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Abstract. Linear systems of equations and their reliable solution is a key part of
nearly all computational systems and in a solution of many engineering problems.
Mostly, the estimation of the matrix conditionality is used for an assessment of
the solvability of linear systems, which are important for interpolation, approxi-
mation, and solution of partial differential equations especially for large data sets
with large range of values.
In this contribution, a new approach to the matrix conditionality and the solvabil-
ity of the linear systems of equations is presented. It is based on the application
of the geometric algebra with the projective space representation using homoge-
neous coordinates representation. However, the physical floating-point represen-
tation, mostly the IEEE 754-219, has to be strictly respected as many algorithms
fail due to this.

Keywords: Linear systems of equations · Matrix conditionality · Geometric al-
gebra · Projective space · Duality · Radial basis function · RBF · Partial differen-
tial equations · PDE.

1 Introduction

Solutions of linear systems of equations are probably one of the most used operations
in many applications. Generally, there are two main groups of those:

– non-homogeneous systems of linear equations, i.e. Ax = b
– homogeneous system of equations, i.e. Ax = 0

Those two groups of linear systems are solved differently, in spite of the fact, that
they are dual problems in some sense. Therefore, there should be common methods
for solving both groups of such linear systems of equations. The first case is deeply
analyzed in the courses of numerical mathematics, while the second one is considered
as marginal without advanced solution methods. (In the following, standard properties
of the matrices are expected).

Using the principle of duality and projective extension of the Euclidean space the
first type of the linear system, i.e. Ax = b, can be easily transformed to the second type,
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i.e. Ax = 0. The geometric algebra offers more general formalism, which can be used
for a better understanding of the linear system of equations properties and behavior.

However, in practical applications, any implementation has to take into considera-
tion the IEEE 754-219 or similar standards of the floating-point physical representation.

1.1 Geometrical interpretation

Both types of the linear systems of equations, i.e. Ax = b and Ax = 0, have a simple
geometrical interpretation, which can be easily demonstrated on two simple problems
in the E2 case, see Fig.1:

– an intersection computation of two lines, i.e. Ax = b; the matrix A is n×n
– a line determination given by two points, i.e. Ax = 0; the matrix A is n× (n+1)

Similarly, in the E3 case, where three planes intersect in a point or three points define a
plane, if no singular cases are considered.

Fig. 1: Examples of "meet" and "union" operations in the E2 case

Also, the singular or close to the singular case has to be properly solved in both
cases. In the first case, if the lines are collinear, in the second one, if two points are the
same.

Unfortunately, programmers do not solve such cases correctly in many cases. Usu-
ally, a condition like det(A) <= eps is used for a "singularity" detection and eps is
taken as a "reasonable" small number.

Let us consider the intersection computation of two lines in the E2 for simplicity.
The Cramer’s rule can be used and the solution of Ax = b is given as x = Detx/Det and
y = Dety/Det. If Detx ∼ det(A) then the x value might be close to 1 regardless of the
eps value.

As those two problems in Fig.1 are dual, i.e. the meet operator in the first case and
union operator in the second one, the principle of duality must be kept [7]. Similarly, in
the E3 case in Fig.2.
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Fig. 2: Examples of "meet" and "union" operations in the E3 case

1.2 Geometric algebra

The vector algebra (Gibbs algebra), which is used in engineering practice, uses two
basic operations on two vectors a,b in En:

– the inner product (scalar product or dot product) c = a ·b, where c is a scalar value
– the outer product c = a∧b (the cross-product in E3 c = a×b), where c is a bivector

and has different properties as it represents an oriented area in the n-dimensional
space, in general.

The Geometric Algebra (GA) uses a “new” product called geometric product defined
as:

ab = a ·b+a∧b (1)

where ab is the new entity. It should be noted, that it is a "bundle" of objects with
different dimensionalities and properties, in general.

In the case of the n-dimensional space, the vectors are defined as a = (a1e1 + ...+
anen), b = (b1e1+ ...+bnen) and the ei vectors form orthonormal vector basis in En. In
the E3 case, the following objects can be used if geometric algebra: [26]:

1 0-vector (scalar) e12, e23, e31 2-vectors (bivectors)
e1,e2,e3, 1-vector (vectors) e123 3-vector (pseudoscalar)

The significant advantage of the geometric algebra is, that it is more general that than
the Gibbs algebra and can handle all objects with dimensionality up to n.

The geometry algebra uses the following operations, including the inverse of a vec-
tor.

a ·b =
1
2
(ab+ba) a∧b =−b∧a a−1 = a/||a||2 (2)

It should be noted, that geometric algebra is anti-commutative and the “pseudoscalar” I
in the E3case has the basis e1e2e3 (briefly as e123), i.e.

eie j =−e jei eiei = 1 e1e2e3 = I a∧b∧ c = q (3)

where q is a scalar value (actually a pseudoscalar).
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The geometric product of two vectors is represented as:

ab =
n,n

∑
i, j=1

aieib je j a ·b =
n,n

∑
i=1

aieibiei (4)

a∧b =
n,n

∑
i, j=1&i6= j

aieib je j =
n

∑
i, j=1,&i> j

(aib j−a jbi)eie j (5)

It is not a “friendly user” notation for a practical application and causes problems in
practical implementations, especially due to anti-commutativity of the geometric prod-
uct.

However, the geometric product can be easily represented by the tensor product,
which can be easily represented by a matrix. The tensor product for the 4-dimensional
case, as the homogeneous coordinates will be used in the following, is represented as:

ab⇐⇒
repr

abT = a⊗b = Q =


a1b1 a1b2 a1b3 a1b4
a2b1 a2b2 a2b3 a2b4
a3b1 a3b2 a3b3 a3b4
a4b1 a4b2 a4b3 a4b4

= B+U+D (6)

where B+U+D are Bottom triangular, Upper triangular, Diagonal matrices, a4,b4 will
be used for the homogeneous coordinates, i.e. actually wa,wb (the projective notation
will be explained later), and the operator⊗means the anti-commutative tensor product.

1.3 Projective extension of the Euclidean space

Let us consider the projective extension of the Euclidean space in the E3 case and use
of the homogeneous coordinates. The "hidden" advantage of this is that it enables us to
represents points or values close to infinity.

Let us consider a vector a = [a1,a2,a3 : a4]
T ,a4 6= 0, which represents actually the

vector (a1/a4,a2/a4,a3/a4) in the E3 space. The ” : ” symbol within the projective
representation is used to distinguish different properties. In the case of a plane, the
vector (a1,a2,a3) represents the "normal vector" of a plane ( actually it is a bivector),
while a4 actually represents a pseudo-distance of a plane from the origin.

Let us consider a second vector b = [b1,b2,b3 : b4]
T ,b4 6= 0. It can be seen, that

the diagonal of the matrix Q actually represents the inner product in the projective
representation as:

[(a1b1 +a2b2 +a3b3) : a4b4]
T ≡ a1b1 +a2b2 +a3b3

a4b4
(7)

where ” ≡ ” means projectively equivalent. In the E3 case, the inner product actually
projectively represents the trace tr(Q) of the matrix Q. The outer product (the cross-
product in the E3 case) is then represented respecting the anti-commutativity as:

a∧b⇐⇒
repr

3,3

∑
i, j=1&i> j

(aib jeie j−bia jeie j) =
3,3

∑
i, j&i> j

(aib j−bia j)eie j (8)

It should be noted, that the outer product can be used for a solution of a linear system
of equations Ax = b or Ax = 0, too.
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1.4 Principle of duality

The principle of duality is an important principle, in general. The duality principle for
basic geometric entities and operators is presented by Tab.1 and Tab.2 [18].

Table 1: Duality of geometric entities
Duality of geometric entities

Point in E2 ⇐==⇒
DUAL

Line in E3 Point in E2 ⇐==⇒
DUAL

Plane in E3

Table 2: Duality of operators
Duality of operators

Union ∪ ⇐==⇒
DUAL

Intersection ∩

It means, that in the E2 case a point is dual to a line and vice versa, the intersection
of two lines is dual to a union of two points, i.e. line given by two points; similarly for
the E3 case, where a point is dual to a plane [7][14][15]. The direct consequence of the
principle of duality is that, the intersection point x of two lines p1,p2, resp. a line p
passing two given points x1,x2, is given as:

x = p1∧p2⇐==⇒
DUAL

p = x1∧x2 (9)

where pi = [ai,bi : ci]
T , x = [x,y : w]T (w is the homogeneous coordinate), i = 1,2;

similarly in the dual case.
In the case of the E3 space, a point is dual to a plane and vice versa. It means that

the intersection point x of three planes ρ1,ρ2,ρ3, resp. a plane ρ passing three given
points x1,x2,x3 is given as:

x = ρ1∧ρ2∧ρ3⇐==⇒
DUAL

ρ = x1∧x2∧x3 (10)

where x = [x,y,z : w]T , ρi = [ai,bi,ci : di]
T , i = 1,2,3.

It can be seen that the above formulae is equivalent to the “extended” cross-product,
which is natively supported by the GPU architecture. For an intersection computation,
we get:

x = p1∧p2 =

e1 e2 ew
a1 b1 c1
a2 b2 c2

 x = ρ1∧ρ2∧ρ3 =


e1 e2 e3 ew
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 (11)
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Due to the principle of duality, the dual problem solution is given as:

p = x1∧x2 =

e1 e2 ew
x1 y1 w1
x2 y2 w2

 ρ = x1∧x2∧x3 =


e1 e2 e3 ew
x1 y1 z1 w1
x2 y2 z2 w2
x3 y3 z3 w3

 (12)

The above presented formulae proved the strength of the formal notation of the ge-
ometric algebra approach. Therefore, there is a natural question, what is the more con-
venient computation of the geometric product, as computation with the outer product,
i.e. extended cross product, using standard vector algebra approach is not simple.

Fortunately, the geometric product of ρ1,ρ2, resp. of x1 and x2 vectors using homo-
geneous coordinates given as the anti-commutative tensor product is given as:

ρ1ρ2 a2 b2 c2 d2
a1 a1a2 a1b2 a1c2 a1d2
b1 b1a2 b1b2 b1c2 b1d2
c1 c1a2 c1b2 c1c2 a1d2
d1 d1a2 d1b2 d1c2 d1d2

x1x2 x2 y2 z2 w2
x1 x1x2 x1y2 x1z2 x1w2
y1 y1x2 y1y2 y1z2 y1w2
z1 z1x2 z1y2 z1z2 x1w2
w1 w1x2 w1y2 w1z2 w1w2

The question is how to compute a line p ∈ E3 given as an intersection of two planes ρ1,
ρ2, which is the dual problem to a line given by two points x1, x2 as those problems
are dual. It leads to the Plücker coordinates used especially in robotics [17] [21]. Using
the geometric algebra, the principle of duality and projective representation, we can
directly write:

p = ρ1∧ρ2 ⇐==⇒
DUAL

p = x1∧x2 (13)

It can be seen that the formula given above keeps the duality in the final formulae, too.
A more detailed description can be found in [17].

It should be noted that the geometric algebra and the principle of duality offers:

– to solve dual problems by one programming sequence
– it naturally supports parallel programming as it uses vector-vector operations as the

SSE instructions or GPU can be used
– the solution can avoid a division operation if the result can be left in the projective

representation [24]
– results of operations are in symbolic form, which enables further symbolic process-

ing using vector algebra or geometric algebra rules

2 Solution of linear systems of equations

A solution of a linear system of equations is a part of the linear algebra and used in
many computational systems. There are many publications related to methods for a
linear system of equations following different criteria:

– memory requirements - linear systems with sparse or tri-diagonal matrices[8], etc.
– algorithm computational complexity [25] using a block decomposition
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– parallel processing of large linear systems, especially in connection with GPUs
applications [28]

– higher precision of computation and numerical stability [3][24].

It should be noted, that the linear system of equations Ax = b can be transformed
to the homogeneous system of linear equations, i.e. to the form Dξ = 0, where D =
[A|−b], ξ = [ξ1, ...,ξn : ξw]

T , xi = ξi / ξw, i = 1, ...,n. If ξw 7→ 0 then the solution is in
infinity and the vector (ξ1, ...,ξn) gives the "direction", only.

As the solution of a linear system of equations is equivalent to the outer product
(generalized cross-vector) of vectors formed by rows of the matrix D, the solution of
the system Dξ = 0 is defined as:

ξ = d1∧d2∧ ...∧dn Dξ = 0 , i.e. [A|−b]ξ = 0 (14)

where: di is the i-th row of the matrix D, i.e. di = (ai1, ...,ain,−bi), i = 1, ...,n
The application of the projective extension of the Euclidean space enables us to

transform the non-homogeneous system of linear equations Ax = b to the homogeneous
linear system Dξ = 0, i.e.:

a11 · · · a1n
...

. . .
...

an1 · · · ann


x1

...
xn

=

b1
...

bn

 ⇐====⇒
conversion

a11 · · · a1n −b1
...

. . .
...

...
an1 · · · ann −bn




ξ1
...

ξn
ξw

=

0
...
0

 (15)

It is a very important result as a solution of a linear system of equations is formally
the same for both types, i.e. homogeneous linear systems Ax = 0 and non-homogeneous
systems Ax = b. It means, that many problems might be transformed to the outer prod-
uct application, e.g. computation of barycentric coordinates [13], length, area, volume
og geometric entities [12], etc.

As the solution is formally determined by Eq.14, formal linear operators can be
used for further symbolic processing using standard formula manipulation, as the ge-
ometry algebra is multi-linear. Even more, it is capable to handle more complex objects
generally in the n-dimensional space, i.e. oriented surfaces, volumes, etc.

Also, it is possible to use the ’functional analysis approach: “Let L is a linear op-
erator, then the following operation is valid....”. As there are many linear operators like
derivation, integration, Laplace transform, etc., there is a huge potential of applications
of that to the formal solution of the linear system of equations.

However, it is necessary to respect, that in the case of projective representation spe-
cific care is to be taken for deriving the rules for derivation, etc., as actually, a fraction
is to be processed.

It should be noted, that a solution is in symbolic representation, too, which can be
used for further processing and symbolic manipulation.
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3 Matrix and linear systems conditionality

Both types of the linear systems of equations, i.e. Ax = b (A is n×n) and Ax = 0 (A is
(n+1)×n), actually have the same form Ax = 0 (A is (n+1)×n), now, if the projective
representation is used. Therefore, it is possible to show the differences between the

Fig. 3: Difference between matrix and linear system conditionality

matrix conditionality and conditionality (solvability) of a linear system of equations,
see Fig.3.

For the matrix conditionality, the eigenvalues are usually used [10] [11] and the
ratio ratλ = |λmax|/|λmin| is mostly used as a criterion. It should be noted, that λ ∈C,
i.e the eigenvalues are complex, in general. If the ration ratλ is high, the matrix is said
to be ill-conditioned [4] [6], especially in the case of large data with a large span of data
[22] [23]. There are two cases, which are needed to be taken into consideration:

– non-homogeneous systems of linear equations, i.e. Ax = b. In this case, the matrix
conditionality is considered as a criterion for the solvability of the linear system of
equations. It depends on the matrix A properties, i.e. on eigenvalues.102 0 0

0 100 0
0 0 10−2


x1

...
x3

=

b1
...

b3

 (16)

A conditionality number κ(A) = |λmax|/|λmin| is usually used as the solvability
criterion. In the case of the Eq.16, the matrix conditionality is κ(A) = 102/10−2 =
104. However, if the 1st row is multiplied by 10−2 and the 3rd row is multiplied by
102, then the conditionality is κ(A) = 1.
Therefore, the estimation of the matrix conditionality using ratio of eigenvalues is
not applicable. It should be noted, that the right side vector b is to be appropriately
multiplied.
Classification of possible conditionality evaluation:

ICCSA 2020 proceedings, part II,LNCS 12250, pp. 3-17, DOI: 10.1007/978-3-030-58802-1_1, Springer, 2020
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• volumetric based - as a matrix conditionality the value of det(A) is taken.
However, its value is given by a volume of a hyper-polytope (n-dimensional
parallelepiped) given by the rows of the matrix A. The "standard" matrix con-
ditionality using eigenvectors is not quite appropriate, as shown above, Eq.16
• area based - the area of bivectors defined as ||ai ∧ a j||. This evaluation was

recently used for higher size of the Hilbert matrix is [19] [20]. However, the
results were not satisfactory in some cases.
• angular - the proposed matrix conditionality, which might be estimated using

angles of bivectors formed by the rows i and j of the matrix A. This approach
reflects angular relations of all bivectors of the matrix A or ratios of angles
γi, j, where i = 1, ...,n− 1, j = k+ 1, ...,n, i < j, see Fig.3. The number of all
bivectors is given as n(n−1)/2.

It should be noted, that the matrix conditionality does not consider any influence on
the values of the vector b of the system of linear equations Ax = b. The values of
the vector b might have a significant influence to the solvability of the linear system
of equations, see Fig.3. Also, the values of the vector b might have a significant
influence to the numerical precision.

– a homogeneous system of equations Ax = 0, when the system of linear equations
Ax = b is expressed in the projective space. In this case, the vector b is taken into
account and bivector area and bivector angles properties can be used for solvability
evaluation. The standard volumetric evaluation cannot be used, as the matrix A is
not a square matrix.

4 Basic operations with matrices

For a solution of a linear system of equations some specific operations are used, e.g. row
multiplication by a non-zero constant, which does not have any influence to the result
correctness. Let us have a look at such operations more deeply. The basic operations
can be split into two types:

– row multiplication by a constant p 6= 0. It changes the row values, but does not
change the result of the linear system Ax = 0, resp. Ax = b, if the vector b is mul-
tiplied appropriately.

– column multiplication - by a constant s 6= 0. This operation is not usually mentioned
in numerical methods. It means, that there is a scaling of the relevant element of
the vector x of the system Ax = 0, resp. Ax = b.

It means, that those two main operations with both linear system of equations Ax = 0,
resp. Ax = b can be described as

PAS S−1x = 0, Ax = 0, A n× (n+1) (17)

resp.
PAS S−1x = Pb, Ax = b, A n×n (18)

where: P, resp. S are diagonal matrices with pi 6= 0, s j 6= 0 multiplicative constants.
The matrix S represents an-isotropic scaling of the size (n+ 1)× (n+ 1) in the first

ICCSA 2020 proceedings, part II,LNCS 12250, pp. 3-17, DOI: 10.1007/978-3-030-58802-1_1, Springer, 2020
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case, resp. n×n in the second one. It should be noted, that the diagonal matrix P does
not have any influence on the result, due to the projective representation, and because
S S−1 is the identity matrix the solution of the linear system of equations is correct in
both cases.

It can be easily proved that both operations do have an influence on eigenvalues and
therefore κ(A) = |λmax|/|λmin| cannot be used for assessment of the solvability of the
linear system of equations. For the same reasons, also the assessment based of the area
on bivectors cannot be used.

4.1 Angular criterion

The only angular criterion is invariant to the row multiplications, while only the col-
umn multiplication changes angles of the bivectors. There are several significant con-
sequences for the numerical solution of linear systems of equations:

– the solvability of a linear system of equations can be improved by the column mul-
tiplications, only, if unlimited precision is considered. Therefore, the matrix-based
pre-conditioners might not solve the solvability problems and might introduce ad-
ditional numerical problems.

– the precision of computation is significantly influenced by addition and subtrac-
tion operations, as the exponents must be the same for those operations with man-
tissa. Also, the multiplication and division operations using exponent change by
2±k should be preferred.

However, the question is, whether the above presented operations cannot be efficiently
used for better numerical stability of numerical solutions. In the matrix operations, it is
necessary to respect the floating-point representation [27] as it is a crucial factor in the
solution of large or ill-conditioned linear systems of equations.

5 Preconditioning

There are several methods used to improve the ratio κ(A) = |λmax|/|λmin| of the matrix
A of the linear system, e.g. matrix eigenvalues shifting or preconditioning [1] [2]. The
preconditioning is usually based on solving a linear system Ax = 0:

M−1Ax = M−1b (19)

where M−1 is a matrix, which can cover complicated computation, including Fourier
transform. The inverse operation, i.e. M−1, is computationally very expensive as it is of
O(n3) complexity. Therefore, they are not easily applicable for large systems of linear
equations used nowadays. There are some methods based on incomplete factorization,
etc., which might be used [11].

5.1 Simplified preconditioning - a proposed approach

The proposed matrix conditionality improvement method requires only determination
of the diagonal matrices values P and S, i.e. multiplicative coefficients pi 6= 0, s j 6= 0,

ICCSA 2020 proceedings, part II,LNCS 12250, pp. 3-17, DOI: 10.1007/978-3-030-58802-1_1, Springer, 2020



Conditionality of Linear Systems of Equations and Matrices 11

which have to be optimized. This is a significant reduction of computational complexity,
as it decreases the cost of finding sub-optimal pi, s j values.

The proposed approach was tested on the Hilbert’s matrix, which is extremely ill-
conditioned. The Hilbert matrix conditionality can be estimated as [5] [9].

κ(Hn)' e3.5n (20)

where n is the size of the Hilbert matrix; for n = 10 the conditionality is estimated as
κ(Hn)' 1.5681015.

The Hilbert matrix H defined as:

hi, j =
1

i+ j−1
(21)

where: i, j = 1, ...n.
The experimental results of the original conditionality κ(Horig) and conditionality

using the proposed method κ(Hnew) are presented in Tab.3.

5.2 Preliminary experimental results

To prove the proposed approach, the Hilbert matrix was taken, as it is ill-conditioned.
The conditionality of the matrix Horig, modified by diagonal matrices P and S, was
evaluated by the cond(matrix) function in the Octave system using the simplified Monte
Carlo approach.

Table 3: Conditionality of modified the Hilbert matrix: Experimental results (*with Oc-
tave warnings)
N cond(Horig) cond(Hnew) N cond(Horig) cond(Hnew)
3 5.2406e+02 2.5523e+02 7 4.7537e+08 1.4341e+08
4 1.5514e+04 6.0076e+03 8 1.5258e+10 6.0076e+03
5 4.7661e+05 1.6099e+05 9 4.9315e+11 1.3736e+11
6 1.4951e+07 5.0947e+06 10 1.6024e+13 4.1485e+12

20 1.6024e+13* 4.1485e+12

The experiments proved, that the conditionality cond(Hnew) of the modified matrix
using the proposed approach was decreased by more than half of the magnitude for
higher values of n, see Tab.3. This is consistent with the recently obtained results [16],
where the inverse Hilbert matrix computation using the modified Gauss elimination
without division operation was analyzed.

The Hilbert matrix conditionality improvement also improved the angular criterion
based on maximizing the ratio κrat(H) defined as:

κrat(H) =
cosγmin

cosγmax
(22)

ICCSA 2020 proceedings, part II,LNCS 12250, pp. 3-17, DOI: 10.1007/978-3-030-58802-1_1, Springer, 2020
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It says, how the angles cosγi j, formed by the vectors ai j of the bivectors are similar, see
Fig.3. It means, that if the ratio κrat(A)' 1 the angles of all bivectors are nearly equal.
In the case of conditionality assessment of the linear system of equations Ax = 0, the
angles βi j, formed by the angels αi j have to be taken into account, see Fig.3. The ratio
κrat(H) is then defined as:

κrat(H) =
cosβmin

cosβmax
(23)

The advantage of the angular criterion is that it is common for the conditionality
evaluation in the cases, i.e.:

– the matrix conditionality
– conditionality of the linear system of equations

It should be noted, that this conditionality assessment method gives different values
of conditionality of those two different cases, as in the first case only the matrix is
evaluated, while in the second one the value of the b in the Ax = b is taken into account.

Table 4: Conditionality of modified the Hilbert matrix:
Experimental results (*with Octave warnings)

N 3 4 5 6 7
κrat(Horig) 0.54464 0.39282 0.31451 0.26573 0.23195
κrat(Hnew) 0.98348 0.97740 0.98173 0.96283 0.87961

N 8 9 10 20
κrat(Horig) 0.20694 0.18755 0.17199 · · · 0.09917*
κrat(Hnew) 0.92500 0.96435 0.96322 · · · 0.74701*

The results presented in Tab.4 reflects the improvement of the Hilbert matrix by
proposed approach using the diagonal matrices P and S used as the multipliers.

6 Conclusion

This contribution briefly presents a new approach to the matrix conditionality and the
solvability of linear systems of equations assessment, based on the bivectors angular
properties based on geometry algebra. The presented approach enables to make condi-
tionality assessment for both types of linear equations, i.e. Ax = b and Ax = 0.

Also, the equivalence of the solution of linear systems of equations with the appli-
cation of the outer product (extended cross product) has been presented. It offers simple
and efficient solutions to many computational problems, if combined with the principle
of duality and projective notation. Also, the presented approach supports direct GPU
application with a potential of significant speed-up and parallelism. Even more, the ap-
proach is applicable to n-dimensional problem solutions, as the geometric algebra is
multidimensional.
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In the future, the proposed approach will be more deeply analyzed and experimen-
tally verified using numerical operations with values restricted to 2k as in this case the
mantissa value is not changed. The expected application is in the radial basis function
interpolation and approximation for large data, when matrices are ill-conditioned, and
in the solution of partial differential equations.
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Appendix A

Computation of a bivector area in the n-dimensional space can be made as follows:

cos(αi j) =
ai.a j

||ai|| ||a j||
sin(αi j) =

||ai∧a j||
||ai|| ||a j||

(1)

Therefore the square of the bivector area is given as

||ai∧a j||2 = ||ai||2||a j||2sin2(αi j) (2)

As the following identity is valid

sin2(αi j) = 1− cos2(αi j) (3)

then it can be expressed as

||ai∧a j||2 = ||ai||2||a j||2(1− cos2(αi j)) (4)

by a substitution of Eq.1

||ai∧a j||2 = ||ai||2||a j||2(1−
(ai ·a j)

2

||ai||2 ||a j||2
) (5)

and algebraic manipulation

||ai∧a j||2 = ||ai||2||a j||2(
||ai||2 · ||a j||2− (ai ·a j)

2

||ai||2||a j||2
) (6)

i.e.

||ai∧a j||2 = ||ai||2||a j||2
||ai||2||a j||2− (ai ·a j)

2

||ai||2||a j||2
(7)

Now, reduction can be used

||ai∧a j||2 = ||ai||2||a j||2− (ai ·a j)
2 (8)

and finally the square of the area of a bivector is given as:

||ai∧a j||=
√
(||ai||2||a j||2− (ai ·a j)2) (9)
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