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Abstract—The vector fields may be results from the mea-
surements of real flow experiments. However, during the mea-
surements, some parts of the vector field can be measured
incorrectly or even some parts of the vector field are not possible
to capture due to some shading and invisibility. In this paper,
we focus on the reconstruction of such corrupted vector fields.
We detect the locations, where the vector field was measured
incorrectly and reconstruct those locations of the vector field.
For the reconstruction, we use Radial Basis Functions (RBF)
approximation to fill the missing locations of the vector field as
well as to correct and smooth the locations of the vector field,
where it was probably measured with some error. The results of
the proposed method are presented in this paper.

Index Terms—Vector field, reconstruction, Radial basis func-
tions, corrupted data, approximation.

I. INTRODUCTION

The interpolation and approximation are probably the most
frequent operations used in computational methods. Several
methods have been developed for data interpolation and ap-
proximation, but they expect some kind of data ”ordering”,
e.g. structured mesh, rectangular mesh, unstructured mesh,
etc. However, in many engineering problems, data are not
ordered and they are scattered in d−dimensional space, in
general. Usually, in technical applications, the scattered data
are tessellated using triangulation but this approach is quite
prohibitive for the case of d−dimensional data interpolation
because of the computational cost.

Interpolated and approximated scattered vector data on a
surface become frequent in applied problem solutions. There
are applications for vector field decomposition [1], for vector
field design system for surfaces that allows the user to control
the number of singularities in the vector field and their
placement [2]. The paper [3] uses the vector field interpolation
for estimating robust point correspondences between two sets
of points. An approach for critical points reduction and vector
field approximation using Radial basis functions is presented
in [4] with an extension into 3D in [5].

Vector fields can be measured during experiments. How-
ever, the accuracy of measurements is sometimes low and
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sometimes part of the vector field cannot be measured due to
obstacle and invisibility of the vector field. There exist some
methods that deal with this problem. The paper [6] presents an
approach for reconstruction of vector field. Another approach
is presented in [7]. The paper [8] presents an approach for
reconstruction of wind field from limited information provided
by a lidar system. This approach is able to reconstruct complex
situations. The follow-up paper [9] presents the possibility of
using nacelle-mounted lidar for wind field reconstruction. The
reconstruction of 2D vector field from sparse set of points-
vectors pairs is presented in [10]. The approach subdivides
the domain adaptively in order to make local piece-wise
polynomial approximations for the field. After that, it uses the
partition of unity to blend the local approximations together. A
method for the global vector-field reconstruction of nonlinear
dynamical systems from a time series is studied in the paper
[11]. It employs a complete set of polynomials and singular
value decomposition to estimate a standard function, which is
central to the algorithm. The paper [12] presents a method for
the reconstruction of flow fields based on adaptive control grid
interpolation. The data for reconstruction are acquired from
the magnetic resonance and the resulting velocity field is with
high quality. The paper [13] aims to show that it is possible
to accurately estimate, in a real-time fashion, the radial and
tangential velocity components of the wind field from lidar
data. The reconstruction is generated through the synthesis of
an unscented Kalman filter that employs a low-order dynamic
model of the wind to estimate the unmeasured velocities within
the wind field, using repeated measurement updates from
typical nacelle-mounted lidar instruments. Another approach
for reconstruction of vector fields is presented in [14]. This
paper focuses on reconstruction of tomography data sets.

In this paper, we present a new approach for reconstruction
of incomplete or corrupted vector fields using Radial Basis
Functions (RBF).

II. VECTOR FIELD

Vector fields on surfaces are important objects, which
appear frequently in scientific simulation in CFD (Computa-
tional Fluid Dynamics) or modeling by FEM (Finite Element
Method). To be visualized, such vector fields are usually lin-
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early approximated for the sake of simplicity and performance
considerations.

The vector field can be easily analyzed when having an
approximation of the vector field near some location point. The
important places to be analyzed are so called critical points.
Analyzing the vector field behavior near these points gives us
the information about the characteristic of the vector field.

A. Critical Point

Critical points x0 of the vector field are points at which the
magnitude of the vector vanishes

dx

dt
= v(x) = 0, (1)

i.e. all components are equal to zero[
dx
dt

dy
dt

]
=

[
0

0

]
. (2)

A critical point is said to be isolated, or simple, if the vector
field is non vanishing in an open neighborhood around the
critical point. Thus for all surrounding points xε of the critical
point x0 the equation (1) does not apply, i.e.

dxε
dt
6= 0, (3)

At critical points, the direction of the field line is indeter-
minate, and they are the only points in the vector field were
field lines can intersect (asymptotically). The terms singular
point, null point, neutral point or equilibrium point are also
frequently used to describe critical points.

These points are important because together with the nearby
surrounding vectors, they have more information encoded in
them than any such group in the vector field, regarding the
total behavior of the field, see Fig. 1.

Fig. 1. Classification of 2D first order critical points. R1, R2 denote the
real parts of the eigenvalues of the Jacobian matrix while I1, I2 denote their
imaginary parts.

III. RADIAL BASIS FUNCTIONS

The Radial basis functions (RBF) is a technique for scat-
tered data interpolation [15], [16] and approximation [17],
[18]. The RBF interpolation and approximation is computa-
tionally more expensive, because input data are not ordered
and there is no known relation between them. Although
the RBF has higher computational cost, it can be used for
d-dimensional problem solution in many applications, e.g.
solution of partial differential equations, image reconstruction,
neural networks, fuzzy systems, GIS systems, optics etc.

The RBF is a function whose value depends only on the
distance from some center point. Due to the use of the
distance functions, the RBFs can be easily implemented to
reconstruct the surface using scattered data in 2D, 3D or
higher dimensional spaces. It should be noted that the RBF
approximation is not separable.

The RBF interpolation was originally introduced by [19]
and is based on computing the distance of two points in the
k-dimensional space and is defined by a function

f(x) =
M∑
j=1

λjϕ(‖x− xj‖) (4)

where λj are weights of the RBFs, M is the number of
the radial basis functions, i.e. the number of interpolation
points, and ϕ is the radial basis function. For a given dataset
of points with associated values, i.e. in the case of scalar
values {xi, hi}M1 , the following linear system of equations
is obtained

hi = f(xi) =
M∑
j=1

λjϕ(‖xi − xj‖)

for ∀i ∈ {1, . . . ,M} (5)

where λj are weights to be computed.
Equation (5) can be rewritten in a matrix form as

Aλ = h, (6)

where matrix A is symmetrical, as ‖xi − xj‖ = ‖xj − xi‖.
Radial function interpolants have a nice property of being

invariant under all Euclidean transformations, i.e. translations,
rotations and reflections. It means that it does not matter
whether we first compute the RBF interpolation function and
then apply a Euclidean transformation, or if we first transform
all the data and then compute the radial function interpolants.
This is result of the fact that Euclidean transformations are
characterized by orthogonal transformation matrices and are
therefore 2 norm invariant. Radial basis functions can be
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divided into two groups according to their influence. First
group are ”global” RBF [20], for example:

Thin Plate Spline (TPS) ϕ(r) = r2 log r

Gauss function ϕ(r) = e−(εr)2

Inverse Quadric (IQ) ϕ(r) =
1

1 + (εr)2

Inverse Multiquadric (IMQ) ϕ(r) =
1√

1 + (εr)2

Multiquadric (MQ) ϕ(r) =
√
1 + (εr)2

(7)

where ε is the shape parameter of radial basis function [21].
The ”local” RBF were introduced by [22] as Compactly

Supported RBF (CSRBF) and satisfy the following condition

ϕ(r) = (1− r)q+P (r) =

{
(1− r)qP (r) 0 ≤ r ≤ 1

0 r > 1
(8)

where P (r) is a polynomial function and q is a parameter.
Typical examples of CSRBF are

ϕ1(r) = (1− εr)+
ϕ2(r) = (1− εr)3+(3εr + 1)

ϕ3(r) = (1− εr)5+(8(εr)2 + 5εr + 1)

ϕ4(r) = (1− εr)2+
ϕ5(r) = (1− εr)4+(4εr + 1)

ϕ6(r) = (1− εr)6+(35(εr)2 + 18εr + 3)

ϕ7(r) = (1− εr)8+(32(εr)3 + 25(εr)2 + 8εr + 1)

ϕ8(r) = (1− εr)3+
ϕ9(r) = (1− εr)3+(5εr + 1)

ϕ10(r) = (1− εr)7+(16(εr)2 + 7εr + 1)

(9)

where ε is the shape parameter of radial basis function, see
Figure 2 for visualization of (9).

The RBF interpolation can be done using ”global” or ”local”
functions. When using ”global” radial basis functions the
matrix A will be full, but when using ”local” radial basis
functions the matrix A will be sparse, which can be beneficial
when solving the system of linear equations Aλ = h.

In the case of the vector data, i.e. {xi,hi}M1 values hi
are actually vectors, the RBF is to be performed for each
coordinate of hi.

IV. PROPOSED APPROACH

The purpose of this approach is to reconstruct the measured
vector field. During the measurements, there can be some
errors, inaccuracies or even some parts of the vector field can
be missing. We will consider the flow around a cylinder in the
proposed approach1.

In the first step, we need to locate the missing parts of the
vector field. During the measurement, we obtain several vector
fields in different timestamps. From all of this vector fields for

1Data courtesy of Rut Vitkovicova, CTU in Prague, FME, Department of
Fluid Dynamics and Thermodynamics, Technická 4, 166 07 Prague, Czech
Republic [24].

Fig. 2. Examples of CSRBF (from [23]).

different timestamps, we can compute the average speed of the
vector field at every location. The parts, where the average
speed is low, are measured incorrectly, as the average speed
at each location should be similar as we are considering the
flow around a cylinder. An example of the computed average
speed of the vector field is visualized in Fig. 3. It can be seen,
that the low average speed is located at the inflow location
on the right side and below the cylinder, where the flow is
over-shaded with the cylinder.

Fig. 3. Average speed of the vector field over simulation time. The color-bar
is in relative units [%].

To determine the exact location of incorrectly measured
vector field, we need to select some threshold value for the
average speed. During the experiments, we determined that
the vectors with speed ≤ 30% of the maximal average speed
are taken as unmeasured or faulty. The vectors with speed in
the interval (30%, 50%) may be affected by error. The vectors
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with speed ≥ 50% are taken as correct, see Fig. 4.

Fig. 4. Average speed of vector field over simulation time with marked
contours for 30% and 50% of the maximal average speed. The vectors with
speed ≤ 30% are taken as unmeasured or faulty. The vectors with speed in
the interval (30%, 50%) may be affected by error. The vectors with speed
≥ 50% are taken as correct.

The correctly measured parts of vector field should be
preserved during the reconstruction of corrupted vector field.
On the opposite site, the unmeasured or faulty parts of the
vector field should be totally removed and replaced with data
extrapolation. The vectors from locations, where it is not
clearly possible to determine the accuracy of the measured
vector field data, can be slightly modified.

To fulfill the requirements described before, we use the
approximation method of Radial basis functions. The stan-
dard vector field approximation with RBF uses the following
equations

vi = v(xi) =
M∑
j=1

λjϕ(‖xi − ξj‖)

for ∀i ∈ {1, . . . , N}, (10)

where vi = [v
(x)
i , v

(y)
i ]T is the vector at xi, λj = [λ

(x)
j , λ

(y)
j ]

is the RBF weight to be computed and ξj is the center of the
radial basis function.

All the equations (11) forming the system of linear equa-
tions have the same importance in the standard RBF approxi-
mation. However, we can change the importance or weight of
each equation separately. If we multiply one of the equations
in (11) as the following

βivi =

M∑
j=1

λjβiϕ(‖xi − ξj‖)

for i ∈ {1, . . . , N}, (11)

we end up with the weighted vector field RBF approximation.
If all the coefficients are equal to one, i.e. ∀i : βi = 1,

then it is as the standard RBF approximation. If we multiply
one equation with βi > 1, then the ith equation has higher
importance, as during the approximation the ith error is

multiplied with number higher than one. The approximation
tries to increase the importance at that location and thus
approximates the vector field more correctly at xi than at
other locations (with βi = 1). On the opposite side, if we
multiply one equation with 0 < βi < 1, then the ith equation
has lower importance, as during the approximation the ith

error is multiplied with number smaller than one. Thus, the
approximation can differ a bit more at xi compared to other
locations.

In the proposed approach for a vector field reconstruction,
we use the above described weighted vector field RBF ap-
proximation. We have defined three types of locations, see
Fig. 4. The location with unmeasured or faulty vector field is
not used during the vector field approximation. The location
with correct vector field is used in the RBF approximation and
has the weight βi = 1.

The last part of the vector field, that can be affected by error
has the weight βi ∈ (0, 1). To compute the exact value of βi,
we use the following formula

βi =
speedi − speedSTART

speedEND − speedSTART
, (12)

where speedi is the average speed of the vector field at
location xi, speedSTART is 30% of the maximal average
speed and speedEND is 50% of the maximal average speed.

Using this approach, we can compute the RBF approxima-
tion of corrupted vector field. However, in the case of Fig. 3,
we have no data in the right part of the vector field. This is the
inflow location, where the vector field has the direction vectors
pointing from left to right. We can use this information and
add those vectors at the starting border of the vector field. The
speed of the starting vectors is selected as the average speed
of all correctly measure vectors.

V. EXPERIMENTAL RESULTS

The proposed approach for reconstruction of corrupted
vector fields was tested on several measured vector fields. We
already presented the result of the average speed of the vector
field over the simulation time, see Fig. 3. For the vector field
RBF approximation, we used the local radial basis function
with the following formula

ϕ5(r) = (1− εr)4+(4εr + 1). (13)

Using the computed average speed (Fig. 3) and our proposed
approach, we reconstructed the vector field Fig. 5a. The
result after the reconstruction using the proposed approach is
visualized in Fig. 5b. It can be seen that the reconstructed
vector field has the same important characteristics as the
original vector field. The inflow of the vector field has the
correct direction beside the direction of the measured inflow
vector field.

The computed average speed (Fig. 3), which is used to
determine different types of measured vector field (measured
correctly, measured incorrectly and measured with possible
error) is used for all timestamps of the vector field. Thus when
performing the reconstruction of corrupted vector field, the
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(a) Measured vector field.

(b) Reconstructed vector field.

Fig. 5. Visualization of measured vector field from the experiment (a) and the
corrected vector field with reconstructed missing or error parts (b). Simulation
time of this vector field is 5.5 [s].

average vector field is computed only once and used for all
timestamps of the vector field.

Another result of the proposed approach is visualized in
Fig. 6b. This result is the reconstruction of a measured vector
field (Fig. 6a) at different time than the previous vector field
(Fig. 5a).

It can be seen, that the vector field reconstruction result
is visually correct as the previous example. The proposed
approach can be used to reconstruct the missing parts of the
measured vector field or to correct incorrectly measured parts
of the vector field.

VI. CONCLUSION

We presented a new approach for reconstruction of mea-
sured vector fields. The approach reconstructs the missing
parts of the vector field and is able to correct incorrectly
measured parts of the vector field. As the first step of the pro-
posed approach, we presented an approach to detect incorrectly

(a) Measured vector field.

(b) Reconstructed vector field.

Fig. 6. Visualization of measured vector field from the experiment (a) and the
corrected vector field with reconstructed missing or error parts (b). Simulation
time of this vector field is 37 [s].

or faulty measured parts of the vector field that need to be
corrected or reconstructed. For the final reconstruction, we use
the introduced weighted Radial basis function approximation
method. The presented results proved the ability to reconstruct
and correct the measured vector fields.

In the feature, we plan to develop even more sophisticated
method for detection of incorrectly measured parts of the
vector field as well as the extension of the proposed approach
to 3D.
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