, z3]
T , P4 = [x4, y4, z4]

T are vectors of the
curve control points

• In the case of the Hermite form
P1 = [x1, y1, z1]

T , P2 = [x4, y4, z4]
T are vectors of the

curve end-points,
P3 = [x′

1, y
′
1, z

′
1]

T , P4 = [x′
4, y

′
4, z

′
4]

T are the tangential
vectors at the curve end-points(notation at Fig.1 is used).

The Eq.7 can be rewritten as:

C(u) = [P1,P2,P3,P4]
T MH


u3

u2

u
1

 (8)

, i.e.

x(u)y(u)
z(u)

 =

x
(u)
1 x

(u)
2 x

(u)
1 x

(u)
2

y
(u)
2 y

(u)
2 y

(u)
1 y

(u)
2

z
(u)
3 z

(u)
2 z

(u)
1 z

(u)
2

 MH


u3

u2

u
1

 (9)

It means that the Bézier and Hermite can be mutually trans-
ferable using linear operation using the transformation matrix
MB 7→H , which is invertible.

MH = MB 7→HMB

MB = MH 7→BMH

MB 7→H = M−1
H 7→B

(10)

Similarly for other similar forms.
In the following, the algorithm for intersection of the Bézier

cubic parametric curve with the AAB Box is analyzed.

II. ANALYSIS OF PARAMETER INTERVALS

The intersection computation of the Bézier cubic curve with
the AAB Box in the E2 space is presented at Fig.2. On the

Fig. 2. Bézier cubic curve

left part, the cubic curve y(u) is shown with the blending
functions, on the bottom part the cubic curve x(u) is shown
with the blending functions and in the right top part, the
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parametric curve given by points c(u) = (x(u), y(u)) ∈ E2,
u ∈< 0, 1 > is shown, together with the control points.

If the all control points are inside of the AAB Box then
the whole curve is c(u) is inside, otherwise intersection
computation is needed.

It can be seen, that the curve c(u) intersects the AAB Box
several times and those points need to be determined. Lines
forming the AAB Box are vertical or horizontal only. It means
that intersections can be split to two separate computations for
x(u) and y(u), leading to formulation:

y(u) = ayu
3 + byu

2 + cyu+ dy

y = ymin or y = ymax

and

x(u) = axu
3 + bxu

2 + cxu+ dx

x = xmin or x = xmax

(11)

where the AAB Box is given as xmin × xmax and
xmin = (xmin, ymin), xmax = (xmax, ymax).

It means, that the equation Eq.11 is to be solve generally
for two values min and max and for the each parametric
curve, i.e c(u) = (x(u), y(u)) in the E2 case, and c(u) =
(x(u), y(u), z(u)) in the E3 case.

ξ(u) = au3 + bu2 + cu+ d

ξ = min or ξ = max
(12)

It should be noted that the coefficients a = [a, b, c, d] differs
for x, y, resp. z coordinates.

The parametric curve ξ(u) has three stationary points, i.e.
two extremes and one point of inflection given as x′(u) = 0,
generally. The stationary points are defined as:

ξ′(u) =
d

du
{au3 + bu2 + cu+ d} =

3au2 + 2bu+ c = 0
(13)

Solving the quadratic equation Eq.13 two values u1 and u2

are obtain if exist.
For the extreme values of ξ(u)
• if ξ′′(u) < 0 then it is a local maximum
• if ξ′′(u) > 0 then it is a local minimum
• if ξ′′(u) = 0 then it is an inflection

where the second derivative ξ′′(u) is given as:

ξ′′(u) =
d2ξ(u)

du2
= 6au+ 2b (14)

Then the inflection point of the parametric curve

ξ′′(u) = 6au+ 2b = 0

uinflection = − 2b

6a
= − a

3b

(15)

Note, that the uinflection value is different for the x(u), y(u),
resp. z(u) coordinates.

It means, that there are three intervals (−∞, u1 >,
< u1, u2 >,< u2,∞) and the cubic curve can have just one
intersection in each interval with the parametric curve. How-
ever, the Bézier, Hermite and Coons cubic curves are defined

for the interval < 0, 1 > and therefore only the non-empty
intervals (−∞, u1 > ∩ < 0, 1 >, < u1, u2 > ∩ < 0, 1 >
and < u2,+∞)∩ < 0, 1 > has to be
explored for an intersection in detail.

This analysis has to be done for the x(u), y(u), resp. z(u)
intervals of parameters in the E2 case, resp. in the E3 case.
Now, three intervals of u are obtained for each parametric
curve, i.e.

• Ix1 , Ix2 , Ix3 for the curve x(u)
• Iy1 , Iy2 , Iy3 for the curve y(u)
• Iz1 , Iz2 , Iz3 for the curve z(u) - in the case of E3

Of course, only non-empty intervals, i.e. respecting that the
parameter u is limited to u ∈< 0, 1 > are considered for the
next processing and only non-empty intervals given by the
Eq.16 are used for finding parameters of intersection of the
AAB Box and the parametric curve c(u) = (x(u), y(u)) in
the E2case, resp. c(u) = (x(u), y(u), z(u)) in the E3 case.

3,3,3⋂
i,j,k=1

Ixi ∩ Iyj in the E2 case

3,3,3⋂
i,j,k=1

Ixi ∩ Iyj ∩ Izk in the E3 case

(16)

If the parametric curve ξ(u) has different sign of the value at
the given interval end-points, there is one and only one value
of the parameter u for which ξ(u) = 0. It means, that range of
numerical methods for finding a root of a non-linear function
f(x) = 0 can be considered, e.g.:

• Binary search (bisection) WiKi [5]
• Regula falsi WiKi [6]
• Secant method WiKi [7]
• Newton’s method WiKi [8]

It should be noted that the Newton’s method [8] is not
applicable directly, as f ′(x) = 0 at the extreme points, see
Eq.17, in spite of the high convergence promises.

xn+1 = xn − f(xn)

f ′(xn)
(17)

Also the applicability criterion is required, see Eq.18 lead to
some restrictions as well.∣∣∣f(x)f ′′(x)

[f ′′(x)]2

∣∣∣ ≤ m < 1 (18)

As the point of inflection is easily determined the Secant
method WiKi [7] is the best choice.

The proposed method for finding intersections of the given
parametric cubic curve with the AAB Box is simple as it
requires solution of a quadratic equation Eq.13, computation
of common parts of the parameters intervals Eq.16 and appli-
cation of the Secant method WiKi [7]. Analysis of the secant
method is described in Wikiversity [9].

It is important, that precise intersection points of the cubic
curve with the AAB Box are found precisely, without need to
solve the cubic equations using Cardano’s formula, which is
numerically quite complex computation.
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Note on the Newton’s formula use

The Newton’s formula can be used, however, algorithm
is getting more complicated from the control logic point of
view. As the parametric cubic curve expects that parameter
is limited to u ∈< 0, 1 >, therefore up-to three non-empty
intervals are obtained, i.e. < 0, u1 >,< u1, u2 >,< u2, 1 >.
The let and right intervals do not contain an inflection point,
to the Newton’s method can be initiated from the marginal
parameters value. The middle interval, i.e. < u1, u2 >, is more
complex as the point of inflection splits this interval to two
intervals and the Newton’s method is to be applied on the
proper interval and the point if inflection is to be taken as the
staring point. Of course, process is stopped when the root of
the equation is found.

III. CONCLUSION

This contribution presents a new approach for for the Bézier
and Hermite cubic parametric curve intersection with the Axis
Aligned Bounding Box (AAB Box) using intersection of the
curve computation. It eliminates problems with sampling of
the curve and replacing the cubic curve by a polyline clipped
by the AAB Box used in practice and causing precision
problem at segments of the polyline partially inside of the
AAB Box. Also, it eliminates need to repeatedly use the
clipping algorithm, e.g. Cohen-Sutherland’s clipping in E2,
resp. E3 space causing unnecessary computational overhead.
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APPENDIX A

Details on parametric cubic curves and bicubic patches can
be found, e.g., in:

• Salomon,D.: The Computer Graphics Manual [10],
• Salomon,D.: Computer Graphics and Geometric Model-

ing [2],
• Agoston,M.K.: Computer Graphics and Geometric Mod-

elling: Mathematics [11],
• Agoston,M.K.: Computer Graphics and Geometric Mod-

elling: Implementation & Algorithms [12],
• Lengyel,E.: Mathematics for 3D Game Programming and

Computer Graphics [13],
• Vince,J.: Introduction to the Mathematics for Computer

Graphics [14],
• Foley,J.D., van Dam,A., Feiner,S., Hughes,J.F.: Computer

graphics - principles and practice [15],
• Hughes,J.F., van Dam,A., McGuire,M., Sklar,D.F., Fo-

ley,J.D., Feiner,S.K., Akeley,K.: Computer Graphics -
Principles and Practice [16],

• Ferguson,R.S.: Practical Algorithms for 3D Computer
Graphics [17],

• Shirley,P., Marschner,S.: Fundamentals of Computer
Graphics [18],

• Marschner,S., Shirley,P.: Fundamentals of Computer
Graphics Marschner [19],

• Theoharis,T., Platis,N., Papaioannou,G., Patrikalakis,N.:
Graphics and Visualization: Principles & Algorithms
[20],

• Schneider,P.J., Eberly,D.H.: Geometric Tools for Com-
puter Graphics [21],
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• Ammeraal,L., Zhang,K.: Computer graphics for Java pro-
grammers [22],

• Vince,J: Mathematics for Computer Graphics [14],
• Thomas,A.: Integrated Graphic and Computer Modelling

[23],
• Hearn,D. and Baker,M.P., Warren,C.: Computer Graphics

with OpenGL [24],
• F. S. Hill and S. M. Kelley: Computer Graphics Using

OpenGL [25].
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