
Simple and Fast Oexp(N) Algorithm for Finding an Exact

Maximum Distance in E2 Instead of O(N^2) or O(N lgN)

Vaclav Skala1, Michal Smolik1

1 Faculty of Applied Sciences, University of West Bohemia,

Univerzitni 8, CZ 30614 Plzen, Czech Republic

Abstract. Finding a maximum distance of points in E2 or in E3 is one of those. It

is a frequent task required in many applications. In spite of the fact that it is an

extremely simple task, the known “Brute force” algorithm is of O(N2)

complexity. Due to this complexity the run-time is very long and unacceptable

especially if medium or larger data sets are to be processed. An alternative

approach is convex hull computation with complexity higher than O(N) followed

by diameter computation with O(M2) complexity. The situation is similar to

sorting, where the bubble sort algorithm has O(N2) complexity that cannot be

used in practice even for medium data sets.

This paper describes a novel and fast, simple and robust algorithm with O(N)

expected complexity which enables to decrease run-time needed to find the

maximum distance of two points in E2. It can be easily modified for the Ek case

in general. The proposed algorithm has been evaluated experimentally on larger

different datasets in order to verify it and prove expected properties of it.

Experiments proved the advantages of the proposed algorithm over the

standard algorithms based on the “Brute force”, convex hull or convex hull

diameters approaches. The proposed algorithm gives a significant speed-up to

applications, when medium and large data sets are processed. It is over 10 000

times faster than the standard “Brute force” algorithm for 106 points randomly

distributed points in E2 and over 4 times faster than convex hull diameter

computation. The speed-up of the proposed algorithm grows with the number of

points processed.

Keywords: Maximum distance, algorithm complexity.

1. Introduction

A maximum distance of two points in the given data set is needed in many applications.

A standard “Brute Force” algorithm with O(N2) complexity is usually used, where N is

a number of points in the given data set. Such algorithm leads to very high run-time if

larger data sets are to be processed. As the computer memory capacity increases, larger

data sets are to be processed. Typical data sets in computer graphics contain usually

105-107 and even more of points. In spite of the CPU speed increases, the run-time even

for such a simple task leads to unacceptable processing time for today’s applications.

Of course, there is a very special case when points are distributed on a circle only. This

requires the O(N2) algorithm if we want to find all the couples of points as there is

N(N-1)/2 couples. In all other cases “output sensitive” algorithms should be faster.

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

However, our task is just to find the maximum distance, not all the pairs having a

maximum distance. So the complexity of this algorithm should be lower. Also due to

the numerical precision points do not lie exactly on a circle if data have this very

specific property.

The new proposed algorithm with O(N) expected complexity is based on the following

assumptions:

 Any pre-processing with a lower complexity than the optimal run-time one

should speed-up processing of the given data set. In our case the optimal

algorithm covering all the special cases is of O(N2) complexity and therefore

preprocessing with complexities O(lgN), O(N), O(N lgN) etc. should speed up

the run-time.

 General properties, including geometrical ones, of input data should be

carefully analyzed in order to find all useful information that can lead to faster

pre-processing and the final run-time.

 If data are not organized in a very special way, e.g. points are on the Axis

Aligned Bounding Box (AABB) boundary only or points are on a circle etc.,

we can use an algorithm with “output sensitive” complexity and we should get

additional speed-up.

In general, algorithms should not depend on very specific presumptions or

technological issues unless the algorithm is targeted to very specific technological

platform or applications. Any algorithm must be stable and robust to input data

properties, in general.

2. Brute force algorithm

The standard “Brute Force” algorithm uses two nested loops in order to find a maximum

distance. Algorithms with such approach can be found in many text-books dealing with

fundamental algorithms and data structures, e.g. Hilyard and Theilet [2007], Mehta and

Sahni [2005], Sahni [1998], Sedgwick [2002], Wirth [1976]. Such algorithms can be

represented by Alg.1 in general as:

function distance_2 (A , B: point);

{ distance_2:=(A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y)};

Square of the distance ║A - B║ is actually computed #

d := 0;

for i := 1 to N-1 do

 for j := i+1 to N do

 {

 d0 := distance_2(Xi , Xj);

 if d < d0 then d := d0

 };

d := SQRT (d) # if needed #

Standard “Brute Force” algorithm

Algorithm 1

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

The Alg.1 is clearly of O(N2) complexity and processing time increases

significantly with number of points processed, see Tab.1.

In practice, it can be expected that points are not organized in a very specific

manner, e.g. points on a circle etc., and points are uniformly distributed more or less.

In this case “output sensitive” algorithms usually lead to efficient solutions.

Fig.1 Splitting the  set to i sets for the worst case – squared area

Fig 2 Splitting the  set to i sets for the rectangular area case

x

a/

2

a/

2

b/2

b/2

C B y

0





d

D A



3



4



2



1

dd

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

Let points are inside of an Axis Aligned Bounding Box (AABB) defined as

<-a/2 , a/2>×<-b/2 , b/2>. Then Fig.1 presents a typical situation for the worst case

when AABB is a square (a = b), while the Fig.2 presents general AABB situation for

the case a > b. In the following we will explore the worst case, i.e. situation at the Fig.1,

and the first maximum distance estimation d is d = a.

It can be seen that points in the set 0 cannot influence the maximum distance

computation in the given data set. We can remove all points 0 from the given data set

 and obtain faster algorithm. As the maximum distance finding algorithm is of O(N2)

complexity an algorithm with a lower complexity can be used in order to find and

eliminate points which cannot influence the final distance. Space subdivision

techniques can be used to split points into the disjunctive data sets i and decrease run-

time complexity again. For a general case, when AABB is not squared, the 0 set will

contain more points of course, see Fig.3.

Let us explore the worst case more in a detail, now.

2
2

1
2









a

bd

22

2 abd 

Let us consider the case, when
bka 

.

Then
222 bd 

 ,
 aL

and
 aaL 2222 

.

The a rea P is given as


































121
2

1

2
2

1
2

2

1

2

1

2

2

2

2
22

22222222222

b

d
k

b

d
kb

bdkbbdbkbdabdaLP

If the most consuming parts with O(N2) complexity is considered, then the speed-up

of the proposed algorithm over the “Brute Force” algorithm for uniformly distributed

points is defined as:

2
222

2

2
222

2

22

2222

12141214
4






 








 











dkdk

k

dkdk

k

bb

bbk

P

ab


for 21 ddd 
.

For 1k and 2d the speed-up  that is expected from the algorithm

specification.

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

Fig 3 Distances definitions for a general AABB

It can be seen that for a non-squared AABB distances are defined as

Table 1

E2 222
1 }],[min{

2

1
}],[max{ babad 

22
2 bad 

E3 222
1 }],,[min{

2

1
}],,[max{ cbacbad 

222
2 cbad 

a, b are sizes of the AABB in E2, resp. a, b, c are sizes of the AABB in E3

For the E3 case, some minor changes have to be made as we have 6 points defining

the AABB and 6+6 extreme points in the AABB, i.e. points having the longest distance

and the shortest distance from the relevant AABB corner and the 0 set is to be split is

to be split to sets 0,..., 6. However, the computational time is more or less the same

as the same number of points is processed and the preprocessing is of O(N) complexity.

It can be seen that the extension to Ek is straightforward and simple to implement.

L

L

b/2

ξ

P

x

a/

2

a/

2

b/2

C B y

0

d

D A

d

2

d1

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

3. Convex hull diameter

The idea of finding maximum distance of points by more effective algorithms is not

new. Reasonably effective approach is based on a convex hull construction of the given

data set. Then the convex hull points are processed by the standard algorithm with

O(N2) complexity in order to find the maximum distance. It is obvious that that all

techniques based on the convex hull construction have the following properties:

 Convex hull construction algorithms for a higher dimension than E2, i.e. for

E3 or Ek in general, are complex and quite difficult to implement. Skiena

[1997] proved that the “gift wrapping algorithm” has
 12/ knO

 complexity

in the case of k dimensional problem. Yao [1981] has proved that for the two

dimensional case specialized algorithm has O(N lgN) complexity.

 Points of the convex hull are to be processed by the final algorithm with O(h2)

complexity, where h is the number of points of the computed convex hull, i.e.

the technique is an output sensitive. The number of convex hull points might

be quite high, while the maximum distance is usually given by two points in

the given data set.

Generally, the well known algorithms have the computational complexities as

follow: Brute Force O(N4), Gift Wrapping O(N h), Graham Scan O(N lgN), Jarvis

March O(N lgN), Quick Hull O(h N), Divide-and-Conquer O(N lgN), Monotone Chain

O(N lgN), Incremental O(N lgN), Marriage-before-Conquest O(n lgh), see Barber

[1996], O’Rourke [1998], Yao [1981], Kirkpatrik [1986], Chan [1996], Avis [1997],

WEB [1].

Some algorithms directed to the diameter of a convex hull computation can be found

in Snyder [1980], Dobkin [1979], Shamos [1978], other convection algorithm can be

found in Skala [2016]. It should be noted that if the number h of the resulted convex

hull is close to N, than algorithms with the complexity O(h N) are becoming algorithms

with O(N2) complexity etc.

The extension to a higher dimension is not easy and some algorithms cannot be

extended even for E3, e.g. Graham Scan etc. or the complexity of the actual

implementation is prohibitive for practical use.

4. Proposed algorithm

The new proposed algorithm was developed for larger data sets and it is based on “in-

core” technique, i.e. all data are stored in a computer memory. The fundamental

requirements for the algorithm development were: simplicity, robustness and simple

extensibility to E3. The proposed algorithm is based on two main principles:

 Remove as many non-relevant points as possible

 Divide and conqueror technique in order to decrease algorithm complexity

The Fig.1 shows five regions i, where the given points are located. The algorithm is

described for the E2 case and its extension to E3 is straightforward. It should be noted

that the worst case is presented, i.e. when AABB is a square. Let us assume that the

points that cannot contribute to the final maximum distance are located in the region 0,

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

which contains points closer to all corners of the AABB than the minimal edge length

of the AABB or known distance estimation. Then the given data set  can be reduced

to  =  - 0. In order to decrease expected number of points to be processed, we need

to process this data set  to get more information on those points. As the standard

algorithm for maximum distance is of O(N2) complexity, we can use any pre-processing

of O(N) or O(N lgN) complexity to decrease number of points to be left for the final

processing with the algorithm of O(N2) complexity.

It can be seen that the following principal steps have to be made:

1. Pre-processing: can be performed with O(N) complexity:

a. Find the bounding AABB and extreme points, i.e. two extreme

points for each axis (max. 4 points).

b. Find the most distant “extreme” points [max] for each corner of the

AABB (max. 4 points).

c. Find the minimum distant “extreme” points [min] for each corner of

the AABB (max. 4 points).

d. Determine the longest mutual distance d between those found points

(max.12 points).

It should be noted that the worst case is a squared AABB and found

distance d ≥ a.

For a rectangular window found distance d ≥ max{a,b}.

e. Determine points of 0 that cannot contribute to the maximum

distance, i.e. points having a smaller distance than the found

distance d from all corners of the AABB and extreme points.

Remove the 0 points from the original data set .

f. Split remaining points to new sets i, i=1,..,4, see the Fig.1.

The number S0 of points in the 0 set can be estimated as:

)13
3

(22/3

2/

22
0  


adxxaS

a

a

For the uniform distribution of points the  set, the number of points to be

processed, i.e. number of points outside of the 0 set, is qN = 0,684 N,

where:

684.03
3

)13
3

(

2

22

0 









 



a

aa

S

SS
q

As the “Brute Force” algorithm is of the O(N2), the speed up expected is

approx.:

13.2)684.0/(1 2 

It should be noted that the distance d >> a in practical data sets and the 0

set contains much more points which can be removed from the final

processing, see Tab.1 actually compared points, i.e. last column.

It can be seen that if found distance d ≥ dd, see Fig.1, then the comparison of

points from the neighbor data sets is not needed, where:

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

   baaaabadd  for
2

5
4/2/ 2222

2. Run-time steps of the proposed algorithm:

a. Taking an advantage of space subdivision, find the maximum

distance d between points of [1, 3], i.e. one point from 1 and

the second point is from 3 as there can be expected the longest

distance between the given points - this step is O(N2) complexity.

b. Remove points from the 2 and 4 datasets closer to the related

corner of the AABB than already found distance d - this step is

O(N) complexity.

c. Find a new maximum distance d between points of [2, 4] - this

step is O(N2) complexity.

d. If already found distance d  dd then

i. Reduce 1, 2, 3, 4 - steps are O(N2) complexity

ii. find a new maximum distance d between points of

[1, 2], [2, 3], [3, 4] and [4, 1]. It is necessary to

note that if d > dd, then the 0 boundary crosses the

AABB and points in the neighbors regions cannot

contribute to the maximum distance.

As can be seen the algorithm is very simple and easy to implement.

function distance_2 (A , B: point);

{ distance_2:=(A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y)};

Square of the distance ║A - B║ is actually computed #

function S_Dist (A , B : set)

{ d := 0; d0 := 0;

 for each point X from A do

 for each point Y from B do

 { d0 := distance_2 (X , Y); if d0 > d then d := d0

 };

 S_Dist := d

}

1. Q := points forming the AABB for the given set  and extreme points [max

and min] XX for each corner of the AABB.

8 points found at maximum, complexity O(N) #

2. dM=max { Qi , Qj }

Determine the maximum distance dM of the points in Q #

by the “Brute Force” algorithm with O(M2) complexity#

only max. 8 points are to be processed #

3. # the set  is to be split into i sets#

for all points X from the set 

{ i := index of the region i for the point X

 d = distance of the point X and of the opposite AABB corner for the set i.

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

 # do not store points having higher distance from a AABB corner than dM #

 if d  dM then

 { STORE (X , i); # store a point X in the i set #

 dM := d ; # update the maximum distance di for the region i#

 XXi := X # update XXi – one extreme point for each region i #

 }

}

4. # new maximum distance estimation based on extreme points of sets i found

in step 3#

dq = max { XXi , XXj }, i, j =1,…,4

dM = max { dM , dq }

5. # The “diagonal” regions are to be tested with O(N2) algorithm #

REDUCE (i , dM) remove points from the i set with smaller distance

from the opposite AABB corner #

REDUCE (1 , dM); REDUCE (3 , dM);

dM := max { dM , S_Dist(1 , 3) };

REDUCE (2 , dM); REDUCE (4 , dM);

dM := max { dM , S_Dist(2 , 4) }

6. # neighbor regions should be tested if necessary #

if dM  dd then

{ REDUCE (1 , dM); REDUCE (2 , dM);

 REDUCE (3 , dM); REDUCE (4 , dM);

 dM := max { dM , S_Dist(1 , 2) }; dM := max { dM , S_Dist(2 , 3)

};

 dM := max { dM , S_Dist(3 , 4) }; dM := max { dM , S_Dist(4 , 1) }

}

7. d := SQRT (dM) # compute the final distance as a square root of d #

Fast maximum distance algorithm

Algorithm 2

Implementation notes

There are several possibilities how to further improve the proposed algorithm especially

in the context of the specific programming language and data structures used.

Nevertheless, the influence of this is small as experiments proved and for the expected

data sizes do not have any significant influence.

Generally, it is recommended:

 The “array list” construction should be used for storing i sets; this

construction enables to increase an array size without reallocation and data

copying,

 Two or higher dimensional arrays for storing x, y values should not be used,

as for each array element one addition and one multiplication operations are

needed (computational cost is hidden in the index evaluation). Data should be

stored in two arrays X and Y, or as pairs (x, y) in one-dimensional structure

array XY etc.

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

 Square of a distance should be used in order to save multiple square root

evaluations. It is possible as the square function is monotonically growing and

can be used for comparison operations.

 Store data in a linked list as only a sequential pass is required and remove,

resp. insert operation is simple and no data overwriting is required.

It should be noted that the i sets are determined by an arc of a circle, i.e. the separation

function is quadratic. Experiments proved that if a half-space separation function is

used, the proposed algorithm is faster as only a linear function is evaluated.

5. Experimental results

The standard “Brute Force”, convex hull (Quick Hull) and proposed algorithms were

implemented in C# and Pascal/Delphi, verified and extensively tested for different sizes

of the given data sets and different data set types (random, uniform, clustered etc.) as

well. Standard PC with 2,8 GHz Intel Pentium 4, 1 GB RAM with MS Windows XP

was used.

Cumulative results obtained during experiments are presented in Tab.2. Experiments

made proved that a significant speed-up has been reached. It is necessary to note that

the speed-up 100 means that the computation is 100 times faster. It can be seen that for

106 points the speed-up is 10 000, i.e. computation is 104 times faster and grows with

the number of points nearly exponentially, see Fig.5 - note that axes scale is

logarithmic.

Table 2 Experimental results for uniformly distributed points

[* values obtained by extrapolation]

 Computational time [ms] Speed-up Compared

Points

103*N

Brute Force

(BF)

Quick Hull

(QH)
New BF/QH BF/New QH/New QH New

100 137 760 108 15 1 281 9 462 7,38 405,1 16,1

160 353 920 178 25 1 987 14 364 7,23 454,0 23,7

250 865 760 260 56 3 332 15 460 4,64 486,0 26,9

400 2 216 480 451 84 4 911 26 387 5,37 583,1 26,1

630 5 498 080 720 167 7 635 32 946 4,32 661,2 32,7

1 000 13 783 840 1 130 259 12 197 53 277 4,37 707,1 25,3

1 600 35 467 040 1 721 364 20 603 97 437 4,73 735,9 30,8

2 500 86 591 680 3 069 664 28 217 130 378 4,62 761,9 22,3

4 000 221 673 760 * 5 523 1 231 40 139 180 094 4,49 751,2 23,1

6 300 507 556 000 * 9 544 1 708 53 183 297 164 5,59 750,0 23,5

10 000 1 106 173 600 * 15 064 2 470 73 432 447 916 6,10 750,0 23,2

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

Fig 4 Computational time of the “Brute force”, Quick hull and the proposed algorithm

Fig 5 Speed up of the Quick hull and the proposed algorithm over the Brute force

algorithm.

The experiments proved that the speed-up grows significantly with the number of

points processed, see Fig.4 and Fig.5. The final step of the proposed algorithm of O(N2)

complexity has a low influence and that the preprocessing steps significantly decrease

number of points processed in the final step. This is due to the very low number of

points remaining for the final evaluation for maximum distance, see Tab.1, where “QH”

presents number of points finally processed after construction by the Quick Hull

method, while “New” presents number of points finally processed by the proposed

algorithm.

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

100,000 1,000,000 10,000,000

Brute force

Quick hull

New

[ms]

[N]

1,000

10,000

100,000

1,000,000

100 1,000 10,000

BF/QH

BF/New

N *103

speed-up

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

Fig 6 Number of points remaining for the final processing by the “Brute Force”

algorithm

Several convex hulls algorithms were used in order to compare efficiency of the

proposed algorithm. The convex hull based algorithms in E2 proved reasonable results

but the proposed algorithm was at least 4-5 times faster than algorithms based on the

convex hull approach. The proposed algorithm was originally intended for E2 and E3

applications, but it is easily extendible for the Ek case as well. Experiments proved

robustness and faster computation of the proposed algorithm for data sets with different

characteristics, i.e. Gaussian distribution, clusters and etc.

The speed-up over the convex-hull approaches is primarily caused by “ordering”

data into i sets made with O(N) complexity and also all other steps are of O(N)

complexity. Only the final computation is of O(N2) complexity, but the number of data

processed by the proposed algorithm is rather small, see Tab.1. On the opposite the

convex hull construction has a higher complexity than O(N) in general and number of

points left for the final processing with O(N2) complexity has approx. 10 times more

points left for processing, i.e. 100 times more computations actually due to the final

step with O(N2) complexity.

6. Conclusion

A new simple, easy to implement, robust and effective algorithm for finding a

maximum distance of points in E2 was developed. The experimental results clearly

proved that the proposed algorithm is convenient for medium and large data sets.

Algorithm speed-up grows significantly with the number of points processed. The

proposed algorithm can be easily extended to E3 by a simple modification. In the E3

case, we have to process 1, …, 8 data subsets. For the Ek case the original data must

be split to data sets i, where i = 1,…,2k. Nevertheless the memory requirements and

10

100

1,000

100 1,000 10,000

Quick Hull

New

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

preprocessing time remain the same as we have to only split data from the  set to the

to i datasets which are smaller.

The experiments also proved that the algorithm offers higher speed-up than

algorithms based on convex-hull in E2 and it is easy to implement it as well. The

experimental tests were made on a squared interval that is considered to be the worst

case for testing of algorithm properties as far as the computational time is concerned.

For oblong intervals, the proposed algorithm runs even faster. Another nice property is

its extensibility to the Ek case on the contrary to algorithms based on convex hull.

It is necessary to note that the presented algorithm is “output sensitive” type, so it

is not convenient for an extremely special cases, when all points are points of a circle

as N (N-1)/2 points have the same distance etc. However, even in this case the algorithm

is faster than the “Brute Force” and algorithms based on a convex hull construction. It

can be seen that the presented algorithm can be extended for the E3 data sets as well.

Acknowledgments

The authors would like to thank their colleagues at the University of West Bohemia,

Plzen, for their discussions and suggestions, and anonymous reviewers for their

valuable comments and hints provided. The research was supported by projects Czech

Science Foundation (GACR) No. GA17-05534S and partially by SGS 2019-016.

References

[1] Barber,C.B., Dobkin,D.P., Huhdanpaa, H. (1996) The Quickhull Algorithm for Covex Hulls,

ACM Trans.on Mathematical Software, Vol.22, No.4, pp.469-483, 1996

[2] Dobkin,D.P., Snyder,L. (1979) On a general method of maximizing and minimizing among

certain geometric problems. Proceedings of the 20th Annual Symposium on the Foundations

of Computer Science, pp. 9-17, 1979.

[3] Hilyard, J., Teilhet,S. (2007) C# Coockbook, OReilly.

[4] Mehta,D.P., Sahni,S. (2005) Handbook of Data Structures and Applications, CRC Press.

[5] O’Rourke,J. (1998) Computational Geometry in C, Cambridge University Press.

[6] Sahni,S. 1998. Data Structures and Applications in C++, McGraw-Hill.

[7] Sedgwick,R. (2002) Algorithms in Java, Addison Wesley Professional.

[8] Shamos M.I., Computational geometry. Ph.D. thesis, Yale University, 1978

[9] Skala,V., Majdisova,Z., Smolik,M. (2016) Space Subdivision to Speed-up Convex Hull

Construction in E3, Advances in Software Engineering, Vol.91 (Jan. 2016), pp.12-22,

Elsevier, ISSN 0965-9978, 2016

[10] Skala,V., Smolik,M., Majdisova,Z. (2016) Reducing the number of points on the convex hull

calculation using the polar space subdivision in E2, SIBGRAPI 2016, IEEE, pp. 40-47, ISBN:

978-1-5090-3568-7, ISSN: 2377-5416, 2016

[11] Skiena,S.S. (1997) "Convex Hull." §8.6.2 in The Algorithm Design Manual. New York:

Springer-Verlag, pp. 351-354, 1997.

[12] Snyder,W.E., Tang D.A. (1980) Finding the extrema of a region. IEEE Transactions on

Pattern Analysis and Machine Intelligence, Vol. PAMI-2, pp. 266-269, 1980

[13] Wirth,N. (1976) Algorithms + Data Structures = Program, Prentice Hall, 1976

[14] Yao, A. C.-C. "A Lower Bound to Finding Convex Hulls." J. ACM 28, 780-787, 1981.

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

[15] Kirkpatrick,D.K., Seidel,R. (1986) Ultimate Planar Convex Hull Algorithm?, SIAM J.

Comput. 15, pp. 287-299, 1986

[16] Chan,T. (1996). Optimal output-sensitive convex hull algorithms in two and three dimensions.

Discrete Comput. Geom, vol.16, no.3, pp.361–368..

[17] Avis,D., Bremner,D., Seidel,R. (1997) How good are convex hull algorithms?,

Computational Geometry: Theory and Applications, Volume 7, Issue 5-6, April 1997, Pages

265-301

WEB ref’s

http://softsurfer.com/Archive/algorithm_0109/algorithm_0109.htm#Convex Hull Algorithms

(retrieved 2012-08-21)

Computational Science and Its Application, ICSSA 2019 proceedings, Part I, LNCS 11619, pp.367-382, ISSN 0302-9743,
ISBN 978-3-030-24288-6, Springer, 2019, https://doi.org/10.1007/978-3-030-24289-3_27

http://www.scopus.com/source/sourceInfo.url?sourceId=28456&origin=recordpage

