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Abstract—This paper presents new approaches for Radial
basis function (RBF) approximation of 2D height data. The
proposed approaches respect local properties of the input data,
i.e. stationary points, inflection points, the curvature and other
important features of the data. Positions of radial basis functions
for RBF approximation are selected according to these features,
as the placement of radial basis functions has significant impacts
on the final approximation error. The proposed approaches were
tested on several data sets. The tests proved significantly better
approximation results than the standard RBF approximation
with the random distribution of placements of radial basis
functions.

Index Terms—Radial basis function, approximation, inflection
points, stationary points, Canny edge detector, curvature

I. INTRODUCTION

The approximation is commonly used and well known
technique in many computer science disciplines. This tech-
nique can be divided into two groups. The first one is the
approximation that use the mesh and its connectivity. Some
well known approaches that use the triangulation are [1]–[4].
However, all those approaches need the mesh connectivity,
i.e. triangulation, which can be time consuming and difficult
to compute for higher dimensions. On the opposite site, the
second group are approximation techniques that does not
require any mesh, i.e. they are called meshless methods. This
paper focuses on this kind of approximation.

In the book [5] is provided an introduction for each of
the most important and classic meshless methods along with
the complete mathematical formulations. In total, it presents
19 meshless methods in detail with full mathematical for-
mulations showing numerical properties such as convergence,
consistency and stability. One example of approximation tech-
nique is Kriging [6]. It depends on expressing spatial variation
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of the property in terms of the variogram, and it minimizes the
prediction errors which are themselves estimated. Extension
and variations of this method are available in [7]–[9]. Another
approximation technique is weighted least square method [10],
[11] it is simple because it is based on the well-known standard
least squares theory. It is attractive because it allows one
to directly use the existing body of knowledge of the least
squares theory and it is flexible because it can be used to a
broad field of applications in the error-invariable models. Very
similar approach is the LOWESS method [12] which is used
for meshless smoothing and approximation of noisy data.

The Radial basis function (RBF) methods have been widely
used for approximation of scattered data, recently. A brief
introduction to this method is in [13]. Comparison of different
radial basis functions is in [14], [15]. The paper [16] presents
an approach for large scattered data interpolation. It uses
the space subdivision to reduce the computation time and
more importantly to reduce the needed memory for RBF
approximation. A modification of this algorithm for 3D vector
field data approximation is presented in [17]. Very important
for the final RBF approximation quality is the distribution of
radial basis functions. This problem is described and suggested
solution in [18], [19]. Many papers also propose a solution
to the selection of the best shape parameters of radial basis
functions [20]–[24].

II. RADIAL BASIS FUNCTIONS

The Radial basis functions (RBF) are commonly used for
n-dimensional scattered data approximation and interpolation.
This approach is used in many areas, e.g. image reconstruction
[25], [26], neural networks [27] and surface reconstruction
[28], [29]. The task can be stated as follow. Find analytic
function for given pairs of values (xi, hi), where xi is a
point position in n-dimensional space and hi is value in
this point. For such data it is not possible to use standard
approximation and interpolation techniques because lack of
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knowledge about data connectivity and ordering. Therefore,
the RBF approximation has the following attributes:

• Designed for scattered data approximation/interpolation
• Independent of the data dimension
• Not separable, i.e. it is not valid to approxi-

mate/interpolate data ”dimension by dimension”
• Invariant with respect to euclidean transformations

Hardy [30] proposed RBF interpolation based on interpola-
tion equation:

f(~x) =
M∑
i=1

λiθ (||~x− ~xi||), (1)

where ~xi is data point and λi is point weight. θ(rij) is radial
basis function, where rij = ||~x − ~xi||. Radial basis function
can differ, but they can be divided into two main groups by
theirs range of influence, i.e. global and local functions.

RBF approximation/interpolation leads to the linear equa-
tion system A~x = ~b, where approximation differ from inter-
polation only with form of matrix A. Solvability and stability
problems were solved for example in [31] [32]. Wright [32]
extend original RBF interpolation with polynomial and added
more conditions.

A. Radial Basis Functions approximation

RBF approximation is based on point distance in n-
dimensional space and is derived from the same equation (2)
as interpolation is.

f(~x) =

M∑
i=1

λiθ (||~x− εi||), (2)

where M is number of radial basis functions, λi is weight
of radial basis function, θ is radial basis function and εi is
placement of radial basis function.

Given set of value pairs {~xi, hi}N1 , where ~xi is point
position in n-dimensional space, hi is value in this point, N
is number of given points. N �M therefore we obtain over-
determined system of linear equations.

hi = f(~xi) =
M∑
i=1

λiθ (|| ~xj − εj ||)

i = {1, . . . , N},M � N (3)

It can be rewritten in matrix form

A~λ = ~h (4)

This over-determined system of linear equations can be
solved by LSE or QR decomposition.

III. PROPOSED APPROACH

Radial basis function placement is important factor for ap-
proximation error. In this contribution, property of these good
points are proposed with the way to find them. First group are
extreme points i.e. local/global minimum or maximum. Next
group are points of inflection. These points represents changes
in data. Another proposed group of points are stationary points
of curvature. These points represents extreme curvature values
and in some case they are similar to points of inflection.
Last group are edge points as known from image processing,
because we can look at data as on image depending on data
structure or sampling. Search for important points is amended
with Halton sequence [13] sampling with special stress on
border and corner sampling for covering whole data set. The
last step is reduction of points number with nearest neighbour
condition.

The Halton sequence is computed using the following
formula:

Halton(p)k =

blogp kc∑
i=0

1

pi+1

(⌊
k

pi

⌋
mod p

)
, (5)

where p is a prime number, k is the order of the element of
the Halton sequence, i.e. k ∈ {1, . . . , n}. For generation of
random points with Halton distribution in higher dimension,
different values of p are used for each dimension.

A. RBF Approximation with Stationary Points

It is known that stationary points are such points that hold
equation

δf

δx
= 0 ∧ δf

δy
= 0 (6)

This condition is not enough to determine whether the point
is global/local extreme or just a saddle point. It is necessary
to examine Hessian to determine point property. On the other
hand it can be seen that saddle points are as important as
points of extreme.

Evaluation of partial derivatives and comparing with zero
is not optimal way to find stationary points. Better way is
to compare given point with its surrounding i.e. masks for
minimum, maximum and saddle point can be created.

B. RBF Approximation with Inflection Points

Points of inflection are such points where surface change
from convex to concave or the other way round. For points
of inflection in continuous space hold that Gauss curvature is
equal to zero

κgauss =

δ2f
δx2

δ2f
δy2 −

(
δ2f
δxδy

)2
((

δf
δx

)2
+
(
δf
δy

)2
+ 1

)2 (7)

It can be seen, from equations above, that Gauss curvature
is zero only when numerator is equal zero, i.e. Hessian matrix
determinant is equal to zero.
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It is not necessary to compute exact curvature value to find
point of inflection. We need to find just points where curvature
sign change from negative to positive or vice versa. It can be
seen that sign of Gauss curvature only depends on numerator
sign because denominator is always positive.

C. RBF Approximation with Stationary Points of Curvature

From (7) we can compute curvature of given surface in
every data point. Then it is possible to find stationary points
in curvature similar to process described in the section III-A

D. RBF Approximation with Edge Detection

In the simplified scenario, where the points are sampled in
the grid pattern, we can look at the data as image i.e. value h
on position [x, y] can be considered to be brightness intensity I
in pixel (i, j). In case of scatter data there is need to use some
special data structure to obtain points adjacency information
e.g. kd-tree or adjust used algorithms.

We proposed to detect edges in image i.e. transitions be-
tween low and high values. Another suggested approach is to
compute data gradient magnitude in each data point and then
run edge detector over such field of gradient magnitudes. This
approach will find transitions between low and high gradient
magnitude areas. To detect edges we can use existing detectors
from image processing e.g. Canny, Sobel, Prewitt etc.

Fig. 1: Test function

IV. EXPERIMENTAL RESULTS

Proposed methods were tested on several test functions
which were designed to represent special data set behaviour.
Sampling step is 0.01 and functions are normalized to interval
(x, y, z) ∈ 〈−1, 1〉×〈−1, 1〉×〈0, 1〉 for comparison purposes.
For all functions Gauss radial basis function φ(r) = e−εr

2

was
used.

(a) Height map converted to im-
age

(b) Gradient magnitudes con-
verted to image

(c) Edge detector over height
map

(d) Edge detector over gradient
magnitudes map

Fig. 2: The edge detection from height map (a), (c). The edge
detection from gradient magnitudes map (b), (d).

f1 (x, y) =
2

11

(
sin
(
4x2 + 4y2

)
− x+ y − 5

2

)
f2 (x, y) =

3

4
e−

1
4 ((9x−2)

2+(9y−2)2)

+
3

4
e−

1
49 ((9x+1)2− 1

10 (9y+1)2)

+
1

2
e−

1
4 ((9x−7)

2+(9y−3)2) − 1

5
e−(9x−4)

2−(9y−7)2

f3 (x, y) =
1

9
tanh (9y − 9x) + 1

(8)

For comparison was used square mean error per point as can
be seen in Fig. 6, Fig. 7 and Fig. 8. In the 1st test function
(8) random distribution of placement with Halton sequence
provide good results in comparison with other methods, see
Fig. 3. This is caused by function shape which fill whole space.

In the 2nd test function (8) can be seen improvement when
proposed methods are used because of its special behaviour
only in some areas of its domain, see Fig. 4.

The last test function (8) is design to test RBF approxima-
tion in general and even with our improvements lot of methods
fails, see Fig. 5. What is even more it was found that with
proper placement it has no effect on precision to add more
points from Halton sequence.
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(a) Stationary (b) Edges

(c) Inflection

(d) Curvature

Fig. 3: Methods applied on 1st test function

V. CONCLUSION

The proposed methods were tested on several standard test-
ing functions, however, only some representative functions are
mentioned in this contribution. The above presented methods
proved very good results in precision of approximation, even
thought some special types of functions, e.g. fast changes,
are problematic for all approaches. The experiments also
proved validity of the proposed methods for the Radial basis
function approximation of scattered data, with regard to a low
approximation error with high points reduction leading to a
high compression ratio.
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(a) Stationary (b) Edges

(c) Inflection

(d) Curvature

Fig. 4: Methods applied on 2nd test function

(a) Stationary (b) Edges

(c) Inflection (d) Curvature

Fig. 5: Methods applied on 3rd test function
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Fig. 6: Mean square error on 1st test function (8)

Fig. 7: Mean square error on 2nd test function (8)

Fig. 8: Mean square error on 3rd test function (8)
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