
Optimized Line and Line Segment Clipping
in E2 and Geometric Algebra*

Vaclav Skalaa

aUniversity of West Bohemia, Pilsen, Czech Republic
www.VaclavSkala.eu

Annales Mathematicae et Informaticae
Manuscript
May 2, 2020

Abstract

Algorithms for line and line segment clipping are well known algorithms
especially in the field of computer graphics. They are formulated for the Eu-
clidean space representation. However, computer graphics uses the projective
extension of the Euclidean space and homogeneous coordinates for represen-
tation geometric transformations with points in the 𝐸2 or 𝐸3 space. The
projection operation from the 𝐸3 to the 𝐸2 space leads to the necessity to
convert coordinates to the Euclidean space if the clipping operation is to be
used.

In this contribution, an optimized simple algorithm for line and line seg-
ment clipping in the 𝐸2 space, which works directly with homogeneous rep-
resentation and not requiring the conversion to the Euclidean space, is de-
scribed. It is based on Geometric Algebra (GA) formulation for projective
representation.

The proposed algorithm is simple, efficient and easy to implement. The
algorithm can be efficiently modified for the SSE4 instruction use or the GPU
application, too.

Keywords: line clipping, line segment clipping, homogeneous coordinates, pro-
jective space, geometric algebra, principle of duality, GPU, SSE4 instruction.

MSC: 65D18, 68U05
*The research was partially supported by the Czech Science Foundation, Czech Republic,

project GACR No. GA17-05534S

1

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

1. Introduction

The line and line segment clipping are fundamental and critical operations in the
computer graphics pipeline as all the processed primitives have to be clipped out
of the drawing area to decrease computational requirements and also respect the
physical restrictions of the hardware. The clipping operations are mostly connected
with the Window-Viewport and projection operations. There are many algorithms
developed recently with many modifications, see Andreev[1], Day[4], Dörr[5], Du-
valenko[8], Kaijian[12], Krammer [14], Liang[16], Sobkow[29].

However, those algorithms have been developed for the Euclidean space rep-
resentation in spite of the fact, that geometric transformations, i.e. projection,
translation, rotation, scaling and Window-Viewport etc., use homogeneous coor-
dinates, i.e. projective representation. This results in the necessity to convert
the results of the geometric transformations to the Euclidean space using division
operation.

The conversion of a point x = [𝑥, 𝑦 : 𝑤]𝑇 from homogeneous coordinates to the
Euclidean representation X = (𝑋,𝑌 ) is given as:

𝑋 = 𝑥/𝑤 𝑌 = 𝑦/𝑤 𝑤 ̸= 0 (1.1)

where 𝑤 is the homogeneous coordinate. It means, that a point X ∈ 𝐸2 is repre-
sented by a line in the projective space 𝑥, 𝑦 : 𝑤 without the origin, which represents
a point in the infinity, see Fig. 1.

The extension to the 𝐸3 case is straightforward, e.g. Foley[9].

𝑋 = 𝑥/𝑤 𝑌 = 𝑦/𝑤 𝑍 = 𝑧/𝑤 𝑤 ̸= 0 (1.2)

where x = [𝑥, 𝑦, 𝑧 : 𝑤]𝑇 . The use of the projective extension of the Euclidean space
is convenient not only for geometric transformations, as it replaces addition by
multiplication in the case of translation operation, but also it enables to represent
a point in infinity. Also, it enables to express some geometric entities in more
compact form, e.g. a line in the 𝐸2 case as:

𝑎𝑋 + 𝑏𝑌 + 𝑐 = 0 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑤 = 0 a𝑇x = 0 (1.3)

where a = [𝑎, 𝑏 : 𝑐]𝑇 . It is necessary to note, that (𝑎, 𝑏) represents the normal
vector of a line, while 𝑐 is related to the distance of a line from the origin of the
Euclidean coordinate system. Similarly, a plane in the 𝐸3 case is defined as:

𝑎𝑋 + 𝑏𝑌 + 𝑐𝑍 + 𝑑 = 0 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑤 = 0 a𝑇x = 0 (1.4)

where a = [𝑎, 𝑏, 𝑐 : 𝑑]𝑇 .
However, it is necessary to distinguish vectors, as "movable" entities, from

"frames", which have the origin as the reference point. It is necessary to note, that
metric is not defined in the projective space. In many cases, the principle of duality
can be used to derive a solution of a dual problem and have only one programming
sequence for both problems, i.e. the primary one and the dual. Unfortunately, the
principle of duality is not usually part of the standard computer science curricula.

2

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

Figure 1: Projective space and its dual

2. Principle of duality

The principle of duality is one of the most important principles in mathematics. In
our case of geometric problems described by linear equations, see Equation 1.3 and
Equation 1.4, the principle of duality states that any theorem remains true when
we interchange the words

∙ “point” and “line” in the 𝐸2 case, resp. “point” and “plane” in the 𝐸3 case,

∙ “lie on” and “pass through”, “join” and “intersection” and so on.

Once the theorem has been established, the dual theorem is obtained as described
by Johnson[11].

In other words, the principle of duality in the 𝐸2 case says, that in all theorems
it is possible to substitute the term “point” by the term “line” and term “line” by
the term “point” and the given theorem remains valid. This helps a lot in the
solution of some geometrical problems, similarly in the 𝐸3 case. It means, that the
intersection computation of two lines is dual to the computation of a line given by
two points in the 𝐸2 case.

Similarly, the intersection computation of three planes is dual to the computa-
tion of a plane given by three points in the 𝐸3 case.

It is strange as the usual solution in the first case leads to formulation Ax = b,
while in the second case, the parameters of a line are determined as Ax = 0.
However, if the projective representation is used, both cases are solved as Ax = 0,
Skala[23].

This is the direct impact of the fact, that the point must lie on a line in the 𝐸2

case, resp. on a plane in the 𝐸3 case, Equation 2.1. Also, two lines in the 𝐸2 case,
respectively three planes in the 𝐸3 case must not be collinear, i.e.:

a𝑇x = 0 (2.1)

where a = [𝑎, 𝑏 : 𝑐]𝑇 in 𝐸2, resp. a = [𝑎, 𝑏, 𝑐 : 𝑑]𝑇 in 𝐸3. It can be seen that the
meaning of the term a and x can be interchanged due to the principle of duality.

3

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

Let us consider the intersection of two lines in the 𝐸2 case. Both lines must not
be collinear, the conditions Equation 2.1 for each line must be orthogonal to other,
therefore the result of the outer product (cross product) must be zero. Similarly,
for planes which must be non-collinear Lengyel[15], Skala[24][23][22].

Let us consider two lines a1 = [𝑎1, 𝑏1 : 𝑐1]
𝑇 and a2 = [𝑎2, 𝑏2 : 𝑐2]

𝑇 in the 𝐸2

case (using the cross-product notation extended to the 𝑥, 𝑦 : 𝑤 coordinate system).
Then the intersection point x = [𝑥, 𝑦 : 𝑤]𝑇 is given as:

a𝑇1 x = 0 , a𝑇2 x = 0 , (a1 × a2)
𝑇x = 0 (2.2)

Using the matrix notation:

𝑑𝑒𝑡

⎡⎣ 𝑥 𝑦 𝑤
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

⎤⎦ = 0 (2.3)

It means that a point given as the intersection of two lines is given as:

x = a1 × a2 𝑖.𝑒. x = a1 ∧ a2 (2.4)

where x = [𝑥, 𝑦 : 𝑤]𝑇 and ∧ means the outer product.
As a direct consequence of the principle of duality a line a = [𝑎, 𝑏 : 𝑐]𝑇 given by

two points x1 = [𝑥1, 𝑦1 : 𝑤1]
𝑇 and x2 = [𝑥2, 𝑦2 : 𝑤2]

𝑇 is given as:

a = x1 × x2 𝑖.𝑒. a = x1 ∧ x2 (2.5)

It should be noted that the operator × is the equivalent specific symbol used in
the 𝐸3 case, while ∧ is defined for the 𝑛−dimensional space, in general.

Extension to the 𝐸3 dimensional case is quite simple due to multi-linearity. It
means, that the intersection point of three planes a𝑖, 𝑖 = 1, ..., 3 is given as:

𝑑𝑒𝑡

⎡⎢⎢⎣
𝑥 𝑦 𝑧 𝑤
𝑎1 𝑏1 𝑐1 𝑑1
𝑎2 𝑏2 𝑐2 𝑑2
𝑎3 𝑏3 𝑐3 𝑑3

⎤⎥⎥⎦ = 0 (2.6)

It means that the point given as an intersection of three planes is given as:

x = a1 ∧ a2 ∧ a3 (2.7)

where x = [𝑥, 𝑦, 𝑧 : 𝑤]𝑇 .
As a direct consequence of the principle of duality, a plane a = [𝑎, 𝑏, 𝑐 : 𝑑]𝑇

given by three points x𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖 : 𝑤𝑖]
𝑇 , 𝑖 = 1, ..., 3 is given as:

a = x1 ∧ x2 ∧ x2 (2.8)

4

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

3. Geometric algebra

Linear algebra is used for formulation and solution of many engineering prob-
lems, including a solution of geometrically oriented problems, e.g. in computer
vision or computer graphics. Usually, vectors or matrices are used to represent
one-dimensional or two-dimensional (data) structure and standard operations are
defined. For vectors in the mathematical sense, basic mathematical operations are
defined, e.g. addition, multiplication (dot-product, cross-product), etc. This "stan-
dard" vector algebra framework enables basic operation with geometric entities.

3.1. Geometric product
However, there is another framework called Geometric Algebra (GA), which comes
from the William Kingdom Clifford formulation and which enables to define the
product of union and intersection operations with points, lines, areas, volumes
and hyper-volumes in general, see Vince[30], Kanatani[13]. The GA is an alterna-
tive formalism for describing geometrical entities and operations in 𝑛−dimensional
space. It uses only one product (multiplication) called geometric product defined
as:

ab = a ∙ b+ a ∧ b (3.1)

where a ∙ b is the dot (scalar) product and a ∧ b is the outer product (equivalent
to the cross-product in the 𝐸3 case).

It can be seen that the geometric product is "strange" as the result consists of
a scalar value and a bivector (usually called as a vector, but having different prop-
erties and representation from a vector), which is the result of the outer product.

The geometric product can be easily computed as the non-commutative tensor
product as a⊗ b, see Skala[28], as:

a⊗ b =

⎡⎣𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

⎤⎦ (3.2)

The diagonal elements represent the dot product part, while the upper and the lower
triangular matrices represent the outer product part. It should be noted, that the
geometric product computation using the non-commutative tensor product can be
used for the 𝑛−dimensional space, too.

Nowadays, the geometric algebra is widely used across many fields, but mostly
in connection with vector oriented operations in the Euclidean space. The applica-
tions of GA can be found in Physics (Hestenes[10]), Computer Science (Dorst[7]),
Computer Graphics (Vince[30], Lengyel[15]), and in other engineering fields as well
(Dorst[6]).

5

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

3.2. Geometric product and projective space
It should be noted, that it is possible to extend the GA for the projective extension
of the Euclidean space as well. In the case of computer graphics, points are not
represented by vectors in the mathematical sense, as they are represented by a
vector data structure, which represents a frame fixed to the origin of the coordinate
system.

As mentioned in Chapter 2, computation of a line p by given two points and
an intersection point x given as an intersection of two lines is given by the outer
product as:

p = x1 ∧ x2 , x = p1 ∧ p2 (3.3)

Using the determinant notation:

𝑑𝑒𝑡

⎡⎣ 𝑎 𝑏 𝑐
𝑥1 𝑦1 𝑤1

𝑥2 𝑦2 𝑤2

⎤⎦ = 0 , 𝑑𝑒𝑡

⎡⎣ 𝑥 𝑦 𝑤
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

⎤⎦ = 0 (3.4)

It can be seen, there is no need to convert homogeneous coordinates of the points
to the Euclidean space, since the determinant is multi-linear.

Extension to the 𝐸3 case is straightforward, i.e. a plane 𝜌 given by three points
and an intersection point x of three planes are given as:

𝜌 = x1 ∧ x2 ∧ x3 , x = 𝜌1 ∧ 𝜌2 ∧ 𝜌3 (3.5)

Using the determinant notation, the intersection point of three planes, respectively
the plane given by three points is are given as:

𝑑𝑒𝑡

⎡⎢⎢⎣
𝑎 𝑏 𝑐 𝑑
𝑥1 𝑦1 𝑧1 𝑤1

𝑥2 𝑦2 𝑧2 𝑤2

𝑥1 𝑦3 𝑧3 𝑤3

⎤⎥⎥⎦ = 0 , 𝑑𝑒𝑡

⎡⎢⎢⎣
𝑥 𝑦 𝑧 𝑤
𝑎1 𝑏1 𝑐1 𝑑1
𝑎2 𝑏2 𝑐2 𝑑2
𝑎1 𝑏3 𝑐3 𝑑3

⎤⎥⎥⎦ = 0 (3.6)

It can be seen, that there is no problem with singular cases, like collinear lines,
respectively planes, as the intersection is in infinity. In this case, the homogeneous
coordinate of the result is 𝑤 = 0 or 𝑤 ↦→ 0. This is to be evaluated after outer
product computation.

4. Line clipping

The line clipping operation in 𝐸2 space is a fundamental problem in Computer
Graphics. It was already deeply analyzed and many algorithms have been de-
veloped. The Cohen-Sutherland (CS)[9] for a line segment clipping against the
rectangular window, the Liang-Barsky(LB)[16] and Cyrus-Beck(CB)[3] (extensi-
ble to the 𝐸3 case) algorithms for clipping a line against a convex polygon, the
Nichol-Lee-Nichol(LNL)[17] (modified by Skala[27]) are the most used algorithms.

6

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

However, some more sophisticated algorithms or modification of the recent ones
have been developed recently, e.g. line clipping against a rectangular window, see
Bui[2], Skala[20][21], line clipping by a convex polygon with 𝑂(𝑙𝑔𝑁) complexity,
see Skala[26] (based on Rappaport [18]), or algorithm with 𝑂𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(1) complex-
ity, see Skala[25], etc. In the case of 𝐸3, the algorithms have computational com-
plexity 𝑂(𝑁) as there is no ordering in 𝐸3 case, however, the algorithm with
𝑂𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑠𝑞𝑟𝑡(𝑁)) have been developed by Skala[19][20][25].

Figure 2: Clipping against the rectangular window in 𝐸2

The line and line segment clipping algorithms against a rectangular window in
𝐸2 are probably the most used algorithms and any improvements or speed up can
have a high influence on the efficiency of the whole graphics pipeline.

Let us consider a typical example of a line clipping by a rectangular clipping
window, see Fig. 2, and a line 𝑝 given in the implicit form using projective notation.

𝑝 : 𝑎𝑥+ 𝑏𝑦 + 𝑐𝑤 = 0 , 𝑖.𝑒. a𝑇x = 0 (4.1)

where a = [𝑎, 𝑏 : 𝑐]𝑇 are coefficients of the given line 𝑝, x = [𝑥, 𝑦 : 𝑤]𝑇 is a point
on this line using projective notation.

In the following, a version of the line clipping algorithm for the general case
will be described, which can be easily extended to a line clipping and line segment
clipping by a convex polygon, and the optimization for the use in the Normalized
Device Coordinate (NDC) system.

4.1. S-L-Clip algorithm

Let us consider an implicit function 𝐹 (x) = a𝑇x. The clipping operation should
determine intersection points x𝑖 = [𝑥𝑖, 𝑦𝑖 : 𝑤𝑖]

𝑇 , 𝑖 = 1, 2 of the given line with the
window, if any. The line splits the plane into two parts, see Fig. 2. The corners of
the window are split into two groups according to the sign of the 𝐹 (x) value. This
results into Smart-Line-Clip (S-L-Clip) algorithm, see Algorithm 1.

It means that each corner can be classified by a bit value 𝑐𝑖 as:

𝑐𝑖 =

{︃
1 𝑖𝑓𝐹 (x) ≥ 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖 = 0, ..., 3 (4.2)

7

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

c c TAB1 TAB2 MASK c c TAB1 TAB2 MASK
0 0000 None None None 15 1111 None None None
1 0001 0 3 0100 14 1110 3 0 None
2 0010 0 1 0100 13 1101 1 01 0100
3 0011 1 3 0010 12 1100 3 1 0010
4 0100 1 2 0010 11 1011 2 1 0010
5 0101 N/A N/A N/A 10 1010 N/A N/A N/A
6 0110 0 2 0100 9 1001 2 0 0100
7 0111 2 3 1000 8 1000 3 2 1000

Table 1: All cases; N/A - Non-Applicable (impossible) cases

where a = [𝑎, 𝑏 : 𝑐]𝑇 are coefficients of the given line 𝑝, x = [𝑥, 𝑦 : 𝑤]𝑇 means a
point on this line.

Table 1 shows the codes for all situations (some of those are not possible). The
TAB1 and TAB2 contain indices of edges of the window intersected by the given
line (values in the MASK will be used in the line segment algorithm).

Algorithm 1 S-L-Clip - Line clipping algorithm by the rectangular window

1: procedure S-L-Clip(x𝐴,x𝐵); ◁ line is given by two points
2: p := x𝐴 ∧ x𝐵 ; ◁ computation of the line coefficients
3: for 𝑖 := 0 to 3 do
4: if p𝑇x𝑖 ≥ 0 then 𝑐𝑖 := 1 else 𝑐𝑖 := 0; ◁ codes computation
5: end for
6: if c ̸= [0000]𝑇 and c ̸= [1111]𝑇 then ◁ line intersects the window
7: 𝑖 := 𝑇𝐴𝐵1[c]; x𝐴 := p ∧ e𝑖; ◁ first intersection point
8: 𝑗 := 𝑇𝐴𝐵2[c]; x𝐵 := p ∧ e𝑗 ; ◁ second intersection point
9: output(x𝐴,x𝐵);

10: end if
11: end procedure

It can be seen, that the S-L-Clip algorithm (see Algorithm 1) is quite simple
and easily extensible for the convex polygon clipping case as well (Table 1 can
be generated synthetically). It is significantly simpler than the Liang-Barsky al-
gorithm [16]. It also supports SSE4 and GPU use directly and leads to simple
implementations, as the cross-product and dot-product operations, are supported
in hardware. It should be noted, that the algorithm is designed for a very general
case, as the window corners and the points defining the line, are generally in the
projective representation, i.e. 𝑤 ̸= 1. Therefore, the S-L-Clip algorithm has further
potential for optimization, especially for the case, when the corner points of the
window are given in the Euclidean coordinates, i.e. 𝑤 = 1, and clipping is made in
the Normalized Device Coordinate (NDC) system.

8

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

4.2. S-L-Clip-Opt - Optimization of the S-L-Clip

The S-L-Clip algorithm can be optimized for the use in the 𝐸2 case, as the corners
of the window and points defining the line are in the Euclidean coordinates, i.e.
𝑤 = 1, and the edges of the window are vertical or horizontal only. Also, it is
necessary to consider the computer graphics pipeline, where all primitives passing
the clipping operations are transformed from the World Coordinates (WC) to the
Normalized Device Coordinates(NDC) and then to the Device Coordinates (DC),
where NDC coordinates are < 0, 1 > × < 0, 1 > or < −1, 1 > × < −1, 1 >, which
simplifies the outer-product (cross-product) computation significantly.

These computational transformations can be described as:

x′ = T𝑁𝐷𝐶 ↦→𝐷𝐶 CLIP (T𝑊𝐶 ↦→𝑁𝐷𝐶 x) (4.3)

Let us consider a line coefficients determination first, using Equation 2.5, and
setting 𝑤 = 1. Then the coefficients of the line are given by Equation 4.4.

𝑎 = 𝑦1 − 𝑦2 𝑏 = 𝑥2 − 𝑥1 𝑐 = 𝑥1 * 𝑦2 − 𝑥2 * 𝑦1 (4.4)

It leads to a significant reduction of a number of the floating point operations
(±, *) from (6, 3) to (3, 2). Also, the outer product is used for computation of the
intersection points, i.e. x𝐴 and x𝐵 , can be simplified.

As the edges of the window are vertical or horizontal only and clipping is done
in the normalized space NDC, the codes of the corners and related intersection
point computation can be simplified significantly. It means, that for each edge of
the window the intersection computation with the line can be simplified as:⎡⎣𝑥 𝑦 𝑤

𝑎 𝑏 𝑐
0 1 0

⎤⎦ = 0

⎡⎣𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
1 0 −1

⎤⎦ = 0

⎡⎣𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
0 1 −1

⎤⎦ = 0

⎡⎣𝑥 𝑦 𝑤
𝑎 𝑏 𝑐
1 0 0

⎤⎦ = 0

edge 𝑒0 edge 𝑒1 edge 𝑒2 edge 𝑒3

Table 2: Explicit evaluation of an intersection point for each edge

It means that the outer product sequence for the line intersection with an edge
can be replaced by direct computing of all cases shown in Table 1. Rewriting those
conditions at Table 2, the intersection for each edge is given as:

𝑒𝑑𝑔𝑒 𝑒0 : 𝑥 = −𝑐; 𝑦 := 0; 𝑤 := 𝑎 (4.5)

𝑒𝑑𝑔𝑒 𝑒1 : 𝑥 = −𝑏; 𝑦 := 𝑎+ 𝑐; 𝑤 := −𝑏 (4.6)

𝑒𝑑𝑔𝑒 𝑒2 : 𝑥 = −𝑏− 𝑐; 𝑦 := 𝑎; 𝑤 := 𝑎 (4.7)

𝑒𝑑𝑔𝑒 𝑒3 : 𝑥 = 0; 𝑦 := 𝑐; 𝑤 := −𝑏 (4.8)

9

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

It leads to another significant reduction of the number of the floating point
operations (±, *) from (6, 3) to (1, 0) in the most of cases. If the line does not
intersect the window, there is no computation at all.

The optimized line clipping algorithm for the 𝐸2 case is represented by the
algorithm S-L-Clip-Opt, see Algorithm 2.

Algorithm 2 Optimized S-L-Clip-Opt line clipping algorithm in 𝐸2

1: procedure S-L-Clip-Opt(x𝐴,x𝐵); ◁ line is given by two points
2: 𝑎 = 𝑦1 − 𝑦2; 𝑏 = 𝑥2 − 𝑥1;
3: 𝑐 = 𝑥1 * 𝑦2 − 𝑥2 * 𝑦1; ◁ line coefficients
4: 𝑐0 := 𝑠𝑖𝑔𝑛(𝑐); 𝑐1 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑐); ◁ corner’s codes computation
5: 𝑐2 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑏+ 𝑐); 𝑐3 := 𝑠𝑖𝑔𝑛(𝑏+ 𝑐); ◁ c = [𝑐3, 𝑐2, 𝑐1, 𝑐0]

𝑇

6: if c ̸= [0000]𝑇 and c ̸= [1111]𝑇 then ◁ line intersects the window
7: 𝑖 := 𝑇𝐴𝐵1[c]; ◁ x𝐴 := [𝑥𝐴, 𝑦𝐴 : 𝑤𝐴]

𝑇

8: switch 𝑖 do ◁ equivalent of x𝐴 := p ∧ e𝑖;
9: case 0: 𝑥𝐴 := −𝑐; 𝑦𝐴 := 0; 𝑤𝐴 := 𝑎;

10: case 1: 𝑥𝐴 := −𝑏; 𝑦𝐴 := 𝑎+ 𝑐; 𝑤𝐴 := 𝑏;

11: case 2: 𝑥𝐴 := −𝑏− 𝑐; 𝑦𝐴 := −𝑎; 𝑤𝐴 := 𝑎;

12: case 3: 𝑥𝐴 := 0; 𝑦𝐴 := 𝑐; 𝑤𝐴 := −𝑏;

13: default: ERROR ◁ actually the N/A case
14: end switch
15: 𝑗 := 𝑇𝐴𝐵2[c]; ◁ x𝐵 := [𝑥𝐵 , 𝑦𝐵 : 𝑤𝐵 ]

𝑇

16: switch 𝑗 do ◁ equivalent of x𝐵 := p ∧ e𝑗 ;
17: case 0: 𝑥𝐵 := −𝑐; 𝑦𝐵 := 0; 𝑤𝐵 := 𝑎;

18: case 1: 𝑥𝐵 := −𝑏; 𝑦𝐵 := 𝑎+ 𝑐; 𝑤𝐵 := 𝑏;

19: case 2: 𝑥𝐵 := −𝑏− 𝑐; 𝑦𝐵 := −𝑎; 𝑤𝐵 := 𝑎;

20: case 3: 𝑥𝐵 := 0; 𝑦𝐵 := 𝑐; 𝑤𝐵 := −𝑏;

21: default: ERROR ◁ actually the N/A case
22: end switch
23: output(x𝐴,x𝐵); ◁ output with the intersection points
24: end if
25: end procedure

From Algorithm 2, it can be seen that also the evaluation of the window cor-
ners were simplified as instead of 4 * (2, 3) with floating point operations, only
(4, 0) operations are needed. This results in an additional speedup of the proposed
optimization.

Now, the proposed optimized algorithm is to be modified for the line segment
clipping case, which is used nearly exclusively in computer graphics.

10

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

5. Line segment clipping

In computer graphics, geometric elements like points, line segments, triangles, etc.
are processed. Therefore, the proposed algorithm is to be modified for the line
segment clipping case, see Fig. 3.

Figure 3: The codes of line segment end-points

It can be seen that there are some special line positions, which lead to direct
acceptance or rejection of the whole line segment, while other cases have to be
processed.

5.1. End-points coding
A line segment is defined by its end-points x𝐴 and x𝐵 . The classification of the
line segment end-points and the corners of the window mutual positions enables
faster processing, see Algorithm 3. The end-point classification was used in the CS
algorithms developed by Cohen-Sutherland[9]. Some additional coding for speedup
were introduced in Bui[2]. It enables simple rejection of line segments not inter-
secting the window and direct acceptance of segments totally inside of the window.
If c𝐴 and c𝐵 are codes of the end-points then the sequence catching those cases
can be expressed as:

if (c𝐴 or c𝐵) = [0000] then the line segment is totally inside;
if(c𝐴 and c𝐵) ̸= [0000] then the line segment is outside;

If the end-points of a line are given in the Euclidean space, i.e. 𝑤 = 1, then the
codes of the end-points are determined as in Algorithm 3. In the general case, i.e.
when 𝑤 ̸= 1 and 𝑤 > 1 the conditions must be modified using multiplication as
𝑥𝑤𝑚𝑖𝑛 < 𝑥𝑚𝑖𝑛𝑤, etc. and therefore no division operation is needed.

It can be seen, that other cases, see Fig. 3, cannot be directly distinguished by
the CS algorithm coding and intersection points are to be computed, including the
invalid ones. It is necessary to note, that the CS algorithm uses division operations
in the floating point.

11

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

Algorithm 3 End-point code computation

1: procedure CODE (c,x); ◁ code c for the position x = [𝑥, 𝑦 : 1]𝑇

2: c := [0000]𝑇 ; ◁ initial setting
3: if 𝑥 < 𝑥𝑚𝑖𝑛 then c := [1000]𝑇 ◁ setting according to x coordinate
4: if 𝑥 > 𝑥𝑚𝑎𝑥 then c := [0100]𝑇 ;

5: if 𝑦 < 𝑦𝑚𝑖𝑛 then c := c lor [0001]𝑇 ◁ setting according to y coordinate
6: if 𝑦 > 𝑦𝑚𝑎𝑥 then c := c lor [0010]𝑇 ;
7: ◁ lor represents or operation on all bits
8: end procedure

Algorithm 4 Smart-line segment clipping algorithm by the rectangular window

1: procedure S-LS-Clip(x𝐴,x𝐵); ◁ two line segment end-points
2: CODE (c𝐴,x𝐴); CODE (c𝐵 ,x𝐵); ◁ code for the end-points x𝐴 and x𝐵

3: if (c𝐴 lor c𝐵) = [0000]𝑇 then output (x𝐴, x𝐵); EXIT
4: ◁ the whole segment is inside
5: if (c𝐴 land c𝐵) ̸= [0000]𝑇 then EXIT ◁ the whole segment is outside
6: p := x𝐴 ∧ x𝐵 ; ◁ computation of the line coefficients
7: for 𝑖 := 0 to 3 do
8: if p𝑇x𝑖 ≥ 0 then 𝑐𝑖 := 1 else 𝑐𝑖 := 0; ◁ codes computation
9: end for

10: if c = [0000]𝑇 or c = [1111]𝑇 then EXIT ◁ line does not intersect
11: if c𝐴 ̸= 0 and c𝐵 ̸= 0 then ◁ two intersection points
12: x𝐴 := 𝑝 ∧ e𝑖; x𝐵 := 𝑝 ∧ e𝑗 ;
13: output (x𝐴,x𝐵); EXIT

14: 𝑖 := 𝑇𝐴𝐵1[c]; 𝑗 := 𝑇𝐴𝐵2[c]; ◁ only one end-point is inside
15: ◁ end-points handling
16: if c𝐴 = 0 then ◁ point x𝐴 is inside
17: if (c𝐵 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then
18: x𝐵 := p ∧ e𝑖; ◁ new position of xB

19: else
20: x𝐵 := p ∧ e𝑗 ;

21: else ◁ point x𝐵 is inside
22: if (c𝐴 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then ◁ new position of x𝐴

23: x𝐴 := p ∧ e𝑖;
24: else
25: x𝐴 := p ∧ e𝑗 ;

26: end if
27: output (x𝐴,x𝐵);

28: end procedure

12

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

The S-LS-Clip algorithm (Algorithm 4) is derived from the S-L-Clip algorithm
(Algorithm 1), which uses the gained information on positions of the line segment
end-points.

5.2. Optimized Line Segment Clipping S-LS-Clip-Opt
For clipping line segments, the line segment S-L-Clip algorithm (see Algorithm 2)
is to be modified to take into account positions of the end-points of the given line
segment using the MASK part of Table 1. The modification uses the end-points
codes to determine the case, how the line segment intersects the window. However,
computation of the line segment intersection points with the window is needed and
the MASK determines the appropriate end-point, which is to be replaced by the
computed intersection point. It can be seen, that the modification is quite simple,
see Algorithm 4.

If the end-points of the line segments are given in homogeneous coordinates,
i.e. 𝑤 ̸= 1 and 𝑤 > 0, the algorithm Algorithm 3 needs a simple modification, i.e.
the conditions are to be changed to 𝑥 < 𝑥𝑚𝑖𝑛 *𝑤, 𝑦 < 𝑦𝑚𝑖𝑛 *𝑤 and similarly for all
other cases. It should be noted that in the NDC coordinate system, the conditions
are even more simplified, see Algorithm 5.

Algorithm 5 End-point code computation for NDC coordinate system

1: procedure CODE (c,x); ◁ code c for the position x = [𝑥, 𝑦 : 𝑤]𝑇 𝑤 > 0
2: c := [0000]𝑇 ; ◁ initial setting
3: if 𝑥 < 0 then c := [1000]𝑇 ◁ setting according to x coordinate
4: if 𝑥 > 𝑤 then c := [0100]𝑇 ; ◁ as 𝑥𝑚𝑎𝑥 = 1 𝑤 > 0 then 𝑤 * 1 = 𝑤

5: if 𝑦 < 0 then c := c lor [0001]𝑇 ◁ setting according to y coordinate
6: if 𝑦 > 𝑤 then c := c lor [0010]𝑇 ;
7: ◁ lor represents or operation on all bits
8: end procedure

The end-points classification was simplified for the NDC coordinate system
above. The algorithm Smart Line Segment Clip (S-LS-Clip), see Algorithm 4, was
designed for the general case, when the end-points of the given line and the corners
of the window are given in the projective space, i.e. 𝑤 ̸= 1 & 𝑤 > 0.

It means, that the S-LS-Clip algorithm can be further optimized for the case,
when clipping is done in the NDC coordinate system. After clipping in the NDC
coordinates, the window-viewport transformation is applied according to the output
device resolution. The transformation can be made in homogeneous coordinates
as it uses matrix multiplication, therefore the conversions of the line segment end-
points are not needed.

In the NDC case, the CODE computation is to be modified, as the line segments
end-points might be given in homogeneous coordinates (see Algorithm 5) and the
algorithm for the line segment clipping can be simplified as well. Algorithm 6
is optimized line segment clipping algorithm for the case, when the end-points

13

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

Algorithm 6 Optimized S-LS-Clip-Opt line clipping algorithm in 𝐸2

1: procedure S-L-Clip-Opt(x𝐴,x𝐵); ◁ line is given by two points
2: CODE (c𝐴,x𝐴); CODE (c𝐵 ,x𝐵); ◁ lor represents or operation on all bits
3: if (c𝐴 lor c𝐵) = [0000]𝑇 then ◁ code for the end-points x𝐴 and x𝐵

4: output (x𝐴, x𝐵); EXIT ◁ the whole segment is inside
5: if (c𝐴 land c𝐵) ̸= [0000]𝑇 then EXIT ◁ the whole segment is outside
6: 𝑎 = 𝑦1 − 𝑦2; 𝑏 = 𝑥2 − 𝑥1; ◁ line coefficients computation
7: 𝑐 = 𝑥1 * 𝑦2 − 𝑥2 * 𝑦1; ◁ if 𝑤 ̸= 1 use [𝑎, 𝑏 : 𝑐]𝑇 := x𝐴 ∧ x𝐵 ;
8: 𝑐0 := 𝑠𝑖𝑔𝑛(𝑐); 𝑐1 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑐); ◁ corner’s codes computation
9: 𝑐2 := 𝑠𝑖𝑔𝑛(𝑎+ 𝑏+ 𝑐); 𝑐3 := 𝑠𝑖𝑔𝑛(𝑏+ 𝑐); ◁ c = [𝑐3, 𝑐2, 𝑐1, 𝑐0]

𝑇

10: if c = [0000]𝑇 or c = [1111]𝑇 then EXIT; ◁ no intersection
11: ◁ line segment intersects the window
12: 𝑖 := 𝑇𝐴𝐵1[c]; ◁ x𝐴 := [𝑥𝐴, 𝑦𝐴, 𝑤𝐴]

𝑇

13: switch 𝑖 do ◁ equivalent of x𝐴 := p ∧ e𝑖;
14: case 0: 𝑥𝐴 := −𝑐; 𝑦𝐴 := 0; 𝑤𝐴 := 𝑎;

15: case 1: 𝑥𝐴 := −𝑏; 𝑦𝐴 := 𝑎+ 𝑐; 𝑤𝐴 := 𝑏;

16: case 2: 𝑥𝐴 := −𝑏− 𝑐; 𝑦𝐴 := −𝑎; 𝑤𝐴 := 𝑎;

17: case 3: 𝑥𝐴 := 0; 𝑦𝐴 := 𝑐; 𝑤𝐴 := −𝑏;

18: default: ERROR ◁ actually the N/A case
19: end switch
20: 𝑗 := 𝑇𝐴𝐵2[c]; ◁ x𝐵 := [𝑥𝐵 , 𝑦𝐵 , 𝑤𝐵 ]

𝑇

21: switch 𝑗 do ◁ equivalent of x𝐵 := p ∧ e𝑗 ;
22: case 0: 𝑥𝐵 := −𝑐; 𝑦𝐵 := 0; 𝑤𝐵 := 𝑎;

23: case 1: 𝑥𝐵 := −𝑏; 𝑦𝐵 := 𝑎+ 𝑐; 𝑤𝐵 := 𝑏;

24: case 2: 𝑥𝐵 := −𝑏− 𝑐; 𝑦𝐵 := −𝑎; 𝑤𝐵 := 𝑎;

25: case 3: 𝑥𝐵 := 0; 𝑦𝐵 := 𝑐; 𝑤𝐵 := −𝑏;

26: default: ERROR ◁ actually the N/A case
27: end switch
28: ◁ evaluation of the end-points x𝑖 = [𝑥𝐴, 𝑦𝑖 : 𝑤𝑖]

𝑇 , 𝑖 = 1, 2
29: if c𝐴 = 0 then ◁ point x𝐴 is inside
30: if (c𝐵 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then
31: x𝐵 := x𝐴; ◁ new position of x𝐵

32: else
33: x𝐵 := x𝐵 ;

34: else ◁ point x𝐵 is inside
35: if (c𝐴 land 𝑀𝐴𝑆𝐾[c]) ̸= 0 then ◁ new position of x𝐴

36: x𝐴 := x𝐴;
37: else
38: x𝐴 := x𝐵 ;

39: end if
40: output (x𝐴,x𝐵);

41: end procedure

14

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

are given in the Euclidean space. If the end-points are given in homogeneous
coordinates, the outer product for the line coefficients is to be used, however, it is
one-clock instruction on GPU (cross-product).

The algorithm S-L-Clip (see Algorithm 1) and S-LS-Clip (see Algorithm 4) can
be easily modified for the line and line segment clipping by a convex polygon, as
Table 1 can be generated synthetically for the given number of the convex polygon
vertices and the cycle for and codes c computation must be modified accordingly.

6. Conclusion

Algorithms for the line clipping and line segment clipping by a rectangular window
have been deeply studied for a long time and many algorithms and their modifica-
tions have been described.

This contribution describes a new line and line segment clipping algorithms with
their optimization using principles of geometric algebra extended for the projective
extension of the Euclidean space. The algorithms process line and line segments
given by end-points in the homogeneous coordinates and use the outer product
applied in the projective space. Also, a simple geometric product computation
using tensor multiplication is presented.

It should be noted, that the S-L-Clip and S-LS-Clip algorithms can be easily
modified for the line and line segment clipping by a convex polygon.

Acknowledgements The author would like to thank to colleagues and students
at the University of West Bohemia (Czech Republic), Shandong University and Zhe-
jiang University (China) for their critical comments and constructive suggestions,
and to anonymous reviewers for their valuable comments and hints provided.

References

[1] R. Andreev, E. Sofianska: New algorithm for two-dimensional line clipping, Computers
and Graphics 15.4 (1991), pp. 519–526, issn: 00978493, doi: 10.1016/0097-8493(91)90051-I.

[2] D. Bui, V. Skala: Fast algorithms for clipping lines and line segments in E2, Visual Com-
puter 14.1 (1998), pp. 31–37, doi: 10.1007/s003710050121.

[3] M. Cyrus, J. Beck: Generalized two- and three-dimensional clipping, Computers and
Graphics 3.1 (1978), pp. 23–28, doi: 10.1016/0097-8493(78)90021-3.

[4] J. Day: A New Two Dimensional Line Clipping Algorithm for Small Windows, Computer
Graphics Forum 11.4 (1992), pp. 241–245, issn: 01677055, doi: 10.1111/1467-8659.1140241.

[5] M. Dörr: A new approach to parametric line clipping, Computers and Graphics 14.3-4
(1990), pp. 449–464, issn: 00978493, doi: 10.1016/0097-8493(90)90067-8.

[6] L. J. Dorst L.: Guide to Geometric Algebra in Practice, London, Springer, 2011, isbn:
978-0-85729-810-2, doi: 10.1007/978-0-85729-811-9.

[7] L. Dorst, D. Fontijne, S. Mann: Geometric Algebra for Computer Science (Revised
Edition), 2009, isbn: 9780123749420, doi: 10.1016/B978-0-12-374942-0.X0000-0.

15

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/



Annales Mathematicae et Informaticae Manuscript, May 2, 2020

[8] V. Duvanenko, W. Robbins, R. Gyurcsik: Line-segment clipping revisited, Dr. Dobb’s
Journal 21.1 (1996), pp. 107–110, issn: 1044789X.

[9] D. Foley, A. van Dam, S. Feiner, J. Hughes: Computer graphics: principles and practice,
Boston, MA, USA: Addison-Wesley, 1990, isbn: 0-201-12110-7.

[10] D. Hestenes: Tutorial on Geometric Calculus, Advances in Applied Clifford Algebras 24.2
(2014), pp. 257–273, issn: 01887009, doi: 10.1007/s00006-013-0418-0.

[11] M. Johnson: Proof by Duality: or the Discovery of New Theorems, Mathematics Today
(1996).

[12] S. Kaijian, J. Edwards, D. Cooper: An efficient line clipping algorithm, Computers and
Graphics 14.2 (1990), pp. 297–301, issn: 00978493, doi: 10.1016/0097-8493(90)90041-U.

[13] K. Kanatani: Understanding Geometric Algebra, CRC Press, Japan, 2015, isbn:
9780429157127, doi: 10.1016/B978-0-12-374942-0.X0000-0.

[14] G. Krammer: A line clipping algorithm and its analysis, Computer Graphics Forum 11.3
(1992), pp. 253–266, issn: 01677055, doi: 10.1111/1467-8659.1130253.

[15] E. Lengyel: Mathematics for 3D Game Programming and Computer Graphics, Cengage
Learning, USA, 2011, isbn: 978-1-4354-5886-4.

[16] Y.-D. Liang, B. Barsky: A New Concept and Method for Line Clipping, ACM Transactions
on Graphics (TOG) 3.1 (1984), pp. 1–22, doi: 10.1145/357332.357333.

[17] T. M. Nicholl, D. Lee, R. A. Nicholl: Efficient New Algorithm for 2-D Line Clipping:
Its Development and Analysis, Computer Graphics (ACM) 21.4 (1987), pp. 253–262, doi:
10.1145/37402.37432.

[18] A. Rappoport: An efficient algorithm for line and polygon clipping, The Visual Computer
7.1 (1991), pp. 19–28, doi: 10.1007/BF01994114.

[19] V. Skala: A fast algorithm for line clipping by convex polyhedron in E3, Computers and
Graphics (Pergamon) 21.2 (1997), pp. 209–214, doi: 10.1016/S0097-8493(96)00084-2.

[20] V. Skala: Algorithm for 2D line clipping, New Advances in Computer Graphics, NATO
ASI (1989), pp. 121–128, doi: /10.1007/978-4-431-68093-2_7.

[21] V. Skala: An efficient algorithm for line clipping by convex polygon, Computers and Graph-
ics 17.4 (1993), pp. 417–421, doi: 10.1016/0097-8493(93)90030-D.

[22] V. Skala: Barycentric coordinates computation in homogeneous coordinates, Computers
and Graphics (Pergamon) 32.1 (2008), pp. 120–127, doi: 10.1016/j.cag.2007.09.007.

[23] V. Skala: Intersection Computation in Projective Space Using Homogeneous Coordinates,
Int. Journal of Image and Graphics 8.4 (2008), pp. 615–628, doi: 10.1142/S021946780800326X.

[24] V. Skala: Length, Area and Volme Computation in Homogeneous Coordinates, Int. Journal
of Image and Graphics 6.4 (2006), pp. 625–639, doi: 10.1142/S0219467806002422.

[25] V. Skala: Line clipping in E2 with O(1) processing complexity, Computers and Graphics
(Pergamon) 20.4 (1996), pp. 523–530, doi: 10.1016/0097-8493(96)00024-6.

[26] V. Skala: O(lg N) line clipping algorithm in E2, Computers and Graphics 18.4 (1994),
pp. 517–524, doi: 10.1016/0097-8493(94)90064-7.

[27] V. Skala, D. Bui: Extension of the Nicholls-Lee-Nichols algorithm to three dimensions,
Visual Computer 17.4 (2001), pp. 236–242, doi: 10.1007/s003710000094.

[28] V. Skala, M. Smolik: A New Formulation of Plücker Coordinates Using Projective Repre-
sentation, in: 5th Int. Conf. on Mathematics and Computers in Sciences and Industry (MCSI
2018), IEEE, 2018, pp. 52–56, doi: 10.1109/MCSI.2018.00020.

[29] M. Sobkow, P. Pospisil, Y.-H. Yang: A fast two-dimensional line clipping algorithm
via line encoding, Computers and Graphics 11.4 (1987), pp. 459–467, issn: 00978493, doi:
10.1016/0097-8493(87)90061-6.

[30] J. Vince: Geometric algebra for computer graphics, 2008, pp. 1–252, isbn: 9781846289965,
doi: 10.1007/978-1-84628-997-2.

16

 
Annales Mathematicae et Informaticae. 52. pp. 199-215, 2020, ISSN 1787-6117 (Online)

doi: https://doi.org/10.33039/ami.2020.05.001 https://ami.uni-eszterhazy.hu/




