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Abstract. This paper presents a method for efficient Radial basis func-
tion (RBF) evaluation if compactly supported radial basis functions
(CSRBF) are used. Application of CSRBF leads to sparse matrices, due
to limited influence of radial basis functions in the data domain and thus
non-zero weights (coefficients) are valid only for some areas in the data
domain. The presented algorithm uses space subdivision which enables us
to use only relevant weights for efficient RBF function evaluation. This
approach is applicable for 2D and 3D case and leads to a significant
speed-up. This approach is applicable in cases when the RBF function
is evaluated repeatably.

Keywords: Radial basis functions; space subdivision; function evalua-
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1 Introduction

Interpolation and approximation are well-known techniques in many scientific
disciplines, i.e. mostly in physical sciences [7]. There are two main approaches
dealing with an interpolation, as well as an approximation. The first one is the
mesh-based approach and the second one is the mesh-less approach.

The mesh-based approaches need to know the connectivity of the interpo-
lated or approximated dataset. However, the triangulation of the input dataset
can be highly time consuming in higher dimensions, as the computational time
complexity of Delaunay triangulation [20] is O(Ndd/2e+1), i.e. for d = 2 is O(N2)
and for d = 3 is O(N3) [23]. Of course, there are some algorithms [5], [6], [15]
that are dealing with decreasing of the time complexity of Delaunay triangu-
lation. However, the computational time to construct the triangulation is still
high.

On the other hand, the mesh-less techniques do not require any tessellation,
which is a significant advantage over the mesh-based techniques, i.e. one can
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directly start to compute the mesh-less approximation or interpolation from the
scattered or unsorted input dataset. There are many algorithms for mesh-less
approximation of scattered data. Many of them are described in the book [8] or
[10]. Other examples of mesh-less approximation are in [1], [2], [3].

The mostly used mesh-less technique for interpolation and approximation
is the Radial basis function interpolation and approximation. It uses only the
distance between the pairs of centers of radial basis functions and input points.
An advantage of the Radial basis function interpolation and approximation is
time complexity which is independent of the dimension, which is useful in higher
dimensions.

There are many research papers focused on speeding-up the interpolation
or approximation process and solving the stability of computation. The paper
[12] uses the preconditioned Krylov iteration to compute fast interpolation. The
paper [28] uses global radial basis functions for interpolation but use them in a
local sense to speed-up the interpolation. The paper [4] provides a summary of
fast RBF interpolation and approximation. These methods speed-up the approx-
imation or interpolation, i.e. finding weights of RBFs, whereas we would like to
speed-up the evaluation of the final Radial basis function formula. In this paper,
we focus on the efficient evaluation of the RBFs, i.e. computation of interpola-
tion or approximation, when coefficients (weights) of the RBF have already been
computed. The approach is based on the space subdivision application.

2 Radial Basis Functions

The Radial Basis Function (RBF) interpolation [18] and approximation [8] is a
meshless technique which was introduced by Hardy [13]. It is commonly used in
many scientific disciplines such as solution of partial differential equations [14],
[32], image reconstruction [29], neural networks [31], vector field [27], [24], [26],
GIS systems [16], optics [19] etc.

The formula for computing the function value of RBF is the weighted sum
of radial basis functions and has the following form

f(x) =
N∑
i=1

λiϕ (‖x− ξi‖) , (1)

where x is the position for which (1) provides the interpolating value, ϕ(. . .)
is the radial basis function, λi is the weight of radial basis function, N is the
number of radial basis functions and ξi is the center of radial basis function.

The radial basis functions used in (1) can be selected from two main groups.
The first ones are ”global” radial basis functions. These functions influence the
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whole interval of the data interpolation/approximation domain. The most known
examples of ”global” radial basis functions are shown below.

Thin Plate Spline ϕ(r) = r2 log r =
1

2
r2 log r2

Gauss function ϕ(r) = e−(εr)
2

Inverse Quadric ϕ(r) =
1

1 + (εr)2

Inverse Multiquadric ϕ(r) =
1√

1 + (εr)2

Multiquadric ϕ(r) =
√

1 + (εr)2

(2)

where ε is the shape parameter of the radial basis function.
Local RBFs (CSRBF) were introduced by [30]. These radial basis functions

have only local influence, i.e. the function value is non-zero only on some limited
interval. This is a great advantage when solving the linear system of equations,
as the interpolation or approximation matrix is sparse. The CSRBF has the
following form

ϕ(r) = (1− r)q+P (r), (3)

where P (r) is some polynomial, q is some non-zero positive number and

(1− r)+ =

{
(1− r) (1− r) ≥ 0

0 (1− r) < 0
(4)

The well known examples of CSRBF are given by.

ϕ1(r) = (1− r̂)+
ϕ2(r) = (1− r̂)3+(3r̂ + 1)

ϕ3(r) = (1− r̂)5+(8r̂2 + 5r̂ + 1)

ϕ4(r) = (1− r̂)2+
ϕ5(r) = (1− r̂)4+(4r̂ + 1)

ϕ6(r) = (1− r̂)6+(35r̂2 + 18r̂ + 3)

ϕ7(r) = (1− r̂)8+(32r̂3 + 25r̂2 + 8r̂ + 1)

ϕ8(r) = (1− r̂)3+
ϕ9(r) = (1− r̂)3+(5r̂ + 1)

ϕ10(r) = (1− r̂)7+(16r̂2 + 7r̂ + 1)

(5)

where r̂ = εr and ε is the shape parameter of the radial basis function, see Fig. 1
for a visualization of (5).

2.1 RBF Interpolation

The RBF interpolation was introduced by [13]. It uses the formula (1) and the
radial basis functions are placed into the location of input data. The interpolation
formula has the following form
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Fig. 1. Examples of CSRBF from (5).

hi = f(xi) =

N∑
j=1

λjϕ (‖xi − xj‖)

for ∀i ∈ {1, . . . , N}, (6)

where N is the number of input points and hi is the function value at point xi.
The equation (6) can be rewritten in a matrix form as

Aλ = h. (7)

As ϕ (‖xi − xj‖) = ϕ (‖xj − xi‖), the matrix A is symmetric.

2.2 RBF Approximation

The RBF approximation [8], [17], [21] is based on the RBF interpolation. The
number of radial basis functions is smaller than the number of input points. It
leads to an over-determined system of linear equations

hi = f(xi) =
M∑
j=1

λjϕ (‖xi − ξj‖)

for ∀i ∈ {1, . . . , N}, (8)

where ξj is the center of radial basis function, M is the number of radial basis
functions and M < N (mostly M � N). It is not possible to fulfill all equations
at once in (8), so we need to use the least squares errors method (LSE) using
the following formula

ATAλ = ATh, (9)
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(a) (b) (c)

Fig. 2. The visualization of data values (a), the RBF collocation functions (b) and the
resulting interpolant (c).

where ATA is a symmetric matrix.

3 Proposed Approach using CSRBF

The compactly supported radial basis functions (CSRBFs) have limited influence
of each radial basis function given by the radius, which is defined as

rmax =
1

ε
, (10)

where ε is the shape parameter of the local radial function.
Due to using CSRBFs, the interpolation or approximation matrix A (in

(7) or (9)) is sparse (we assume that the maximum distance of input points is
larger than rmax). Solving the system of linear equations (7) or (9), the vector
of weights λ is obtained.

Using the lambda (λ) coefficients, we can compute the function value of RBF
at a location x using the formula

f(x) =

M∑
j=1

λjϕ (‖x− ξj‖) , (11)

where M is the number of radial basis functions and ξj is the location of radial
basis function, i.e. its center.

The number of radial basis functions can be very high for real-world approxi-
mation and interpolation problems. However, the evaluated radial basis functions
ϕ (‖x− ξj‖) are mostly equal to zero as the influence of each radial basis func-
tion is limited to the maximal radius rmax = 1/ε. However, evaluation of such
zero radial basis functions is wasting computational time and the evaluation of
such zero radial basis functions should be omitted.
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3.1 Space Subdivision

Considering the processing of very large data sets, it is necessary to deal with
the efficiency of the evaluation of the final interpolant, especially if the CSRBFs
are used.

The proposed approach presents an algorithm for speeding-up the evaluation
of the function value of RBF when using the local radial basis functions, i.e.
CSRBF (5), see [22] for interpolation of large datasets with CSRBF.

The proposed approach is advisable to combine with the method for fast
interpolation using the space subdivision [25], [26]. This method also divides all
the input points into a grid, computes the RBF interpolation or approximation
of each cell in the grid, and finally blends all the interpolations or approximations
together using simple but efficient formula. This approach is suitable for large
datasets that cannot be interpolated or approximated using the standard RBF
method.

To speed-up the RBF function evaluation, we need to know some relation
between the position of a point (where the RBF is to be evaluated) and the
location of all radial basis functions. Only the radial basis functions that are
closer than rmax = 1/ε should be evaluated and used for the RBF evaluation.

Finding all of those functions every time without any special data structure
could increase the computational time on the contrary. A much better solution
is to use space subdivision to divide all centers of radial basis functions into a
rectangular grid.

r m
ax

r
max g

x11

1

g
y

….

…
.

Fig. 3. Visualization of grid used for space subdivision.

Let us split the data domain into a rectangular grid, see Fig. 3. The size of
each cell in the grid should be rmax × rmax, i.e. the size depends on the shape
parameter which can be selected as described in [11], [13], [9]. The reason for
this size will be clarified later in the following chapter.

The total number of cells is

G = gxgy (12)
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in the 2D case or likewise

G = gxgygz (13)

in the 3D case of RBF interpolation or approximation. The size gx is computed
as

gx =

⌈
xmax − xmin

rmax

⌉
(14)

and equations for gy or gz are straightforward.
Dividing all radial basis functions according to their centers into the grid is

of O(N) time complexity and has no influence on the final computational time
of the RBF interpolation or approximation.

The next step is a standard computation of the RBF interpolation or ap-
proximation, i.e. solving a system of linear equations. As a result, we obtain
the weighting coefficients of radial basis functions, i.e. the lambda coefficients
(λ). Each lambda coefficient is associated with exactly one radial basis function.
These coefficients are also divided into the grid and associated with correspond-
ing radial basis functions.

The additional time complexity required by the proposed algorithm to the
standard RBF computation can be considered as the preprocessing and is

O(N +N) ≈ O(N), (15)

where the first O(N) is for the division of points into the grid. The second
O(N) is for the division of the calculated lambda values (λi) into the grid, i.e.
associating them with the corresponding radial basis functions.

3.2 RBF Function Value Computation

When the RBF is traditionally evaluated, all the radial basis functions are evalu-
ated for the input point x and multiplied with the weighting lambda coefficients.
However, many radial basis functions for the input point x are equal zero be-
cause the input point x is more distant than rmax (rmax = 1/ε) from the centers
of radial basis functions.

The point x that belongs to one cell of the grid can only affect the value of
some radial basis functions, i.e. others will be zero. The visualization of the influ-
ence is in Fig. 4. It can be seen, that the point that belongs to one cell can only af-
fect the evaluation of radial basis functions in that cell and all one-neighborhood
cells around.

The RBF function value is computed at a point x. The first step of the pro-
posed algorithm is the location of the cell in the grid, where this point belongs
to. For the RBF function value evaluation, we will use only radial basis func-
tions (with associated computed weights) of the cell where x lies and all the
one-neighborhood cells around. All other radial basis functions can be skipped
as their value is always zero and their evaluation and multiplication with their
weights only increase the computational time while not giving any additional
increment for the sum of weighted radial basis functions.

ICCSA 2020 proceedings, part I, pp.165-176, LNCS 12249, 12250, DOI: 10.1007/978-3-030-58799-4_12, Springer, 2020
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r max

Fig. 4. The area of influence (red color) for evaluation of radial basis functions when
the point for function evaluation lies in the marked cell.

The computation of RBF function value using the proposed approach de-
creases the computational time compared to the standard RBF function evalu-
ation.

3.3 Theoretical Speed-up of RBF Function Value Computation

In this chapter, the expected speed-up of our algorithm for RBF function value
computation is analyzed. Let us assume a uniform distribution of points. Then
the time complexity of the standard evaluation of a function using RBF is

O(M), (16)

where M is the number of radial basis functions.
The time complexity of the proposed algorithm for evaluation of Radial basis

function is

O

(
3d
M

G

)
, (17)

where d is the dimension, i.e. d = 2 for 2D and d = 3 for 3D, the G represents
the total number of cells in grid.

The expected speed-up of our proposed algorithm to the standard one is
computed as

υ ≈ O(M)

O
(
3dMG

) , (18)

which is equal

υ ≈ G

3d
. (19)

For G higher than 3d the speed-up is higher than one, i.e. our proposed algorithm
is faster.
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Fig. 5. The theoretical speed-up of evaluation of RBF in 2D and 3D.

The value of G, i.e. the number of cells in the grid, depends on rmax and thus
on the shape parameter ε of radial basis function. Usually rmax is much smaller
than the range of the input data in each axis, i.e. the grid size will be bigger
than 3× 3 (in 2D) or 3× 3× 3 (in 3D). Thus the speed-up will be higher than
one, see Fig. 5.

4 Experimental Results

The theoretical speed-up needs to be confirmed experimentally for both 2D and
3D RBF cases. In our experiments, we created data sets with a different number
of randomly distributed input points with a uniform distribution and associated
function values. We also tested the proposed approach with real large datasets
of LiDAR data1 (see Fig. 6 for visualization of RBF interpolation). Then the
RBF interpolation with the following CSRBF radial basis function was used.

ϕ5(r) = (1− εr)4+(4εr + 1), (20)

where this radial basis function is C2 smooth at the origin, i.e. it is continuous
and has the first and the second continuous derivative. The experimental results
do not depend on the dataset values, it only depends on the number of cells. The
number of cells is determined according to the shape parameter. Due to this,
we do not discuss the type of interpolated data as the results are valid for any
dataset with the same number of input points and the same number of cells.

In the experiments the radial basis functions were divided into grids of dif-
ferent sizes (see Tab. 1 for 2D and Tab. 2 for 3D).

We evaluated each RBF in 109 random points with uniform distribution
to obtain a sufficiently large number of measurements. For the evaluation, we

1 https://liblas.org/
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used both our proposed approach with space subdivision and also the standard
approach without space subdivision. The speed-up of our proposed algorithm
compared to the standard one is summarized in Tab. 1 for 2D and Tab. 2 for
3D.

Table 1. The measured speed-up of 2D RBF evaluation using the proposed approach.

number of
radial basis functions

number
of cells

speed-up

1 000 16 1.80
5 000 64 6.81

synthetic 10 000 100 10.88
data sets 10 000 225 24.53

100 000 1 089 119.19
1 000 000 10 000 1 097.78

real 131 044 1 296 141.98
data sets 756 150 7 350 806.46

(a) (b)

Fig. 6. RBF interpolation of real datasets. The part of Alps mountain consist of 131 044
points (a) and the mountain of Saint Helens consists of 756 150 points (b).

It can be seen, that even for a small number of radial basis functions and a rel-
atively small number of cells the proposed algorithm is significantly faster. With
an increasing number of cells, the speed-up increases as well. For large datasets,
the speed-up can be even larger than 100, and thus our proposed algorithm can
save a lot of computational time during the evaluation of RBF function. The
proposed approach was tested with real datasets as well and proved its ability
for high speed-up of RBF function evaluation, see Tab. 1.
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Table 2. The measured speed-up of 3D RBF evaluation using the proposed approach.

number of
radial basis functions

number
of cells

speed-up

1 000 27 1.01
5 000 80 2.85

synthetic 10 000 125 4.54
data sets 10 000 216 7.86

100 000 1 000 36.56
1 000 000 10 648 390.03

5 Conclusion

In this contribution, we have presented a new approach for speeding up the
evaluation of Radial basis functions (RBF). The proposed approach uses the
space-subdivision to select only appropriate locations of radial basis functions
that are used to evaluate the RBF. This proposed approach is easy to implement
and can be used for any dimension.

The proposed approach has significant speed-up compared to the standard
one evaluation of RBF. This speed-up was confirmed by experiments that were
made for 2D as well as for 3D RBF using Matlab / Octave.
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