
Diameter and Convex Hull of Points Using
Space Subdivision in E2 and E3

Vaclav Skala1[0000−0001−8886−4281]

Department of Computer Science and Engineering
Faculty of Applied Sciences, University of West Bohemia

Pilsen, CZ 301 00, Czech Republic
skala@kiv.zcu.cz http://www.VaclavSkala.eu

Abstract. Convex hull of points and its diameter computation is a fre-
quent task in many engineering problems, However, in engineering solu-
tions, the asymptotic computational complexity is less important than
the computational complexity for the expected data size to be processed.
This contribution describes ”an engineering solution” of the convex hulls
and their diameter computation using space-subdivision and
data-reduction approaches. This approach proved a significant speed-up
of computation with simplicity of implementation. Surprisingly, the ex-
periments proved, that in the case of the space subdivision the reduction
of points is so efficient, that the ”brute force” algorithms for the convex
hull and its diameter computation of the remaining points have nearly
no influence to the time of computation.

1 Introduction

The Convex Hull (CH) and the Convex Hull Diameter (CH-D) algorithms are
applicable in many areas. Those algorithms are deeply analyzed in the compu-
tational geometry for asymptotic behavior, i.e. N 7→ ∞. However, it is not quite
what today’s applications need. In engineering problems, there are two main
aspects, which have to be respected:

– the number of input elements
– the dimension of the data

Geometrically oriented algorithms usually process two or three dimensional
data and the number of elements is usually not higher than 108 in the E2 case
(104 × 104), resp. 1012 in the E3 case (104 × 104 × 104) in the real applications.
It means, that the engineering solutions have to respect several factors:

– the limited size of data sets to be processed, i.e. asymptotically better algo-
rithm is not necessarily the best one for the intended application scope,

– numerical stability and robustness, i.e. the implementation has to respect a
limited precision of computation resulting from the IEEE 754-2019 floating-
point representation standard, including the fact that the Quadruple and
Octuple precisions are not supported on today’s processors,

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

2 V. Skala

– memory management and data transfer via data-bus from memory to
CPU/GPU and vice-versa; also the influence of caching cannot be ignored,

– simplicity and efficiency of algorithms, i.e. too complicated algorithm will not
be probably used, especially if its behavior is not ”stable” and predicable,

This contribution describes the principle of two basic efficient algorithms, re-
cently designed, implemented and verified, which are based on efficient reduc-
tion of points using the space subdivision and significant reduction of points
remaining for the final processing, i.e.:

– Convex Hull Diameter (CH-D) of points in E2 - the algorithms are usually
based on the Convex Hull (CH) algorithms, which are more or less based on
sophisticated algorithms. However, they are not easy to implement especially
in the limited precision of computation for a higher number of points.

– Convex Hull (CH) of points in E2 - algorithm using a deterministic heuristic
approach with space subdivision.

In the following, simple algorithms for finding CH-D and CH of the given
points in the E2 case are described, which are easy to implement and very ef-
ficient. It should be noted, that those algorithms can be easily extended to the
E3 case.

2 Finding a Diameter of a Convex Hull

Finding the maximum distance of points in the En case is usually done by a
simple algorithm that has O(N2), where N is the number of the given points.

Algorithm 1: Maximum distance of two points in E2 or E3

Result: Maximum Distance
N - Number of points xi, i = 1, ..., N ;
d := 0;
i := 0;
while i <= N − 1 do

j:= i+1;
while j <= N do

d0 := ‖xi − xj‖ ; # Euclidean distance
if d0 < d then

d := d0 ;
end

end

end
Maximum Distance := d;

However, such an algorithm is quite inefficient due to its O(N2) computa-
tional complexity and also of the ‖.‖ computation, where

√
(.) is used. Alg.2

presents simple modification using ‖.‖2 for the distance comparison.

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

Diameter and Convex Hull in E2 and E3 3

Algorithm 2: Modified Maximum distance of two points in E2 or E3

Result: Maximum Distance
N - Number of points xi, i = 1, ..., N ;
d := 0;
i := 0;
while i <= N − 1 do

j:= i+1;
while j <= N do

d0 := ‖xi − xj‖2 ; # Euclidean distance
if d0 < d then

d := d0 ;
end

end

end
Maximum Distance := sqrt(d);

Such a very simple modification of the algorithm Alg.1 has a significant in-
fluence on computational efficiency. However, for larger values of N , the time
of computing is still very high. Finding the maximum distance of two points,
generally in the En case, is equivalent to the convex hull diameter problem,
which has deeply analyzed in computational geometry for a long time. There are

Fig. 1. Splitting data into areas by subdivision

several Convex Hull Diameter (CH-D) algorithms based on Convex Hull (CH)
algorithms developed recently, e.g. Toussaint[26]. Some algorithms were deter-
ministic, some of those based on a stochastic approach, e.g. Xue[27]. Efficient
CH algorithms get more and more complex as far as implementation aspects

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

4 V. Skala

are concerned. Recently, a simple algorithm based on the space subdivision was
developed Skala[19], Fig.1. It is primarily based on finding extreme points of

Fig. 2. Timing of the Convex Hull Diameter algorithms with space subdivision

the Axis Aligned Bounding Box (AABB) and the closest points to the AABB
corners, which forms the first estimation of the convex hull, Fig.1, where d is its
diameter. Then the points are split to five areas Ωi, i = 0, ..., 4. The points from
the central area Ω0 cannot have any influence to the final convex hull [19],[23]
and can be removed automatically.

Fig. 3. Splitting data into areas by subdivision

The CH-D algorithm is based on the idea of points reduction first, followed
by actual CH algorithm use for finding the diameter of the reduced data-set,
i.e. computation of the CH-D value. The influence of the simple reduction step,

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

Diameter and Convex Hull in E2 and E3 5

which is of O(N) complexity, was overwhelming the expectations see Fig.4 and
Fig.5.

ξ =
Ω

Ω1 +Ω2 +Ω3 +Ω4
(1)

where Ω is the area of the AABB box.

The expected reduction ratio Eq.1 is given by the area bounded by d1 and
d2, where d1 is the worst case of the estimated diameter form the AABB box
and when the data are in the squared domain, Fig.2. If the data are in the
rectangular area, see Fig.3, then the Ωi areas are getting significantly smaller.

Fig. 4. Timing of the Convex Hull Diameter algorithms with space subdivision

Fig. 5. Speed-up of the Convex Hull Diameter algorithm with space subdivision
BF/QH - BruteForce/ QuickHull, BF/New - BruteForce/proposed

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

6 V. Skala

As the final data sets after this reduction step were extremely small, simple
CH algorithms were used, practically without any influence to time complexity.
The Halton’s[11] point generation was used in the experimental evaluation and
detailed description and experimental results were described in Skala[19][20][22].
The timing and speed-up are presented in Fig.4 and Fig.5.

It can be seen that the space subdivision significantly speed-up the
CH-D algorithm. Surprisingly, the presented CH-D algorithm handle close circle
generated points efficiently as well. If the AABB is a square, the presented CH-D
algorithm gets even more efficient Skala[19][22]. The extension to the E3 case is
simple, straight forward and easy to implement Skala[21].

3 Convex Hull with space subdivision

Several deterministic Convex Hull (CH) algorithms have been described. Tab.1
presents some well-known algorithms and their asymptotic computational com-
plexity. The estimation of the lower bound complexity was given by Yao[28].
Some of those were incremental, e.g. Kallay[13], Also a stochastic approach has
been described by recently, e.g. Xue[27].

Algorithm Complexity Reference

Gift Wrapping nh Chand and Kapur, 1970[5]
Graham Scan n log(n) Graham, 1972 [9]
Jarvis March nh Jarvis, 1973[12]

QuickHull nh Barber, 1996[2], Eddy, 1977[8]
Bykat, 1978[3], Devai, 1979[7]

Divide & Conquer n log(n) Preparata and Hong, 1977[18]
Monotone Chain n log(n) Andrew, 1979[1]

Incremental n log(n) Kallay, 1984[13]
Marriage before Conquest n log(h) Kirkpatrick & Seidel, 1986[14]

Chan’s algorithm n log(h) Liu and Chen, 2007[15]

Table 1. Table of Convex Hull algorithms and their complexities

Recently, an interesting QuickhullDisk algorithm, which is based on disks
was published by Nguen[17]. Parallel algorithms output-sensitive were described
by Chan[4], Gupta[10]. Manual comparison of some algorithms via multimedia
exposition can be found at Loffler[16]. In engineering applications, usually a two-
dimensional or three-dimensional CH algorithms are required and the number
of points to be processed is up to 108. Therefore, a simple Smart Convex Hull
(S-CH) algorithm with space subdivision was developed for the E2 case [19]
citeSkala-ICIG. The modification to the E3 case was described in Skala[21].
Parallel algorithms were described as well, e.g. by Sugihara[25], Gupta[10], a
modification for GPU use by Stein[24].

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

Diameter and Convex Hull in E2 and E3 7

Fig. 6. The S-CH algorithm space subdivision in E2 and E3 taken from [23][21]
.

Fig. 7. Timing of the S-CH algorithm for a different distribution of points [20]
.

The S-CH algorithm in the E2 case is based on the polar space subdivision,
Fig.6, which replaces the orthogonal space subdivision in the CH-D algorithm
described above. Detailed algorithm description and experimental results can be
found in Skala[20]. The AABB border is split uniformly, so the angles in polar
space splitting are different. Fig.7 presents the behavior of the S-CH algorithm
for different data distribution including uniform on a circle.

Fig.8 presents the speed-up of the S-CH algorithm using the Graham Scan
algorithm after the reduction of points, i.e. in the final step, with the selected
convex hull algorithms Fig.9

The S-CH algorithm stores maximum distance from the origin in the angular
segment and related two segments Ri+1Ri and RiRi−1 are updated so they
form the approximate convex hull. Each angular segment may contain several
points that form the final convex hull. The number of angular segments partially
influences the time of computation, see Skala[23].

.

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

8 V. Skala

Fig. 8. Speed-up of the S-CH algorithm with the uniform distribution of points [20]
.

Fig. 9. Speed-up of the S-CH algorithm with the uniform distribution of points [20]
.

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

Diameter and Convex Hull in E2 and E3 9

4 Conclusions

This paper presents an ”engineering approach” to the Convex Hull and Convex
Hull Diameter computations based on the space subdivision techniques designed
for processing up to 108 points in the E2 case. The algorithms are easily extensi-
ble to the E3 case. Detailed results of experiments are given in detail in related
papers, namely [20][21].

The presented approach is also used in teaching to show the influence of
space subdivision to computational complexity. The presented algorithms are
expected to be modified for GPU use in the future.

Acknowledgments

The author would like to thank colleagues and students at the University of
West Bohemia, Pilsen, for their discussions and suggestions, especially to Zuzana
Majdisova and Michal Smolik for recent implementations and experiments made,
and to anonymous reviewers for their valuable comments and hints provided.

References

1. A. Andrew. Another efficient algorithm for convex hulls in two dimensions. Inf.
Processing Letters, 9(5):216–219, 1979.

2. B. Bradford, D. Dobkin, and H. Dobkin, D.P.and Huhdanpaa. The quickhull
algorithm for convex hulls. ACM Trans. Mathematical Software, 22(4):469–483,
Dec. 1996.

3. A. Bykat. Convex hull of a finite set of points in two dimensions. Information
Processing Letters, 7(6):296 – 298, 1978.

4. T. Chan. Optimal output-sensitive convex hull algorithms in two and three dimen-
sions. Discrete and Computational Geometry, 16(4):361–368, 1996.

5. D. Chand and S. Kapur. An algorithm for convex polytopes. Journal of the ACM,
17(1):78–86, 1970.

6. D. Dobkin and L. Snyder. On a general method for maximizing and minimizing
among certain geometric problems. FOCS-IEEE Symp. on Foundations of Com-
puter Science Proc., pages 9–17, 1979.

7. F. Dévai and T. Szendrényi. Comments on convex hull of a finite set of points in
two dimensions. Information Processing Letters, 9(3):141–142, 1979.

8. W. Eddy. Algorithm 523: Convex, a new convex hull algorithm for planar sets.
ACM Trans. on Mathematical Software (TOMS), 3(4):398–403, 1997.

9. R. Graham. An efficient algorithm for determining the convex hull of a finite planar
set. Information Processing Letters, 1(4):132–133, 1972.

10. N. Gupta and S. Sen. Faster output-sensitive parallel algorithms for 3d convex hulls
and vector maxima. Journal of Parallel and Distributed Computing, 63(4):488–500,
2003.

11. J. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. CACM,
7(12):701–702, 1964.

12. R. Jarvis. On the identification of the convex hull of a finite set of points in the
plane. Information Processing Letters, 2(1):18–21, 1973.

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

10 V. Skala

13. M. Kallay. The complexity of incremental convex hull algorithms in Rd. Informa-
tion Processing Letters, 19(4):197, 1984.

14. D. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM
journal on computing, 15(1):287–299, 1986.

15. G. Liu and C. Chen. A new algorithm for computing the convex hull of a planar
point set. J.of Zhejiang University SCIENCE A, 8(8):1210–1217, 2007.

16. M. Löffler. A manual comparison of convex hull algorithms (multimedia exposi-
tion). In 35th Int. Symposium on Computational Geometry (SoCG 2019), volume
129 of Leibniz Int.Proc. in Informatics (LIPIcs), pages 65:1–65:2, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

17. K. Nguyen, C. Song, J. Ryu, P. A. Thanh, N.-D. Hoang, and D.-S. Kim. Quick-
hulldisk: A faster convex hull algorithm for disks. Applied Mathematics and Com-
putation, 363:124626, 2019.

18. F. Preparata and S. Hong. Convex hulls of finite sets of points in two and three
dimensions. CACM, 20(2):87–93, 1997.

19. V. Skala. Fast Oexpected(N) algorithm for finding exact maximum distance in E2

instead of O(N2) or O(NlgN). In ICNAAM 2013, volume 1558 of AIP Proceedings,
pages 2496–2499, USA, 2013. AIP Publishing.

20. V. Skala and Z. Majdisova. Fast algorithm for finding maximum distance with
space subdivision in E2. In Y.-J. Zhang, editor, ICIG 2015 proceedings, volume 2
of LNCS, pages 261–274, Tianjin, China, 2015. Springer.

21. V. Skala, Z. Majdisova, and M. Smolik. Space subdivision to speed-up convex hull
construction in E3. Advances in Software Engineering, 91(C):12–22, 2016.

22. V. Skala and M. Smolik. Simple and fast Oexp(N) algorithm for finding an exact
maximum distance in E2 instead of O(N2) or O(NlgN). In Computational Science
and Its Application, volume 11619 of LNCS, pages 367–382. Springer, 2019.

23. V. Skala, M. Smolik, and Z. Majdisova. Reducing the number of points on the
convex hull calculation using the polar space subdivision in E2. In 29th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI 2016), pages 40–47.
IEEE, Oct 2016.

24. A. Stein, E. Geva, and J. El-Sana. Cudahull: Fast parallel 3d convex hull on the
GPU. Computers and Graphics, 36(4):265–271, 2012.

25. K. Sugihara. Robust gift wrapping for the three-dimensional convex hull. Journal
of Computer and System Sciences, 49(2):391–407, 1994.

26. J. Toussaint, G.T.and McAlear. A simple o(n log n) algorithm for finding the
maximum distance between two finite planar sets. Pattern Recognition Letters,
1(1):21 – 24, 1982.

27. J. Xue, Y. Li, and R. Janardan. On the expected diameter, width, and complexity
of a stochastic convex hull. Computational Geometry, 82:16 – 31, 2019.

28. A. Yao and C. Andrew. A lower bound to finding convex hulls. J. ACM, 28(4):780–
787, Oct. 1981.

ICCSA 2020 proceedings, part I, pp.286-295, LNCS 12249, DOI: 10.1007/978-3-030-58799-4_21, Springer, 2020

