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Abstract. Interpolation and approximation methods are used in many fields such 

as in engineering as well as other disciplines for various scientific discoveries. If 

the data domain is formed by scattered data, approximation methods may become 

very complicated as well as time-consuming. Usually, the given data is tessel-

lated by some method, not necessarily the Delaunay triangulation, to produce 

triangular or tetrahedral meshes. After that approximation methods can be used 

to produce the surface. However, it is difficult to ensure the continuity and 

smoothness of the final interpolant along with all adjacent triangles. In this con-

tribution, a meshless approach is proposed by using radial basis functions 

(RBFs). It is applicable to explicit functions of two variables and it is suitable for 

all types of scattered data in general. The key point for the RBF approximation 

is finding the important points that give a good approximation with high precision 

to the scattered data. Since the compactly supported RBFs (CSRBF) has limited 

influence in numerical computation, large data sets can be processed efficiently 

as well as very fast via some efficient algorithm. The main advantage of the RBF 

is, that it leads to a solution of a system of linear equations (SLE) Ax=b. Thus 

any efficient method solves the systems of linear equations that can be used. In 

this study is we propose a new method of determining the importance points on 

the scattered data that produces a very good reconstructed surface with higher 

accuracy while maintaining the smoothness of the surface. 

Keywords: Meshless Methods, Radial Basis Functions, Approximation. 

1 Introduction 

Interpolation and approximation techniques are used in the solution of many engineer-

ing problems. However, the interpolation of unorganized scattered data is still a severe 

problem. In the one dimensional case, i.e, curves represented as 𝑦 = 𝑓(𝑥), it is possible 

to order points according to the 𝑥-coordinate. However, in a higher dimensionality this 

is not possible. Therefore, the standard approaches are based on the tessellation of the 
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domain in 𝑥, 𝑦 or 𝑥, 𝑦, 𝑧 spaces using, e.g. Delaunay triangulation [7], etc. This ap-

proach is applicable for static data and 𝑡-varying data, if data in the time domain are 

“framed”, i.e. given for specific time samples. It also leads to an increase of dimension-

ality, i.e. from triangulation in 𝐸2 to triangulation in 𝐸3 or from triangulation in 𝐸3 to 

triangulation in 𝐸4, etc. It results in significant increase of the triangulation complexity 

and complexity of a triangulation algorithm implementation. This is a significant factor 

influencing computation in the case of large data sets and large range data sets, i.e. 

when 𝑥, 𝑦, 𝑧 values are spanned over several magnitudes.  

On the contrary, meshless interpolations based on Radial Basis Functions (RBF) 

offer several significant advantages, namely: 

 RBF interpolation is applicable generally to 𝑑-dimensional problems and does not 

require tessellation of the definition domain 

 RBF interpolation and approximation is especially convenient for scattered data 

interpolation, including interpolation of scattered data in time as well  

 RBF interpolation is smooth by a definition 

 RBF interpolation can be applied for interpolation of scalar fields and vector fields 

as well, which can be used for scalar and vector fields visualization 

 If the Compactly Supported RBFs (CSRBF) are used, sparse matrix data struc-

tures can be used which decreases memory requirements significantly. 

However, there are some weak points of RBF application in real problems solution: 

 there is a real problem for large data sets with robustness and reliability of the 

RBF application due to high conditionality of the matrix 𝑨 of the system of linear 

equations, which is to be solved 

 numerical stability and representation is to be applied over a large span of 𝑥, 𝑦, 𝑧 

values, i.e. if values are spanned over several magnitudes 

 problems with memory management as the memory requirements are of 𝑂(𝑁2) 

complexity, where 𝑁 is a number of points in which values are given 

 the computational complexity of a solution of the linear system, which is 𝑂(𝑁3), 

resp. 𝑂(𝑘𝑁2), where  𝑘 is a number of iteration if the iterative method are used, 

but 𝑘 is relatively high, in general. 

 Problems with unexpected behavior at geometrical borders 

Many contributions are solving some issues of the RBF interpolation and approxima-

tion available. Numerical tests are mostly made using some standard testing functions 

and restricted domain span, mostly taking interval 〈0,1〉 or similar. However, in many 

physically based applications, the span of the domain is higher, usually over several 

magnitudes and large data sets need to be processed. Also large data sets are to be 

processed. 

As the meshless techniques are easily scalable to higher dimensions and can handle 

spatial scattered data and spatial-temporal data as well, they can be used in many engi-

neering and economical computations, etc. Polygonal representations (tessellated do-

mains) are used in computer graphics and visualization as a surface representation and 

for surface rendering. In time-varying objects, a surface is represented as a triangular 

mesh with constant connectivity.  

On the other hand, all polygonal based techniques, in the case of scattered data, 

require tessellations, e.g. Delaunay triangulation with 𝑂 (𝑁⌊𝑑 2⁄ +1⌋) computational 
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complexity for 𝑁 points in  𝑑-dimensional space or another tessellation method. How-

ever, the complexity of tessellation algorithms implementation grows significantly with 

dimensionality and severe problems with robustness might be expected, as well.  

In the case of data visualization smooth interpolation or approximation on unstruc-

tured meshes is required, e.g. on triangular or tetrahedral meshes, when physical phe-

nomena are associated with points, in general. This is quite a difficult task especially if 

the smoothness of interpolation is needed. However, it is a natural requirement in phys-

ically-based problems. 

2 MESHLESS INTERPOLATION 

Meshless (meshfree) methods are based on the idea of Radial Basis Function (RBF) 

interpolation [1][2][27][28], which is not separable. RBF based techniques are easily 

scalable to 𝑑-dimensional space and do not require tessellation of the geometric domain 

and offer smooth interpolation naturally. In general, meshless techniques lead to a so-

lution of a linear system equations (LS) [4][5] with a full or sparse matrix. 

Generally, meshless methods for scattered data can be split into two main groups in 

computer graphics and visualization: 

 “implicit” – 𝐹(𝒙) = 0, i.e. 𝐹(𝑥, 𝑦, 𝑧) = 0 used in the case of a surface represen-

tation in E3, e.g. surface reconstruction resulting into an implicit function repre-

sentation. This problem is originated from the implicit function modeling [18] 

approach, 

 “explicit” –  𝐹(𝒙) = ℎ used in interpolation or approximation resulting in a func-

tional representation, e.g. a height map in E2, i.e. ℎ = 𝐹(𝑥, 𝑦).  

where: 𝒙 is a point represented generally in 𝑑-dimensional space, e.g. in the case of 2-

dimensional case 𝒙 = [𝑥, 𝑦]𝑇 and ℎ is a scalar value or a vector value. 

The RBF interpolation is based on computing of the distance of two points in the 

𝑑-dimensional space and it is defined by a function: 

 𝑓(𝒙) = ∑ 𝜆𝑗  𝜑(‖𝒙 − 𝒙𝑗‖)

𝑀

𝑗=1

= ∑𝜆𝑗  𝜑(𝑟𝑗)

𝑀

𝑗=1

 (1) 

where: 𝑟𝑗 = ‖𝒙 − 𝒙𝑗‖2
≝ √(𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2
 (in 2-dimensional case) and 𝜆𝑗   are 

weights to be computed. Due to some stability issues, usually a polynomial 𝑃𝑘(𝒙) of 

a degree k is added [6]. It means that for the given data set  {〈𝒙𝑖 , ℎ𝑖〉}1
𝑀, where ℎ𝑖 are 

associated values to be interpolated and 𝒙𝑖 are domain coordinates, we obtain a linear 

system of equations: 

ℎ𝑖 = 𝑓(𝒙𝑖) = 

∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

 + 𝑃𝑘(𝒙𝑖) 
𝑖 = 1,… ,𝑀 𝒙 = [𝑥, 𝑦: 1]𝑇 

 

(2) 

For a practical use, a polynomial of the 1st degree is used, i.e. linear polynomial 

 𝑃1(𝒙) = 𝒂𝑇𝒙 in many applications. Therefore, the interpolation function has the form:  

Computational Science - ICCS 2020, Part IV, LNCS 12142 
pp. 239–250, doi: 10.1007/978-3-030-50433-5_19, Springer, 2020



 

𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊

= ∑ 𝜆𝑗 𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊  

ℎ𝑖 = 𝑓(𝒙𝑖) 𝑖 = 1,… ,𝑀 

 

(3) 

and additional conditions are to be applied: 

 ∑𝜆𝑖𝒙𝑖 = 𝟎

𝑀

𝑗=1

 i.e. ∑ 𝜆𝑖𝑥𝑖 = 0

𝑀

𝑗=1

 ∑𝜆𝑖𝑦𝑖 = 0

𝑀

𝑗=1

 ∑𝜆𝑖 = 0

𝑀

𝑗=1

 

 

(4) 

It can be seen that for the 𝑑-dimensional case a system of (𝑀 + 𝑑 + 1) linear system 

has to be solved, where M is a number of points in the dataset and 𝑑 is the dimension-

ality of data. For 𝑑 = 2 vectors 𝒙𝑖 and 𝒂 are in the form 𝒙𝑖 = [𝑥𝑖 , 𝑦𝑖 , 1]𝑇 and 

𝒂 = [𝑎𝑥 , 𝑎𝑦 , 𝑎0]
𝑇
, we can write : 

 

[
 
 
 
 
 
𝜑1,1 . . 𝜑1,𝑀 𝑥1 𝑦1 1
: ⋱ : : : :

𝜑𝑀,1 . . 𝜑𝑀,𝑀 𝑥𝑀 𝑦𝑀 1

𝑥1 . . 𝑥𝑀 0 0 0
𝑦1 . . 𝑦𝑀 0 0 0
1 . . 1 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝜆1

:
𝜆𝑀

𝑎𝑥

𝑎𝑦

𝑎0 ]
 
 
 
 
 

=

[
 
 
 
 
 
ℎ1

:
ℎ𝑀

0
0
0 ]

 
 
 
 
 

 (5) 

This can be rewritten in the matrix form as: 

 

 [ 
𝑩 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 

𝑨𝒙
= 𝒃 

𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 
 

(6) 

For the two-dimensional case and M points given a system of (𝑀 + 3) linear equa-

tions has to be solved. If “global” functions, e.g. (𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, are used, then the 

matrix 𝑩 is “full”, if “local” functions CSRBFs are used, the matrix 𝑩 can be sparse.  

The RBF interpolation was originally introduced by Hardy as the multiquadric 

method in 1971 [5], which was called Radial Basis Function (RBF) method. Since then 

many different RFB interpolation schemes have been developed with some specific 

properties, e.g. 4 uses 𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, which is called Thin-Plate Spline (TPS), a func-

tion 𝜑(𝑟) = 𝑒−(𝜖𝑟)2 was proposed in [28]. However, the shape parameter 𝜖 might leads 

to an ill-conditioned system of linear equations [33]. 

The CSRBFs were introduced as: 

 𝜑(𝑟) = {
(1 − 𝑟)𝑞 𝑃(𝑟),     0 ≤ 𝑟 ≤ 1

 0,                   𝑟 > 1
 (7) 

where: 𝑃(𝑟) is a polynomial function and 𝑞 is a parameter. Theoretical problems with 

numerical stability were solved in [4]. In the case of global functions, the linear system 

of equations is becoming ill conditioned and problems with convergence can be ex-

pected. On the other hand, if the CSRBFs are taken, the matrix 𝑨 is becoming relatively 

sparse, i.e. computation of the linear system will be faster, but we need to carefully 

select the scaling factor 𝛼 (which can be “tricky”) and the final function might tend to 

be “blobby” shaped, see Tab.1. and Fig.1.  

The compactly supported RBFs are defined for the “normalized” interval  

𝑟 ∈ 〈0,1〉, but for the practical use a scaling is used, i.e. the value 𝑟 is multiplied by 

shape parameter 𝛼, where 𝛼 > 0.  
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Table 1. Typical examples of “local” functions – CSRBF (“+” means – value zero out of 〈0,1〉) 

ID Function ID Function 

1 (1 − 𝑟)+ 6 (1 − 𝑟)+
6 (35𝑟2 + 18𝑟 + 3) 

2 (1 − 𝑟)+
3 (3𝑟 + 1) 7 (1 − 𝑟)+

8 (32𝑟3 + 25𝑟2 + 8𝑟 + 3) 

3 (1 − 𝑟)+
5 (8𝑟2 + 5𝑟 + 1) 8 (1 − 𝑟)+

3  

4 (1 − 𝑟)+
2  9 (1 − 𝑟)+

3 (5𝑟 + 1) 

5 (1 − 𝑟)+
4 (4𝑟 + 1) 10 (1 − 𝑟)+

7 (16𝑟2 + 7𝑟 + 1) 

 

Meshless techniques are primarily based on the 

approaches mentioned above. They are used in 

engineering problem solutions, nowadays, e.g. 

partial differential equations, surface modeling, 

surface reconstruction of scanned objects, recon-

struction of corrupted images [26], etc. More 

generally, meshless object representation is 

based on specific interpolation or approximation 

techniques [1][6][28]. 

The resulting matrix 𝑨 tends to be large and 

ill-conditioned. Therefore, some specific numer-

ical methods have to be taken to increase the ro-

bustness of a solution, like preconditioning 

methods or parallel computing on GPU [11][12], 

etc. In addition, subdivision or hierarchical 

methods are used to decrease the sizes of com-

putations and increase robustness [18][20][34]. 

It should be noted, that the computational complexity of meshless methods actually 

covers the complexity of tessellation itself and interpolation and approximation meth-

ods. This results in problems with large data set processing, i.e. numerical stability and 

memory requirements, etc.  

If global RBF functions are considered, the RBF matrix is full and in the case of 106 

of points, the RBF matrix is of the size approx.106 × 106 ! On the other hand, if 

CSRBF used, the relevant matrix is sparse and computational and memory require-

ments are decreased significantly using special data structures [10][12][24][34].  

In the case of physical phenomena visualization, data received by simulation, com-

putation or obtained by experiments usually are oversampled in some areas and also 

numerically more or less precise. It seems possible to apply approximation methods to 

decrease computational complexity significantly by adding virtual points in the place 

of interest and use analogy of the least square method modified for the RBF case [21].  

Due to the CSRBF representation the space of data can be subdivided, interpolation, 

resp. the approximation can be split to independent parts and computed more or less 

independently [24]. This process can be also parallelized and if appropriate computa-

tional architecture is used, e.g. GPU, etc. it will lead to faster computation as well. The 

approach was experimentally verified for scalar and vector data used in the visualiza-

tion of physical phenomena.  

 
Fig.1. Properties of CSRBFs 
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3 Points of importance 

Algorithms developed recently were based on different specific properties of 

“global” RBFs or “local” compactly supported RBFs (CS-RBFs) and application areas 

expected, e.g. for interpolation, approximation, solution of partial differential equa-

tions, etc., expecting “reasonable” density of points. However, there are still some im-

portant problems to be analyzed and hopefully solved, especially: 

 What is an acceptable compromise between the precision of approximation and 

compression ratio, i.e. reduction of points, if applicable? 

 What is the optimal constant shape parameter, if does exist and how to estimate it 

efficiently ([33])? 

 What are optimal shape parameters 𝛼 for every single 𝜑(𝑟, 𝛼) ([30][33])?  

 What is the robustness and stability of the RBF for large data and large range span 

of data with regard to shape parameters ([20][21])? 

In this contribution, we will analyze a specific problem related to the first question.  

Let us consider given points of a curve (samples of a signal), described by explicit 

function 𝑦 = 𝑓(𝑥). According to the Nyquist-Shannon theorem, the sampling fre-

quency should be at least double the frequency of the highest frequency of the original 

signal. The idea is, how “points of importance”, i.e. points of inflection and extrema 

can be used for smooth precise curve approximation. 

 

 
 

Fig. 2. Testing functions and resulting approximation based on the points of importance 

(red points are extrema, black points are additional points of importance) 

Let us consider sampled curves in Fig.2, i.e. a signal without noise (the blue points 

are values at the borders, red are maxima, the black are inflection and added points. It 

can be seen that the reconstruction based on radial basis functions (RBF) has to pass: 

 points at the interval borders 

 points at extremes, maxima and minima 

 some other important points, like points of inflection etc., and perhaps some ad-

ditional points of the given data to improve signal reconstruction. 

However, there several factors to be considered as well, namely: 

 extensibility from 2 D to 3 D for explicit functions of two variables, i.e. 

𝑧 = 𝑓(𝑥, 𝑦) and hopefully to higher dimension robustness of computation as 

given discrete data are given. 
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For extrema finding, the first derivative 𝑓′(𝑥) is to be replaced by a standard discrete 

scheme. At the left, resp. right margin, forward, resp. the backward difference is to be 

used. Inside of the interval, the central difference scheme is recommended, as it also 

“filters” high frequencies. The simple scheme for the second derivative estimation is 

shown, too. It can be seen, that this is easily extensible for the 3 D case as well. 

 

𝑓′(𝑥) ≈
𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖

 𝑓′(𝑥) ≈
𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)

𝑥𝑖 − 𝑥𝑖−1

 

𝑓′′(𝑥) ≈
(𝑥𝑖+1) − 𝑓(𝑥𝑖−1)

2(𝑥𝑖+1 − 𝑥𝑖−1)
 𝑓′′(𝑥) ≈

𝑓(𝑥𝑖+1) − 2𝑓(𝑥𝑖) + 𝑓(𝑥𝑖−1)

(𝑥𝑖+1 − 𝑥𝑖)(𝑥𝑖 − 𝑥𝑖−1)
 

 

(8) 

So far, a finding of extrema is a simple task, now. However, due to the discrete data, 

the extrema is detected by 

 

 sign(𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)) ≠ sign(𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)) (9) 

as we need to detect the change of the sign, only. This increases the robustness of com-

putation as well. The points of inflections rely on a second derivative, i.e. 𝑓′′(𝑥) = 0;  

a similar condition can be derived from (8). 

Now, all the important points, i.e. points at the interval borders, maxima, minima 

and points of inflection, are detected and found. However, it is necessary to include 

some more points at the interval borders (at least one on each side) to respect the local 

behavior of the curve and increase the precision of approximation . It is recommended 

to include at least one or two points which are closest to the borders to respect a curve 

behavior at the beginning and end of the interval. Also, if additional points are inserted 

ideally between extreme and inflection points, the approximation precision increases. 

Now, the standard RBF interpolation scheme can be applied.  

 

 [ 
𝑩 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 𝑨𝒙 = 𝒃 𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎0 

 

(10) 

where: 𝑩 represents the RBF submatrix, 𝝀 the weights of RBFs, 𝑷 represents points for 

the polynomial 𝒂 represents coefficients of the polynomial, 𝒇 given function values. 

It should be noted, that in the case of scattered data, neighbors for each point are to 

be found, before the estimation of the derivative is made. In the 2 D case, ordering is 

possible, in the3 D case computation is to be made on neighbors found. If the regular 

sampling in each dimension (along the axis) is given, computation simplifies signifi-

cantly. 

It is necessary to note that the curve reconstruction is at the Nyqist-Shannon theo-

rem boundary and probably limits of the compression were obtained with very low 

relative error, which is less than 0.1 % . However, we have many more points available 

and if a higher precision is needed, the approximation based on Least Square Error 

(LSE) computational scheme with Lagrange multipliers might be used [14]. The RBF 

methods usually lead to an ill-conditioned system of linear equations [33]. In the case 

of approximation, it can be partially improved by geometry algebra in projective space 

[22][23] approach.  
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4 Experimental results 

The presented approach was tested on several testing functions used for evaluation of 

errors, stability, robustness of computation, see Tab.2: 

Table 2. Examples of testing functions 

ID Function ID Function 

1 𝑦 = sin(15𝑥2 + 5𝑥) 2 𝑦 = cos(20𝑥) /2 + 5𝑥 

3 𝑦 = 50(0.4 sin(15𝑥2) + 5𝑥) 4 𝑦 = sin(8𝜋𝑥) 

5 𝑦 = sin(6𝜋𝑥2) 6 𝑦 = sin(25𝑥 + 0.1) /(25𝑥 + 0.1) 

7 𝑦 = 2 sin(2𝜋𝑥) + sin(4𝜋𝑥) 8 𝑦 = 2 sin(2𝜋𝑥) + sin(4𝜋𝑥) 
+sin(8𝜋𝑥) 

9 𝑦 = 2 sin(𝜋(2𝑥 − 1)) 

+sin(3𝜋(2𝑥 − 1/2)) 

10 𝑦 = 2 sin(𝜋(1 − 2𝑥)) 

+sin(3𝜋(2𝑥 − 1/2)) 

11 𝑦 = 2 sin(𝜋(2𝑥 − 1)) 

+sin(3𝜋(2𝑥 − 1/2)) − 𝑥 

12 𝑦 = 2 sin (2𝜋𝑥 −
𝜋

2
) 

+sin(3𝜋(2𝑥 − 1/2)) 

13 𝑦 = atan(10𝑥 − 5)3 
+atan(10𝑥 − 8)3/2 

14 𝑦 = (4.88𝑥 − 1.88) ∗ 
sin(4.88𝑥 − 1.88)2 + 1 

15 𝑦 = exp(10𝑥 − 6) ∗ 
sin(5𝑥 − 2)3 + (3𝑥 − 1)3 

16 𝑦 = tanh(9𝑥 + 1/2) 9⁄  

 

The experiments have also proven, that for large data and data with a large span of data 

a polynomial 𝑃𝑘(𝑥) should be  𝑃𝑘(𝑥) = 𝑎0, i.e. 𝑘 = 0, see [20][21].  

Selected results of the approximation of some functions are presented at Fig.3. It 

can be seen, that the proposed approximation based actually on RBF interpolation 

scheme using points of importance offers good precision of approximation a with good 

compression ratio. The functions were sampled in 200 points approx. and 10-20 points 

are actually used for the proposed approximation method.  

5 Conclusion 

This contribution briefly describes a method for efficient RBF approximation of large 

scattered data based on finding points of importance. This leads to a simple RBF based 

approximation of data with relatively low error with high compression. The precision 

of approximation can be increased significantly by covering some additional points. 

The approach is easily extensible to the 3D case, especially if data are ordered. How-

ever, if data are scattered, the neighbor points must be evaluated to find points of im-

portance.  

Experiments proved relatively high precision of approximation based on RFB in-

terpolation using found points of importance leading to high data compression as well.  

In future, deep analysis of an approximation behavior at the interval borders is ex-

pected as it is a critical issue for the 3D case, i.e. 𝑧 = 𝑓(𝑥, 𝑦), as the first already made 

experiments shown. Also, the discrete points of curves of inflection are to be taken into 

account, i.e. discrete points of implicit curves 𝐹(𝑥, 𝑦) = 0.   
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Fig. 3. Examples of approximation for selected functions. 
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