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Abstract. The Radial basis function (RBF) approximation is an effi-
cient method for scattered scalar and vector data fields. However its ap-
plication is very difficult in the case of large scattered data. This paper
presents RBF approximation together with space subdivision technique
for large vector fields.

For large scattered data sets a space subdivision technique with over-
lapping 3D cells is used. Blending of overlapped 3D cells is used to
obtain continuity and smoothness. The proposed method is applicable
for scalar and vector data sets as well. Experiments proved applicability
of this approach and results with the tornado large vector field data set
are presented.
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simplification; approximation; space subdivision; data compression; vi-
sualization.

1 Introduction

Interpolation or approximation methods of scattered 3D vector field data mostly
use tessellation of the given domain, i.e. triangulation or tetrahedranization,
etc. Space subdivision techniques are often used to increase speed-up and de-
crease memory requirements in combination of adaptive hierarchical methods,
i.e. quadtree, octree etc. However, the Radial Basis Functions (RBF) is not a sep-
arable (by dimension) approximation. In general, the meshless methods mostly
based on RBF

Data are split into subdomains, processed and blended together with parti-
tion of unity in [28]. The contribution [28] is an extension of well-known method
[16], which construct surface model from large data sets using multi-level parti-
tion of unity. Downsampling [17] leads to a coarse-fine hierarchy, where points
in each hierarchy level are used incrementally for better approximation. Parallel
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version of this approach [29] claims O(N) computational complexity using gener-
alized minimal residual method (GMRE) with the Schwartz iterative method [3].
Optimization of centers and weights of RBF methods was explored in [25] with
combination of hierarchical decomposition. There are many other related mod-
ifications of RBF approximation with a specific focus available, e.g. parallelism
of [7] for mesh deformation, incremental RBF interpolation [1], computation
of RBF with Least square error [12] with preconditioning aspects and domain
decomposition.

The method for topological information visualization for vector fields is well
known [11]. The vector fields are very complex data sets and the topological
skeleton represents a compact visualization. The vector field topology can be
simplified using [26]. This approach computes clusters of critical points, where
the distance is represented by the weight of merging critical points. The critical
points in one cluster are merged together and can create a higher order critical
point or cancel each other. The method generates the piece-wise linear represen-
tation after building clusters containing singularities. The paper [27] presents an
approach for simplified visualization of vector fields. The authors prove that the
3D vector field inside some closed region can be represented by the 2D vector
field on the surface over this region. The vector filed that uses the Delaunay
triangulation is described in [4]. It removes vertices from the Delaunay triangu-
lation close to critical points and prevents topological changes using local metric
while removing some vertices. Numerical comparison between global and local
RBF methods was explored in [2] to find out the advantages and disadvantages
of local RBF methods use for 3D vector field approximation. The classification of
critical points using Hessian matrix is presented in [21]. Vector field approxima-
tion for the 2D case preserving topology and memory reduction was presented in
[10]. It is based on segmentation and flow in a separate region is approximated
by a linear function. The paper [24] and [23] proposes an approach for RBF
approximation of vector field and selection of important critical points. Robust
detection of critical points is described in [20].

We propose a new simple and robust approach for large scattered 3D vector
fields data approximation using space subdivision. Usually, the whole data set
needs to be processed at once [14], [13]. Other relevant methods are not easy to
implement. Using the space subdivision methods with respecting the continuity
of the resulting approximation, the proposed approach enables to process large
data vector fields.

2 Proposed Approach

The 3D vector field data sets come usually from numerical simulations and are
very large. Such vector fields can be approximated for the visualization purposes
or to minimize the data set size. In our proposed approach for approximation
of 3D vector fields we use modified algorithm described in [22], which computes
2D interpolation of height data sets.

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.337-350, ISSN 0302-9743 
ISBN 978-3-030-24288-6, Springer, 2019    https://doi.org/10.1007/978-3-030-24289-3_25



3D Vector Fields RBF Approximation Using Space Subdivision 3

In the following part we introduce a new approach for large 3D vector field
data approximation using RBF and space subdivision respecting continuity of
the final approximation result. Space subdivision application leads to significant
computational speed-up, decrease of memory requirements and better robustness
of computation, too.

There are three main steps of the algorithm: space subdivision, data approx-
imation of each cell and blending, i.e. joining approximations over overlapping
cells. The Algorithm 1 and 2 present relevant pseudocodes.

Algorithm 1 Pseudocode of the proposed approach for RBF approximation.

1: procedure RBF(Points P ) . Pi = {xi,vi}
2: for all cells in grid do
3: Enlarge cell for approximation by Ψ
4: p← Points in enlarged cell
5: ξ ← RBF centers in enlarged cell
6: Compute RBF approximation of p

Algorithm 2 Pseudocode of approximated value calculation using the proposed
RBF approximation method.

1: procedure RBF(Point p) . p = {x, y, z}
2: Find neighboring cells
3: Determine distances to cells
4: Compute approximated RBF values for all cells
5: Blend RBF approximated values together . using distances to cells

2.1 Space Subdivision

The divide and conquer (D&C) strategy is used in the proposed algorithm. The
input data set is divided into several domains. In this paper for simplicity of
explanation, we use a rectangular grid for divide and conquer strategy, where
the grid size for 3D data set is n×m× l. We can use any kind of space division,
however the proposed approach is easy to explain sung the regular orthogonal
grid and thus it was used in the presented experiments for its simplicity.

The given data need to be splitted into overlapping cells respecting the cre-
ated grid for application of the space subdivision. Each domain of the grid is
enlarged to a cell which includes some neighboring points from the neighborhood
domains (it will be explained latter on), see Fig. 1.
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Fig. 1. 3D regular orthogonal grid (2D analogy) of one cell. Each cell has points that
are inside the domain plus pints from the overlapping parts (grey color).

2.2 Cells RBF Approximation

In the proposed approach, we use the ”global” Thin Plate Spline (TPS) radial
basis function, which is shape parameter free and minimizes the tension of the
final approximation [5]. The TPS has the following formula

ϕ(r) = r2 log r =
1

2
r2 log r2 (1)

Now, the given points are splited into overlapping 3D cells. The RBF ap-
proximation needs the centers of radial basis functions. The RBF centers have
the Halton distribution [8] and are placed inside the enlarged cell. The number
of centers for RBF approximation of each cell can be selected according to the
required quality of approximation.

Points inside of a cell are approximated using the RBF approximation with
the TPS function. This approximation uses the standard solution of the linear
system of equations (2). Each cell is approximated independently and therefore
the computation can be done totally in parallel, which increases the performance
and speed-up, too. However, the memory requirements would be higher as mul-
tiple RBF matrices need to be stored simultaneously. This should be considered
when determining the size of a grid for space subdivision.

vi = v(xi) =
M∑
j=1

λjϕ(‖xi − ξj‖),

for ∀i ∈ {1, . . . , N} (2)

where vi = [v
(x)
i , v

(y)
i , v

(z)
i ], M is the number of the RBF centers. Solution of

the linear system of equations is a vector λ = [λ1,λ2, . . . ,λM ]T , where λi =
[λxi , λ

y
i , λ

z
i ]T . These values will be used later. However, the matrix for the RBF

computation can be discarded as it will not be needed any more.
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2.3 Reconstruction Function and Cells Blending

The already computed approximated cells overlap. To get the final continuous
representation of the 3D vector field, we need to join the RBF approximations
of cells.

The RBF approximation usually has problems with a precision on a border
[15], [19] and thus we cannot use the whole enlarged cell for blending. The
overlapping part of each border is Ψ . For the blending phase we will use only
half of the overlapping part, see the blue part in Fig. 2, Therefore the size of
this overlapping part is ψ, i.e. (2ψ = Ψ).

Fig. 2. Visualization of the overlap part used for blending (blue color).

To blend all the neighborhood cell together, we use modified trilinear inter-
polation (”blending”) of those neighborhood cells. The computed value obtained
for each cell is to be weighted by a coefficient α. The coefficients α are determined
as

α′ =

[
1−min

(
1,

distance from the border

ψ

)]2
, (3)

where distance from the border is the shortest distance from the location to
the border using the Euclidean metric. The final blending coefficients αi are
computed using Eq. (3) as

αi =
αi

′

2k∑
j=1

αj
′

, (4)

where i = {1, . . . , 2k} and k is the dimension, i.e. k = 3 for 3D vector field data
set. The visualization of blending functions for blending of two approximations
can be seen in Fig. 3. The initial and the final phase of blending function is more
attracted to value 0, resp. 1, thus the final approximation is more smooth.

After computing the proposed RBF approximation with space subdivision
and blending, we end up with an analytical form of the approximated vector field.
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Fig. 3. Blending functions for blending of two approximations.

This vector field is the simplified representation of the original data set. Moreover
the analytical formula of the vector field can be used for further processing and
visualization.

2.4 Speed-up of the Proposed Approach (Approximation)

The RBF approximation has actually two parts. First, the RBF coefficients com-
putation. And second, computation of the function value for the given position x.

The space subdivision is used to speed-up the computation of vector field
radial basis function approximation, i.e. computation of λ values, and reduces
memory requirements, too.

The asymptotic time complexity of solving overdetermined system of linear
equations with QR decomposition [6] and Householder matrix transformation
[9] is

O

(
2NM2 − 2

3
M3

)
, (5)

where N is the total number of input points, M is the number of centers for
RBF and N > M .

Let us assume that the input vector field data set has an uniform distribution
of points and the input vector field is divided into G cells. The best size of over-
lapping part was experimentally selected as Ψ = 30%, i.e. ψ = 15%. The smaller
overlapping part can result in non-smooth blending and larger overlapping part
will result in higher computation costs while the approximation quality will not
increase much more.

The number of points inside the enlarged cell is different depending on the
location of the cell. In Fig. 4 are visualized 3 different type of cells, when the
cells with the same color have the same number of points inside the enlarged
cell. There is one more group of cells, that has the same number of points inside
the enlarged cell. This group of cells is inside the cube visualized in Fig. 4. In
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Fig. 4. Visualization of different type of cells according to the number of points inside
the enlarged cell.

our computations of time complexity, we will assume, that the number of points
inside each enlarged cell is the same and is equal to

n = (1 + 2Ψ)
3 N

G
, (6)

where G is the total number of cells and n is the number of points inside the
enlarged cell. The constant Ψ is the size of overlapping parts.

The proposed RBF approximation method time complexity can be estimated
as:

O

(
G

(
2nm2 − 2

3
m3

))
, (7)

where m is the number of centers for RBF approximation. The value of m is
calculated as

m = n
M

N
. (8)

The speed-up of the proposed algorithm for vector field RBF approximation
compared to the standard RBF approximation is

ν =
O
(
2NM2 − 2

3M
3
)

O
(
G
(
2nm2 − 2

3m
3
)) =

G3(1− 3N)

(1 + 2Ψ)
9
(
G− 3N (1 + 2Ψ)

3
) , (9)

where Ψ is the size of overlapping parts. For large values of N , i.e. N > 106, the
expected speed-up is given as Eq. (10) and the visualization of speed-up is in
Fig. 5.

ν ≈ G3

(1 + 2Ψ)
12 . (10)

An example of the speed-up for the size of overlapping 30% is as the following

ν ≈ G3

(1 + 2 · 0.3)
12 =

G3

1.612
≈ G3

281
. (11)
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Fig. 5. Expected speed-up of the proposed approach of vector field RBF approximation
compared to the standard one (note that the axes are logarithmic).

2.5 Speed-up of the Function Evaluation

In this part we present how the function evaluation speed-up the vector field
RBF approximation computation. Moreover, it also speed-up the evaluation of
the approximation function as well. For the standard RBF function evaluation,
the time complexity can be estimated as:

O (M) . (12)

In the case of the proposed algorithm, the time of RBF evaluation can be
estimated as:

O
(
23m

)
, (13)

where the maximum number of blended approximations is 23, i.e. 8. Using
Eqs. (12) and (13), we can determine the theoretical speed-up of the proposed
method for evaluation of one function value of the vector field RBF approxima-
tion:

η =
O (M)

O (23m)
= O

(
G

23 (1 + 2Ψ)
3

)
, (14)

where Ψ is the size of overlapping parts. For most grid resolutions, i.e. number of
cells, the speed-up η � 1, is shown in Fig. 6. Note that the η axis, i.e. speed-up,
is in logarithmic scaling.

3 Experimental Results

In this part we present experimental results. The proposed 3D vector field RBF
approximation is especially convenient for large vector field data set approxima-
tion. Firstly we test the algorithm using small synthetic data sets to present and
prove properties of the proposed approximation method.
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Fig. 6. Expected speed-up of function evaluation of the proposed approach for vec-
tor field RBF approximation compared to the standard one (note that the axes are
logarithmic).

Secondly, the experimental results with real data sets containing 5.5 · 108

points are presented. Experiments proved that the proposed method is capable
to process significantly larger data on a desktop computer.

3.1 Synthetic Data Set

Firstly, we tested the blending of two 1 1
2D simple functions together to verify

expected properties of the proposed approach. We used two blending functions
from Fig. 3 and performed the blending on two functions that are visualized
in Fig. 7. The two functions are blended in interval [0.4; 0.6] and the result is
visualized in Fig. 7.

Fig. 7. Blending of two functions (red) and the result after blending (black).
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Secondly, we tested the blending of two 21
2D functions together. The result of

blending two 21
2D functions together at different locations is visualized at Fig. 8.

It can be seen that the blending result is continuous and smooth, as expected.

(a) (b)

(c) (d)

(e)

Fig. 8. Blending of two 2 1
2
D functions together. Visualization of blending for different

”cut” of 2 1
2
D function (a-d), see (e) for ”cut” location.

3.2 Real Data Set

In these experiments, we used the EF5 tornado data set (from [18])1, see Fig. 9a.
The data set contains 5.5 · 108 3D points with associated 3D vector.

We computed the vector field approximation using the proposed approach
with different number of centers for radial basis functions. The vector field RBF
approximation when using only 0.1% of the number of input points as the number
of RBF centers is visualized in Fig. 9b. It means, that the vector field approx-
imation is visually almost identical with the original vector field data set even
thought a high compression ratio (1 : 103) is achieved. Visualization of 2D slices
is visualized in Fig. 10. Again, the approximated vector field is almost identical
with the original vector field.

1 Data set of EF5 tornado courtesy of Leigh Orf from Cooperative Institute for Me-
teorological Satellite Studies, University of Wisconsin, Madison, WI, USA.
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Fig. 9. Visualization of the 3D tornado vector field data set. Red central part represents
the shape of tornado vortex and the yellow color on faces represents the speed of vector
field. The original vector field (top) and the RBF approximated vector field (bottom).
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Visualization of three 2D vector field slices. The top row represents the original
vector field (a-c) and the bottom row represents the approximated vector field (d-f).

The approximation error for different number of centers for radial basis func-
tions is visualized in Fig. 11. The approximation error is computed using the
formula

Err =

∑N
i=1 ‖vi − v̄i‖∑N

i=1 ‖v̄i‖
, (15)

where v̄i is the original vector, vi is the approximated vector and N is the
number of vectors.

This experiments also proved expected precision depending on the number
of centers of the RBF approximation.

4 Conclusion

We presented a new approach for large scale 3D vector field meshless approx-
imation using RBF. The method significantly speeds-up the RBF parameters
calculation, i.e. λ values, and the final RBF evaluation as well.
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Fig. 11. The approximation error for different number of RBF centers.

The proposed approximation method is based on partially overlapping cells.
These overlapping cells are continuously blended together in order to obtain
approximation of the whole large data set. Due to the space subdivision, the
approach decreases memory and computational requirements. The proposed al-
gorithm can be parallelized easily as well.

Experiments made on synthetic and real data proved high performance and
computational robustness. The result of the proposed is an analytical description
of simplified 3D vector field. This is very useful in further processing of the vector
field and visualization as well.
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