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Abstract. Finding a maximum distance of points in E2 or in E3 is one of those. It 

is a frequent task required in many applications. In spite of the fact that it is an 

extremely simple task, the known “Brute force” algorithm is of O(N2) 

complexity. Due to this complexity the run-time is very long and unacceptable 

especially if medium or larger data sets are to be processed. An alternative 

approach is convex hull computation with complexity higher than O(N) followed 

by diameter computation with O(M2) complexity. The situation is similar to 

sorting, where the bubble sort algorithm has O(N2) complexity that cannot be 

used in practice even for medium data sets.  

This paper describes a novel and fast, simple and robust algorithm with O(N) 

expected complexity which enables to decrease run-time needed to find the 

maximum distance of two points in E2. It can be easily modified for the Ek case 

in general. The proposed algorithm has been evaluated experimentally on larger 

different datasets in order to verify it and prove expected properties of it.  

Experiments proved the advantages of the proposed algorithm over the 

standard algorithms based on the “Brute force”, convex hull or convex hull 

diameters approaches. The proposed algorithm gives a significant speed-up to 

applications, when medium and large data sets are processed. It is over 10 000 

times faster than the standard “Brute force” algorithm for 106 points randomly 

distributed points in E2 and over 4 times faster than convex hull diameter 

computation. The speed-up of the proposed algorithm grows with the number of 

points processed. 
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1. Introduction 

A maximum distance of two points in the given data set is needed in many applications. 

A standard “Brute Force” algorithm with O(N2) complexity is usually used, where N is 

a number of points in the given data set. Such algorithm leads to very high run-time if 

larger data sets are to be processed. As the computer memory capacity increases, larger 

data sets are to be processed. Typical data sets in computer graphics contain usually 

105-107 and even more of points. In spite of the CPU speed increases, the run-time even 

for such a simple task leads to unacceptable processing time for today’s applications. 

Of course, there is a very special case when points are distributed on a circle only. This 

requires the O(N2) algorithm if we want to find all the couples of points as there is 

N(N-1)/2 couples. In all other cases “output sensitive” algorithms should be faster. 
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However, our task is just to find the maximum distance, not all the pairs having a 

maximum distance. So the complexity of this algorithm should be lower. Also due to 

the numerical precision points do not lie exactly on a circle if data have this very 

specific property.  

The new proposed algorithm with O(N) expected complexity is based on the following 

assumptions: 

 Any pre-processing with a lower complexity than the optimal run-time one 

should speed-up processing of the given data set. In our case the optimal 

algorithm covering all the special cases is of O(N2) complexity and therefore 

preprocessing with complexities O(lgN), O(N), O(N lgN) etc. should speed up 

the run-time. 

 General properties, including geometrical ones, of input data should be 

carefully analyzed in order to find all useful information that can lead to faster 

pre-processing and the final run-time. 

 If data are not organized in a very special way, e.g. points are on the Axis 

Aligned Bounding Box (AABB) boundary only or points are on a circle etc., 

we can use an algorithm with “output sensitive” complexity and we should get 

additional speed-up. 

In general, algorithms should not depend on very specific presumptions or 

technological issues unless the algorithm is targeted to very specific technological 

platform or applications. Any algorithm must be stable and robust to input data 

properties, in general. 

2. Brute force algorithm 

The standard “Brute Force” algorithm uses two nested loops in order to find a maximum 

distance. Algorithms with such approach can be found in many text-books dealing with 

fundamental algorithms and data structures, e.g. Hilyard and Theilet [2007], Mehta and 

Sahni [2005], Sahni [1998], Sedgwick [2002], Wirth [1976]. Such algorithms can be 

represented by Alg.1 in general as: 

 

function distance_2 (A , B: point); 

{   distance_2:=(A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y)}; 

# Square of the distance ║A - B║ is actually computed # 

 

d := 0; 

for i := 1 to N-1 do 

  for j := i+1 to N do  

  {  

     d0 := distance_2(Xi , Xj); 

     if d < d0 then d := d0 

  }; 

d := SQRT (d)  # if needed # 

Standard “Brute Force” algorithm 

Algorithm 1 
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The Alg.1 is clearly of O(N2) complexity and processing time increases 

significantly with number of points processed, see Tab.1.  

In practice, it can be expected that points are not organized in a very specific 

manner, e.g. points on a circle etc., and points are uniformly distributed more or less. 

In this case “output sensitive” algorithms usually lead to efficient solutions. 

 
Fig.1 Splitting the  set to i sets for the worst case – squared area  

 

 
Fig 2 Splitting the  set to i sets for the rectangular area case 
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Let points are inside of an Axis Aligned Bounding Box (AABB) defined as  

<-a/2 , a/2>×<-b/2 , b/2>. Then Fig.1 presents a typical situation for the worst case 

when AABB is a square (a = b), while the Fig.2 presents general AABB situation for 

the case a > b. In the following we will explore the worst case, i.e. situation at the Fig.1, 

and the first maximum distance estimation d is d = a. 

It can be seen that points in the set 0 cannot influence the maximum distance 

computation in the given data set. We can remove all points 0 from the given data set 

 and obtain faster algorithm. As the maximum distance finding algorithm is of O(N2) 

complexity an algorithm with a lower complexity can be used in order to find and 

eliminate points which cannot influence the final distance. Space subdivision 

techniques can be used to split points into the disjunctive data sets i and decrease run-

time complexity again. For a general case, when AABB is not squared, the 0 set will 

contain more points of course, see Fig.3.  

Let us explore the worst case more in a detail, now.  
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If the most consuming parts with O(N2) complexity is considered, then the speed-up 

of the proposed algorithm over the “Brute Force” algorithm for uniformly distributed 

points is defined as:  
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. 

For 1k  and 2d the speed-up   that is expected from the algorithm 

specification.  
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Fig 3 Distances definitions for a general AABB 

 

It can be seen that for a non-squared AABB distances are defined as 
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a, b are sizes of the AABB in E2, resp. a, b, c are sizes of the AABB in E3 

 

For the E3 case, some minor changes have to be made as we have 6 points defining 

the AABB and 6+6 extreme points in the AABB, i.e. points having the longest distance 

and the shortest distance from the relevant AABB corner and the 0 set is to be split is 

to be split to sets 0,..., 6. However, the computational time is more or less the same 

as the same number of points is processed and the preprocessing is of O(N) complexity. 

It can be seen that the extension to Ek is straightforward and simple to implement. 
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3. Convex hull diameter 

The idea of finding maximum distance of points by more effective algorithms is not 

new. Reasonably effective approach is based on a convex hull construction of the given 

data set. Then the convex hull points are processed by the standard algorithm with 

O(N2) complexity in order to find the maximum distance. It is obvious that that all 

techniques based on the convex hull construction have the following properties: 

 Convex hull construction algorithms for a higher dimension than E2, i.e. for 

E3 or Ek in general, are complex and quite difficult to implement. Skiena 

[1997] proved that the “gift wrapping algorithm” has  
 12/ knO

 complexity 

in the case of k dimensional problem. Yao [1981] has proved that for the two 

dimensional case specialized algorithm has O(N lgN) complexity.  

 Points of the convex hull are to be processed by the final algorithm with O(h2) 

complexity, where h is the number of points of the computed convex hull, i.e. 

the technique is an output sensitive. The number of convex hull points might 

be quite high, while the maximum distance is usually given by two points in 

the given data set. 

Generally, the well known algorithms have the computational complexities as 

follow: Brute Force O(N4), Gift Wrapping O(N h), Graham Scan O(N lgN), Jarvis 

March O(N lgN), Quick Hull O(h N), Divide-and-Conquer O(N lgN), Monotone Chain 

O(N lgN), Incremental O(N lgN), Marriage-before-Conquest O(n lgh), see Barber 

[1996], O’Rourke [1998], Yao [1981], Kirkpatrik [1986], Chan [1996], Avis [1997],  

WEB [1]. 

Some algorithms directed to the diameter of a convex hull computation can be found 

in Snyder [1980], Dobkin [1979], Shamos [1978], other convection algorithm can be 

found in Skala [2016]. It should be noted that if the number h of the resulted convex 

hull is close to N, than algorithms with the complexity O(h N) are becoming algorithms 

with O(N2) complexity etc. 

The extension to a higher dimension is not easy and some algorithms cannot be 

extended even for E3, e.g. Graham Scan etc. or the complexity of the actual 

implementation is prohibitive for practical use.  

4. Proposed algorithm 

The new proposed algorithm was developed for larger data sets and it is based on “in-

core” technique, i.e. all data are stored in a computer memory. The fundamental 

requirements for the algorithm development were: simplicity, robustness and simple 

extensibility to E3. The proposed algorithm is based on two main principles: 

 Remove as many non-relevant points as possible 

 Divide and conqueror technique in order to decrease algorithm complexity 

The Fig.1 shows five regions i, where the given points are located. The algorithm is 

described for the E2 case and its extension to E3 is straightforward. It should be noted 

that the worst case is presented, i.e. when AABB is a square. Let us assume that the 

points that cannot contribute to the final maximum distance are located in the region 0, 
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which contains points closer to all corners of the AABB than the minimal edge length 

of the AABB or known distance estimation. Then the given data set  can be reduced 

to  =  - 0. In order to decrease expected number of points to be processed, we need 

to process this data set  to get more information on those points. As the standard 

algorithm for maximum distance is of O(N2) complexity, we can use any pre-processing 

of O(N) or O(N lgN) complexity to decrease number of points to be left for the final 

processing with the algorithm of O(N2) complexity. 

 

It can be seen that the following principal steps have to be made: 

1. Pre-processing: can be performed with O(N) complexity: 

a. Find the bounding AABB and extreme points, i.e. two extreme 

points for each axis (max. 4 points). 

b. Find the most distant “extreme” points [max] for each corner of the 

AABB (max. 4 points). 

c. Find the minimum distant “extreme” points [min] for each corner of 

the AABB (max. 4 points). 

d. Determine the longest mutual distance d between those found points 

(max.12 points).  

It should be noted that the worst case is a squared AABB and found 

distance d ≥ a.  

For a rectangular window found distance d ≥ max{a,b}. 

e. Determine points of 0 that cannot contribute to the maximum 

distance, i.e. points having a smaller distance than the found 

distance d from all corners of the AABB and extreme points. 

Remove the 0 points from the original data set . 

f. Split remaining points to new sets i, i=1,..,4, see the Fig.1. 

The number S0 of points in the 0 set can be estimated as:  
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For the uniform distribution of points the  set, the number of points to be 

processed, i.e. number of points outside of the 0 set, is qN = 0,684 N, 
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As the “Brute Force” algorithm is of the O(N2), the speed up expected is 

approx.: 

13.2)684.0/(1 2 
 

It should be noted that the distance d >> a in practical data sets and the 0 

set contains much more points which can be removed from the final 

processing, see Tab.1 actually compared points, i.e. last column.  

It can be seen that if found distance d ≥ dd, see Fig.1, then the comparison of 

points from the neighbor data sets is not needed, where:  
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2. Run-time steps of the proposed algorithm: 

a. Taking an advantage of space subdivision, find the maximum 

distance d between points of [1, 3], i.e. one point from 1 and 

the second point is from 3 as there can be expected the longest 

distance between the given points - this step is O(N2) complexity. 

b. Remove points from the 2 and 4 datasets closer to the related 

corner of the AABB than already found distance d - this step is 

O(N) complexity. 

c. Find a new maximum distance d between points of [2, 4] - this 

step is O(N2) complexity. 

d. If already found distance d  dd then  

i. Reduce 1, 2, 3, 4 - steps are O(N2) complexity 

ii. find a new maximum distance d between points of 

[1, 2], [2, 3], [3, 4] and [4, 1]. It is necessary to 

note that if d > dd, then the 0 boundary crosses the 

AABB and points in the neighbors regions cannot 

contribute to the maximum distance.  

 

As can be seen the algorithm is very simple and easy to implement. 

function distance_2 (A , B: point); 

{   distance_2:=(A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y)}; 

# Square of the distance ║A - B║ is actually computed # 

 

function S_Dist (A , B : set) 

{   d := 0; d0 := 0; 

     for each point X from A do 

        for each point Y from B do 

        {     d0 := distance_2 (X , Y);    if d0 > d then d := d0 

        }; 

        S_Dist := d 

} 

 

1. Q := points forming the AABB for the given set  and extreme points [max 

and min] XX for each corner of the AABB. 

# 8 points found at maximum, complexity O(N) # 

2. dM=max { Qi , Qj } 

# Determine the maximum distance dM of the points in Q # 

# by the “Brute Force” algorithm with O(M2) complexity# 

# only max. 8 points are to be processed # 

3. # the set  is to be split into i sets# 

for all points X from the set  

{   i := index of the region i for the point X  

    d = distance of the point X and of the opposite AABB corner for the set i. 
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    # do not store points having higher distance from a AABB corner than dM # 

    if d  dM then  

    { STORE ( X , i ); # store a point X in the i set # 

       dM := d ; # update the maximum distance di for the region i# 

       XXi := X # update XXi – one extreme point for each region i # 

    } 

}  

4. # new maximum distance estimation based on extreme points of sets i found 

in step 3# 

dq = max { XXi , XXj },     i, j =1,…,4   

dM = max { dM ,  dq } 

5. # The “diagonal” regions are to be tested with O(N2) algorithm # 

# REDUCE ( i , dM ) remove points from the i set with smaller distance 

from the opposite AABB corner # 

REDUCE ( 1 , dM );  REDUCE ( 3 , dM );  

dM := max { dM , S_Dist( 1 , 3 ) }; 

REDUCE ( 2 , dM );  REDUCE ( 4 , dM ); 

dM := max { dM , S_Dist( 2 , 4 ) } 

6. # neighbor regions should be tested if necessary #  

if dM  dd then  

{   REDUCE ( 1 , dM ); REDUCE ( 2 , dM );    

     REDUCE ( 3 , dM ); REDUCE ( 4 , dM ); 

     dM := max { dM , S_Dist( 1 , 2 ) };   dM := max { dM , S_Dist( 2 , 3 ) 

}; 

     dM := max { dM , S_Dist( 3 , 4 ) };   dM := max { dM , S_Dist( 4 , 1 ) } 

} 

7. d := SQRT (dM)  # compute the final distance as a square root of d # 

 

Fast maximum distance algorithm 

Algorithm 2 

 

Implementation notes 

There are several possibilities how to further improve the proposed algorithm especially 

in the context of the specific programming language and data structures used. 

Nevertheless, the influence of this is small as experiments proved and for the expected 

data sizes do not have any significant influence. 

Generally, it is recommended: 

 The “array list” construction should be used for storing i sets; this 

construction enables to increase an array size without reallocation and data 

copying, 

 Two or higher dimensional arrays for storing x, y values should not be used, 

as for each array element one addition and one multiplication operations are 

needed (computational cost is hidden in the index evaluation). Data should be 

stored in two arrays X and Y, or as pairs (x, y) in one-dimensional structure 

array XY etc. 
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 Square of a distance should be used in order to save multiple square root 

evaluations. It is possible as the square function is monotonically growing and 

can be used for comparison operations.  

 Store data in a linked list as only a sequential pass is required and remove, 

resp. insert operation is simple and no data overwriting is required. 

It should be noted that the i sets are determined by an arc of a circle, i.e. the separation 

function is quadratic. Experiments proved that if a half-space separation function is 

used, the proposed algorithm is faster as only a linear function is evaluated. 

5. Experimental results 

The standard “Brute Force”, convex hull (Quick Hull) and proposed algorithms were 

implemented in C# and Pascal/Delphi, verified and extensively tested for different sizes 

of the given data sets and different data set types (random, uniform, clustered etc.) as 

well. Standard PC with 2,8 GHz Intel Pentium 4, 1 GB RAM with MS Windows XP 

was used.  

Cumulative results obtained during experiments are presented in Tab.2. Experiments 

made proved that a significant speed-up has been reached. It is necessary to note that 

the speed-up 100 means that the computation is 100 times faster. It can be seen that for 

106 points the speed-up is 10 000, i.e. computation is 104 times faster and grows with 

the number of points nearly exponentially, see Fig.5 - note that axes scale is 

logarithmic.  

Table 2 Experimental results for uniformly distributed points  

[* values obtained by extrapolation] 

  Computational time [ms] Speed-up Compared 

Points 

103*N 

Brute Force  

(BF) 

Quick Hull  

(QH) 
New BF/QH BF/New QH/New QH New 

100 137 760   108 15 1 281 9 462 7,38 405,1 16,1 

160 353 920   178 25 1 987 14 364 7,23 454,0 23,7 

250 865 760   260 56 3 332 15 460 4,64 486,0 26,9 

400 2 216 480   451 84 4 911 26 387 5,37 583,1 26,1 

630 5 498 080   720 167 7 635 32 946 4,32 661,2 32,7 

1 000 13 783 840   1 130 259 12 197 53 277 4,37 707,1 25,3 

1 600 35 467 040   1 721 364 20 603 97 437 4,73 735,9 30,8 

2 500 86 591 680   3 069 664 28 217 130 378 4,62 761,9 22,3 

4 000 221 673 760 * 5 523 1 231 40 139 180 094 4,49 751,2 23,1 

6 300 507 556 000 * 9 544 1 708 53 183 297 164 5,59 750,0 23,5 

10 000 1 106 173 600 * 15 064 2 470 73 432 447 916 6,10 750,0 23,2 
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Fig 4 Computational time of the “Brute force”, Quick hull and the proposed algorithm 

 

 

Fig 5 Speed up of the Quick hull and the proposed algorithm over the Brute force 

algorithm. 

The experiments proved that the speed-up grows significantly with the number of 

points processed, see Fig.4 and Fig.5. The final step of the proposed algorithm of O(N2) 

complexity has a low influence and that the preprocessing steps significantly decrease 

number of points processed in the final step. This is due to the very low number of 

points remaining for the final evaluation for maximum distance, see Tab.1, where “QH” 

presents number of points finally processed after construction by the Quick Hull 

method, while “New” presents number of points finally processed by the proposed 

algorithm. 
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Fig 6 Number of points remaining for the final processing by the “Brute Force” 

algorithm 

Several convex hulls algorithms were used in order to compare efficiency of the 

proposed algorithm. The convex hull based algorithms in E2 proved reasonable results 

but the proposed algorithm was at least 4-5 times faster than algorithms based on the 

convex hull approach. The proposed algorithm was originally intended for E2 and E3 

applications, but it is easily extendible for the Ek case as well. Experiments proved 

robustness and faster computation of the proposed algorithm for data sets with different 

characteristics, i.e. Gaussian distribution, clusters and etc. 

The speed-up over the convex-hull approaches is primarily caused by “ordering” 

data into i sets made with O(N) complexity and also all other steps are of O(N) 

complexity. Only the final computation is of O(N2) complexity, but the number of data 

processed by the proposed algorithm is rather small, see Tab.1. On the opposite the 

convex hull construction has a higher complexity than O(N) in general and number of 

points left for the final processing with O(N2) complexity has approx. 10 times more 

points left for processing, i.e. 100 times more computations actually due to the final 

step with O(N2) complexity. 

6. Conclusion 

A new simple, easy to implement, robust and effective algorithm for finding a 

maximum distance of points in E2 was developed. The experimental results clearly 

proved that the proposed algorithm is convenient for medium and large data sets. 

Algorithm speed-up grows significantly with the number of points processed. The 

proposed algorithm can be easily extended to E3 by a simple modification. In the E3 

case, we have to process 1, …, 8 data subsets. For the Ek case the original data must 

be split to data sets i, where i = 1,…,2k. Nevertheless the memory requirements and 
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preprocessing time remain the same as we have to only split data from the  set to the 

to i datasets which are smaller. 

The experiments also proved that the algorithm offers higher speed-up than 

algorithms based on convex-hull in E2 and it is easy to implement it as well. The 

experimental tests were made on a squared interval that is considered to be the worst 

case for testing of algorithm properties as far as the computational time is concerned. 

For oblong intervals, the proposed algorithm runs even faster. Another nice property is 

its extensibility to the Ek case on the contrary to algorithms based on convex hull. 

It is necessary to note that the presented algorithm is “output sensitive” type, so it 

is not convenient for an extremely special cases, when all points are points of a circle 

as N (N-1)/2 points have the same distance etc. However, even in this case the algorithm 

is faster than the “Brute Force” and algorithms based on a convex hull construction. It 

can be seen that the presented algorithm can be extended for the E3 data sets as well. 
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