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Abstract. Geometric problems are usually solved in the Euclidean space by using the standard vector algebra techniques. In this
study, principles of the projective geometry and geometric algebra will be introduced via a novel method that significantly simplifies
the solution of geometrical problems. Also, it supports the GPU parallel computation application. Besides that, an application of
the principle of duality leads to a simple solution of the dual problems. We show that, the equivalence of the extended cross-product
(outer product) and the solution of the system of linear equations. This gives a direct impact to scientific computation, solution
of geometrical problems, robotics, computer graphics algorithms and virtual reality via fast computation through GPU parallel
systems. Some numerical and graphical results are presented.

GEOMETRIC ALGEBRA

The vector algebra (Gibbs algebra) used nowadays uses two basic operations on two vectors a,b in En, i.e. the inner
product (scalar product or dot product) c = a · b, where c is a scalar value and outer product (the cross-product in
E3) c = a∧b, where c is a bivector and has a different properties than a vector as it represents an oriented area in
n-dimensional space, in general.

The Geometric Algebra (GA) uses a “new” product called Geometric product defined as:

ab = a ·b+a∧b (1)

where ab is a geometric product.
In the case of the n-dimensional space, vectors are defined as a = (a1e1 + ...+ anen), b = (b1e1 + ...+ bnen) and

the ei vectors form orthonormal basis vectors in E3 then we get:

1 0-vector (scalar) e12, e23, e31 2-vectors (bivectors)
e1,e2,e3, 1-vector (vectors) e123 3-vector (pseudoscalar)

It can be easily proved that the following operations are valid, including an inverse of a vector.

a ·b =
1
2
(ab+ba) a∧b =−b∧a a−1 = a/||a||2 (2)

It can be seen, that geometric algebra is anti-commutative and the “pseudoscalar” I in E3 has the basis e1e2e3, i.e.

eie j =−e jei eiei = 1 e1e2e3 = I a∧b∧ c = q (3)

where q is a scalar value.
In general, the geometric product is represented as:

ab =
n,n

∑
i, j=1

aieib je j a ·b =
n,n

∑
i=1

aieibiei (4)
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a∧b =
n,n

∑
i, j=1&i6= j

aieib je j =
n

∑
i, j=1,&i> j

(aib j−a jbi)eie j (5)

It is not a “friendly user” notation for a practical application and causes problems in practical implementations,
especially due to anti-commutativity of the geometric product.

However, the geometric product can be easily represented by the tensor product, which can be represented by a
matrix. As the homogeneous coordinates will be used in the following, the tensor product for the 4-dimensional case
is presented:

ab⇐⇒
repr

abT = a⊗b = Q =

a1b1 a1b2 a1b3 a1b4
a1b2 a2b2 a2b3 a2b4
a1b3 a3b2 a3b3 a3b4
a1b4 a4b2 a4b3 a4b4

= B+U+D (6)

where B+U+D are Bottom triangular, Upper triangular, Diagonal matrices, a4,b4 are the homogeneous coordinates,
i.e. actually wa,wb (will be explained later), and the operator ⊗ means the anti-commutative tensor product.

PROJECTIVE EXTENSION AND PRINCIPLE OF DUALITY

Let us consider the projective extension of the Euclidean space and use of the homogeneous coordinates. Let us
consider vectors a = [a1,a2,a3 : a4]

T and b = [b1,b2,b3 : b4]
T , which represents actually vectors (a1/a4,a2/a4,a3/a4)

and (b1/b4,b2/b4,b3/b4) in the E3 space. It can be seen, that the diagonal of the matrix Q actually represents the
inner product in the projective representation:

a ·b = [(a1b1 +a2b2 +a3b3) : a4b4]
T ,

a1b1 +a2b2 +a3b3

a4b4
(7)

where , means projectively equivalent. The inner product actually represents trace tr(Q) of the matrix Q.
The outer product (the cross-product in the E3 case) is then represented respecting anti-commutativity as:

a∧b⇐⇒
repr

3,3

∑
i, j=1&i> j

(aib jeie j−bia jeie j) =
3,3

∑
i, j&i> j

(aib j−bia j)eie j (8)

It should be noted, that the outer product can be used for a solution of a linear system of equations Ax = b or Ax = 0,
too.

The principle of duality is an important principle, in general. Its application in geometry in connection with the
implicit representation using projective geometry brings some new formulations or even new theorems. The duality
principle for basic geometric entities and operators are presented by TAB.I and TAB.II.

TABLE I: Duality of geometric entities

Duality of geometric entities
Point in E2 ⇐==⇒

DUAL
Line in E3 Point in E3 ⇐==⇒

DUAL
Plane in E3

TABLE II: Duality of operators

Duality of operators
Union ∪ ⇐==⇒

DUAL
Intersection ∩

It means, that in the E2 case a point is dual to a line and vice versa, intersection of two lines is dual to a union of
two points, i.e. line given by two points; similarly for the E3 case.
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COMPUTATION WITH HOMOGENEOUS REPRESENTATION

The direct consequence of the principle of duality is that, the intersection point x of two lines p1,p2, resp. a line p
passing two given points x1,x2, is given as:

x = p1∧p2⇐==⇒
DUAL

p = x1∧x2 (9)

where pi = [ai,bi : ci]
T , x = [x,y : w]T (w is the homogeneous coordinate), i = 1,2; similarly in the dual case.

In the case of the E3 space, a point is dual to a plane and vice versa. It means that the intersection point x of three
planes ρ1,ρ2,ρ3, resp. a plane ρ passing three given points x1,x2,x3 is given as:

x = ρ1∧ρ2∧ρ3⇐==⇒
DUAL

ρ = x1∧x2∧x3 (10)

where x = [x,y,z : w]T , ρi = [ai,bi,ci : di]
T , i = 1,2,3.

It can be seen that the above formulae is equivalent to the “extended” cross-product, which in natively supported
by GPU architecture. For an intersection computation, we get:

x = p1∧p2 =

e1 e2 ew
a1 b1 c1
a2 b2 c2

 x = ρ1∧ρ2∧ρ3 =

e1 e2 e3 ew
a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3

 (11)

Due to the principle of duality, a dual problem solution is given as:

p = x1∧x2 =

e1 e2 ew
x1 y1 w1
x2 y2 w2

 ρ = x1∧x2∧x3 =

e1 e2 e3 ew
x1 y1 z1 w1
x1 y2 z2 w2
x3 y3 z3 w3

 (12)

The above presented formulae prove the strength of the formal notation of the geometric algebra approach. There-
fore, there is a natural question, what is the more convenient computation of the geometric product, as computation
with the outer product, i.e. extended cross product, using basis vector approach is not simple.

Fortunately, the geometric product of ρ1,ρ2, resp. of x1 and x2 vectors using homogeneous coordinates given as
anti-commutative tensor product is given as:

ρ1ρ2 a2 b2 c2 d2
a1 a1a2 a1b2 a1c2 a1d2
b1 b1a2 b1b2 b1c2 b1d2
c1 c1a2 c1b2 c1c2 a1d2
d1 d1a2 d1b2 d1c2 d1d2

x1x2 x2 y2 z2 w2
x1 x1x2 x1y2 x1z2 x1w2
y1 y1x2 y1y2 y1z2 y1w2
z1 z1x2 z1y2 z1z2 x1w2
w1 w1x2 w1y2 w1z2 w1w2

However, the question is how to compute a line p ∈ E3 given as an intersection of two planes ρ1, ρ2, which is dual to
a line determination given by two points x1, x2 as those problems are dual.

The parametric solution can be easily obtained using standard Plücker coordinates, however computation and for-
mula are complex and not easy to understand.

q(t) =
ω×v
||ω||2

+ωt L = x1xT
2 −x2xT

1 (13)

ω = [l41, l42, l43]
T v = [l23, l31, l12]

T (14)

For the case of intersection of two planes the principle of duality can be applied directly.
However, using the geometric algebra, principle of duality and projective representation, we can directly write:

p = ρ1∧ρ2⇐==⇒
DUAL

p = x1∧x2 (15)
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It can be seen that the formula given above keeps the duality in the final formulae, too.
From the formal point of view, the geometric product for the both cases is given as:

ρ1ρ2⇐⇒
repr

ρ1⊗ρ2 =

a1a2 a1b2 a1c2 a1d2
b1a2 b1b2 b1c2 b1d2
c1a2 c1b2 c1c2 c1d2
d1a2 d1b2 d1c2 d1d2

 (16)

The dual problem formulation:

x1x2⇐⇒
repr

x1⊗x2 =

x1x2 x1y2 x1z2 x1w2
y1x2 y1y2 y1z2 y1w2
z1x2 z1y2 z1z2 z1w2
w1x2 w1y2 w1z2 w1w2

 (17)

It means that we have computation of the Plücker coordinates for the both cases, i.e. for computation of a line
p = ρ1 ∧ρ2 or p = x1 ∧ x2 is given as a union of two points in E3 and as an intersection of two planes in E3 using
the projective representation and the principle of duality. It should be noted that the given approach offers: significant
simplification of computation of the Plücker coordinates as it is simple and easy to derive and explain, uses vector-
vector operations, which is especially convenient for SSE and GPU application one code sequence for the both cases.

As the Plücker coordinates are also in mechanical engineering applications, especially in robotics due to its simple
displacement and momentum specifications, and in other fields simple explanation and derivation is another very
important argument for GA approach application.

SOLUTION OF LINEAR SYSTEM OF EQUATIONS

A solution of a linear system of equations is a part of the linear algebra and used in many computational systems. It
should be noted, that linear equations Ax = b can be transformed to an implicit the homogeneous system, i.e. to the
form Bξ = 0, where B = [A|−b], ξ = [ξ1, ...,ξn : ξw]

T , xi = ξi / ξw, i = 1, ...,n.
As the solution of a linear system of equations is equivalent to the outer product (generalized cross-vector) of

vectors formed by rows of the matrix B, the solution of the system is defined as:

ξ = a1∧a2∧ ...∧an [A|−b]ξ = 0 (18)

which is equivalent to a solution of the linear system of equations:a11 · · · a1n
...

. . .
...

an1 · · · ann


x1

...
xn

=

b1
...

bn

 (19)

It a very important result as a solution of a linear system of equations is formally the same for systems for the
both cases, i.e. Ax = 0 and Ax = b. As the solution is formally determined, the formal linear operators can be used
for further symbolic processing using formula manipulation, as the geometry algebra is multilinear. Even more, it
is capable to handle more complex objects generally in the d-dimensional space, i.e. oriented surfaces, volumes
etc. Therefore, it is possible to use the Functional analysis approach: “Let L is a linear operator, then the following
operation is valid....”. As there are many linear operators like derivation, integration, Laplace transform etc., there is a
huge potential of applications of those to the formal solution of the linear system of equations, i.e. L(ξ ). However, it
is necessary to respect, that in the case of projective representation a specific care is to be taken for deriving rules for
derivation etc., as actually a fraction is to be process and similarly for other operators.

CONCLUSION

This contribution briefly presents geometry algebra, which is not generally known and used. However, it offers simple
and efficient solutions to many computational problems, if combined with the principle of duality and projective
notation.
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As the result of this contribution a new formulation of the Plücker coordinates, often used in mechanical engineering
and robotics, is given. As the operations are based on standard linear algebra formalism it is simple to use. The
presented approach supports direct GPU application with a potential of significant speed-up and parallelism. Also,
the approach is applicable to d-dimensional problem solutions, as the geometric algebra is multidimensional.
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