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Abstract. Many Radial Basis Functions (RBFs) contain a shape parameter which has an important role to ensure
good quality of the RBF approximation. Determination of the optimal shape parameter is a difficult problem. In
the majority of papers dealing with the RBF approximation, the shape parameter is set up experimentally or using
some ad-hoc method. Moreover, the constant shape parameter is almost always used for the RBF approximation,
but the variable shape parameter produces more accurate results. Several variable shape parameter methods, which
are based on random strategy or on an evolutionary algorithm, have been developed. Another aspect which has an
influence on the quality of the RBF approximation is the placement of reference points.

A novel algorithm for finding an appropriate set of reference points and a variable shape parameter selection
for the RBF approximation of functions y = f(x) (i.e. the case when a one-dimensional dataset is given and each
point from this dataset is associated with a scalar value) is presented. Our approach has two steps and is based
on exploiting features of the given dataset, such as extreme points or inflection points, and on comparison of the
first curvature of a curve. The proposed algorithm can be used for the approximation of data describing a curve
parameterized by one variable in multidimensional space, e.g. a robot path planning, etc.
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1. Introduction

Radial basis functions (RBFs) are used to solve
many technical and non-technical problems. RBFs
are real-valued functions which depend only on
the distance from the fixed center point. A RBF
method was originally introduced by [1], [2]. It is
a powerful tool for the meshless interpolation and
approximation of scattered data, as space tessella-
tion is not required. Moreover, this method is inde-
pendent with respect to the dimension of the space.
RBF applications can be found in data visualiza-
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tion [3], surface reconstruction [4], [5], [6], vector
fields visualization [7], solving partial differential
equations [8], [9], etc.

RBFs can be divided into two main groups of
basis functions: global RBFs and Compactly Sup-
ported RBFs (CS-RBFs) [10]. The use of CS-RBFs
leads to a simpler and faster computation, because
a system of linear equations has a sparse matrix.
However, approximation using CS-RBFs is quite
sensitive to the density of given scattered data.
Global RBFs are useful in repairing incomplete
datasets and they are significantly less sensitive to
the density of data as they cover the whole domain.
However, they lead to a linear system of equations
with a dense and ill-conditioned matrix.
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Choice of an appropriate shape parameter of
RBFs is extremely important to ensure good ap-
proximation. Several articles have been dedicated
to introducing different algorithms to compute a
constant value as an appropriate value for the shape
parameter [11], [12], [13], [14], etc. Many of these
focus on finding the minimal error in computations
or are based on convergence analysis. Other arti-
cles show that variable shape parameters are use-
ful instead of a fixed shape parameter. Sufficient
conditions to guarantee a unique solution of the
RBF interpolation with variable shape parameters
are derived in [15] for CS-RBFs and in [16] for
global RBFs. The variable shape parameters are
determined by used of genetic algorithm [17] and
minimization of the local cost function [18], [19] or
numerically by minimizing the root-mean-square
errors [20]. For these purposes, there are many
other papers which are dealing with the general
global optimization such as [21], [22], [23]. Other
approaches generate the variable shape parameters
from an estimated range when different distribu-
tions of values are used [24], [25], use Neural Net-
work RBF approach [26], [27], [28], [29], [30] or or-
togonal least square [31]. However, the approaches
mentioned do not reflect features of the given data.

Our approach for 1.5D case eliminating above
mentioned drawbacks will be described in this pa-
per. The proposed method consists of two steps.
In the first step, the Thin-Plate Spline (TPS) func-
tion is used. The second step is focused on RBFs
which have smoothness at least C3 at the origin
(e.g. Gaussian RBF, Wendland’s φ3,2, etc.). This
condition follows from the requirement that the
first curvature of curves is smooth, which is a direct
result of the algorithm described below. The pro-
posed approach leads to a significant compression
of the given data and obtaining their analytical
form. Our approach can be applied to many real
data in the different areas of interest, e.g. data
obtained from GPS navigation describing the ter-
rain profile [32], data for recovering smooth robot
trajectory [33], total electron content data [34], etc.

In the following section, the fundamental theo-
retical background needed for description of the
proposed algorithm will be mentioned. The pro-
posed two steps algorithm, including the deriva-
tion of the appropriate variable shape parameter,
will be described in Section 3. The results of the
proposed algorithm for synthetic and real data will
be presented in Section 4.

2. Theoretical Background

In this section, some theoretical aspects needed
for description of the proposed algorithm for place-
ment of reference points and choice of an appropri-
ate variable shape parameter for the RBF approxi-
mation will be introduced.

2.1. RBF Approximation with a Variable Shape
Parameter

We assume that we have an unordered dataset
{xi}N1 ∈ En, where n denotes the dimension of
space. Further, each point xi from the dataset
is associated with a vector hi ∈ Ep of the given
values, where p is the dimension of the vector, or
a scalar value, i.e. hi ∈ E1. In the following, we
will deal with scalar data approximation, i.e. the
case when each point xi is associated with a scalar
value hi is considered. Let us introduce a set of
new reference points (knots of RBF) {ξj}M1 ∈ En,
where n denotes the dimension of space, M is the
number of reference points and M � N .

These reference points may not necessarily have
any special distribution as uniform distribution, etc.
However, a good placement of the reference points
improves the approximation of the underlying data.
The RBF approximation is based on the distance
computation between the given point xi and the
reference point ξj .

As generally known, most RBFs are dependent
on the shape parameter α, which influences the
radius of support. In the case of the fundamental
RBF approximation (see [35], [36], [37]), the shape
parameter of the RBF used is set to a constant
value for all M RBFs, see Fig. 1a. Nevertheless,
it is possible to set a different shape parameter
for each of the M RBFs, where the shape param-
eter can be determined depending on features of

(a) Constant shape parame-

ter α

(b) Variable shape parame-

ters {αj}

Fig. 1. RBF collocation functions centered at reference

points {ξj} ∈ E2.
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the neighborhood of the reference point at which
a given RBF is centered or some other criterion
can be used. In such case, it is the RBF approxi-
mation with a variable shape parameter and the
approximated value is determined as:

f(x) =

M∑
j=1

cjφ (rj , αj) =

M∑
j=1

cjφ (‖x− ξj‖, αj) , (1)

where φ(rj , αj) is an RBF with shape parameter
αj centered at point ξj , see Fig. 1b. The approx-
imating function f(x) is represented as a sum of
the M RBFs with a variable shape parameter, each
associated with a different reference point ξj , and
weighted by a coefficient cj which has to be deter-
mined.

It can be seen that the overdetermined linear
system of equations is obtained when inserting all
points xi, with i = 1, . . . , N , into (1):

hi = f(xi) =

M∑
j=1

cjφ (‖xi − ξj‖, αj) i = 1, . . . , N . (2)

Using the matrix notation, the linear system of
equations (2) can be expressed:



φ (r11, α1) · · · φ (r1M , αM )
...

. . .
...

φ (ri1, α1) · · · φ (riM , αM )
...

. . .
...

φ (rN1, α1)· · ·φ (rNM , αM )




c1
...
cM

=



h1

...
hi
...
hN


, (3)

where rij = ‖xi − ξj‖ is the distance between the
given point xi and the reference point ξj .

Equation (3) can also be expressed in the form:

AV ar c = h. (4)

The presented system is again overdetermined,
M � N , and can be solved by the least squares
method, QR decomposition, etc.

The use of variable shape parameter αj disrupts
the proof of non-singularity of approximation ma-
trix AV ar. In practice, however, the constant shape
parameter does not prevent approximation matrix
becoming so ill-conditioned as to be essentially sin-
gular [37], and the benefits of variable shape pa-
rameter are considered substantial. Moreover, in
[38], it is shown that the variable shape parameter
is improving the conditionality.

2.2. RBF Approximation with a Variable Shape
Parameter and Lagrange Multipliers

In many cases, it is required that the approxi-
mate function must have exactly the given values
{sk}K1 ∈ E1 at some set of points {ηk}K1 ∈ En,
where K � N . It follows that the aim is finding
the RBF approximation of the dataset in the form
(1) subject to K constraints:

{f(ηk) = sk}K1 . (5)

This problem can be solved as minimization of the
square error of the RBF approximation subject to
K constraints and the method of Lagrange mul-
tipliers can be used for this purpose. Specifically,
our goal is to minimize the following function:

F (c,λ) =

N∑
i=1

(
M∑
j=1

cjφ (‖xi − ξj‖, αj)− hi

)2

+

K∑
k=1

λk

(
M∑
j=1

cjφ (‖ηk − ξj‖, αj)− sk

)

= (AV arc− h)2 + (cTRT − sT ) · λ.

(6)

This minimum is obtained by differentiating equa-
tion (6) with respect to c and λ and finding the
zeros of those derivatives. This leads to equations:

∂F

∂c
= 2AT

V arAV arc− 2AT
V arh+RTλ = 0

∂F

∂λ
= Rc− s = 0,

(7)

which leads to a system of linear equations:(
2AT

V arAV ar R
T

R 0

)(
c
λ

)
=

(
2AT

V arh
s

)
. (8)

The presented system has an (M +K)× (M +K)
symmetric matrix, where K � M , and can be
solved by the LU decomposition, QR decomposi-
tion, etc. Then the RBF approximation of the given
dataset can be expressed using equation (1) and
the vector c which was computed from the linear
system (8). However, the matrix AV ar depends
on shape parameters and their estimation will be
explained in the following sections.
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x

h

Stationary inflection points

Non-stationary inflection pointsEndpoints
Local extrema

(a) The significant points of the function are

local extrema, stationary and non-stationary
inflection points and endpoints.

x

h

xi

xi+1

xi+2

xi+3

�l=w1

�l+1=w2

w3

(b) Four points {xi, . . . ,xi+3} from the dataset
are interpolated by cubic curve and three signif-
icant points {wt} of this curve are shown: (red

squares) the points added to the set of suspicious

points, (gray triangle) a point discarded because
the condition (12) is not valid.

Fig. 2. Finding significant points of given data

2.3. Determination of Significant Points and

Their Properties

In this section, the proposed approach for de-

termination of the significant points of the given

dataset will be described. These points have a large

influence on the quality of the RBF approximation.

The paper is focused on a 1.5D case, i.e. we have

given a dataset {xi}N1 ∈ E1 and each point xi from

this dataset is associated with a value hi ∈ E1.

The local extrema, stationary and non-stationary

inflection points and endpoints of the dataset are

included among significant points, see Fig. 2a. The

points which will be used for the determination

of the set of significant points of the given data

will be called the set of suspicious points {ψl}NS

l=1,

i.e. a set of significant points is a reduced set of

suspicious points.

First, the ordering of the given dataset is per-

formed. After that, the set of suspicious points is

determined. For these purposes, every four points

{xi, . . . ,xi+3} from the given data are interpolated

by a cubic curve in the form:

gq(x) = β1q · x3 + β2q · x2 + β3q · x+ β4q

q = 1, . . . , N − 3,
(9)

which leads to the solution of the (N − 3) linear

systems of the size 4×4. Then, the significant points

{wt} of this cubic are determined, see Fig. 2b. The

significant points for the cubic curve (9) meet at

least one of the following conditions:

∂gq
∂x

= 0 or
∂2gq
∂x2

= 0, (10)

which leads in our case to the following set:

{wt} =
{
− β2q

3β1q

}
∪
{
(β2

2q−3β1qβ3q)>0:
−β2q±

√
β2
2q−3β1qβ3q

3β1q

} (11)

The significant point wt is further added to the
set of suspicious points {ψl}NS

l=1, if the necessary
condition:

xi ≤ wt ≤ xi+3 (12)

is valid. Moreover, the functional value gq(ψl) of
the associated cubic is calculated at such a suspi-
cious point ψl :

gq(ψl) = β1q ·ψ3
l +β2q ·ψ2

l +β3q ·ψl+β4q (13)

and the absolute value of the first curvature∣∣1kq(ψl)∣∣ of the associated cubic is determined (us-
ing the symbolic manipulation):∣∣1kq(ψl)∣∣ =

∣∣1k (gq(ψl))
∣∣ =

=

∣∣∣∣∣ 6β1qψl+2β2q(
1+(3β1qψ2

l +2β2qψl+β3q)
2
)3/2

∣∣∣∣∣ . (14)

It should be noted that absolute values of the first
curvature for the endpoints are calculated using
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the cubic curve interpolating points {x1, . . . ,x4},
or {xN−3, . . . ,xN}.

The set of suspicious points may contain two

or more identical points or points very close to

identical. This problem is caused by the fact that

one significant point can be obtained from up to

three cubics. Therefore, the reduction of the set of

suspicious points is performed. The resulting set of

significant points of the given data {χu} is deter-

mined as follows. First, the endpoints are added

to the set of significant points {χu}, their associ-

ated functional values are added to set {g(χu)}
and their associated absolute values of the first

curvatures are added to set
{∣∣1k(χu)

∣∣}. Now, let δ

is the average step between the given sorted points,

then the reduction of the set of suspicious points

can be performed as follows. The suspicious points

which meet the condition:

(‖ψl − x1‖ ≤ δ) or (‖ψl − xN‖ ≤ δ) , (15)

are deleted. Further, the subset Ψu of suspicious
points, where each point meets the relation:

Ψu =
{
ψl̂ : ‖ψl̂ −ψ1‖ ≤ δ

}
, (16)

is removed from the set of suspicious points {ψl}
and the new significant point is determined from
them by averaging:

χu =

∑
ψl̂

|Ψu|
, (17)

where |Ψu| is a size (cardinality) of the subset Ψu.
Moreover, the associated functional value g(χu)
and the associated absolute value of the first cur-
vature

∣∣1k(χu)
∣∣ are determined in the same way.

The process is repeated until the set of suspicious
points is not empty.

The whole algorithm for finding the set of sig-
nificant points of the given data, the calculation
of the first curvatures and associated functional
values in them is summarized in Algorithm 1.

Algorithm 1: Determination of the set of significant points {χu}S1 , the absolute values of the first

curvatures
{∣∣1k(χu)

∣∣}S
1

and the associated functional values {g(χu)}S1 .

Input: given points {xi}N1 ∈ E1 and their associated scalar values {hi}N1 ∈ E1, the average step
between given sorted points δ

Output: significant points, their associated first curvatures and their associated functional values{
χu,

∣∣1k(χu)
∣∣ , g(χu)

}S
1

1 Sort the given points {xi}N1 in ascending order.
2 for i = 1, . . . , N − 3 do
3 Determine the significant points {wt} for cubic curve defined by {xi, . . . , xi+3}, (eq. (9), eq. (11)).
4 if i = 1 then
5 Add the triplet

{
x1,
∣∣1k1(x1)

∣∣ , h1

}
to the output (using eq. (14)).

6 foreach wt do
7 if xi ≤ wt ≤ xi+3 then
8 Add the point wt to the set of suspicious points {ψl}.
9 Compute the first curvature

∣∣1ki(wt)∣∣, eq. (14), and the functional value gi(wt), eq. (13), and
add these values to appropriate sets

10 if i = (N − 3) then
11 Add the triplet

{
xN ,

∣∣1kN−3(xN )
∣∣ , hN} to the output (using eq. (14)).

12 From the set of suspicious points {ψl}, delete all points such that (15) is valid.
13 while the set of suspicious points is not empty do
14 Find Ψu =

{
ψl̂ : ‖ψl̂ −ψ1‖ ≤ δ

}
in the set of suspicious points {ψl}.

15 Add the triplet

{∑
ψl̂

|Ψu| ,
∑|1kq(ψl̂)|
|Ψu| ,

∑
gq(ψl̂)

|Ψu|

}
to the output (|Ψu| is cardinality of Ψu).

16 Delete all points ψl̂ ∈ Ψu and their associated values from the sets {ψl},
{∣∣1kq(ψl)∣∣} and {gq(ψl)}.
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3. Proposed Two Steps Algorithm

In this section, the proposed two steps algorithm
for the RBF approximation of the given data (in
form y = f(x)) including the determination of
placement of reference points and the derivation
of an appropriate variable shape parameter will be
described.

3.1. First Step of the Proposed Approach

In this section, the first step of our approach
will be described. The main goal of this step is to
perform the primary RBF approximation of the
given dataset such that the input data for the sec-
ond step of our method will be symmetrically dis-
tributed around the x-axis. This will be done using
inflection points (stationary and non-stationary)
and endpoints of the given data. Moreover, this
step executes the shift of associated values {hi}N1
so that the newly obtained associated values are
better approximated using the RBF, i.e. the prob-
lematic course of the sampled function as in Fig. 3
will be eliminated.

x0

h

Fig. 3. The course of the sampled function which is poorly
approximated using the RBF.

In the first step of our algorithm, the significant
points of the given data {χu} are firstly found
using the method introduced in Section 2.3. From
the set of significant points, only inflection points
(stationary or non-stationary) and endpoints are
used, see Fig. 4a.

Such a set of points is marked as {x̂v}M1
1 , where

M1 is number of points of interest, and the set
of their associated functional values is marked as
{ĝv}M1

1 . The significant point χu is an inflection
point (stationary or non-stationary) if its associ-
ated absolute value of the first curvature

∣∣1k(χu)
∣∣

is zero (or close to zero).
Now, the RBF interpolation with polynomial

reproduction [39] is performed for the set {x̂v}M1
1 ,

where each point x̂v is associated with a value
ĝv, see Fig. 4b. This means that the vector of
unknown weights cI = (cI1, . . . , cIM1) and vector
of coefficients for the polynomial aI are computed
from the linear system of equations:(

AI PI
P T
I 0

)(
cI
aI

)
=

(
h
0

)
, (18)

where the index I means the interpolation case, the
vector of associated values is h = (ĝ1, . . . , ĝM1

)T ,
the matrix AI = {Aij} = {φTPS (‖x̂i − x̂j‖)} and
the matrix PI = {Pi} =

{(
x̂Ti , 1

)}
.

The Thin-Plate Spline (TPS) is used as φTPS , i.e.:

φTPS(r) = r2 log(r) =
1

2
· r2 log(r2). (19)

x

h

Stationary inflection points

Non-stationary inflection points

Endpoints

(a) In the first step, stationary inflection points,

non-stationary inflection points and endpoints are
used as the significant points of the function.

h

x

Stationary inflection points
Endpoints Non-stationary inflection points

TPS interpolation - 1st pass

(b) Original function and the RBF interpolation

for selected significant points (result of the first
step of our approach).

Fig. 4. The first step of our proposed method.
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Algorithm 2: Determination of shifted associated values {ĥi}N1 , i.e. the first step of the proposed
approach.

Input: given points {xi}N1 and their associated scalar values {hi}N1
Output: interpolation points for the TPS interpolation {x̂v}M1

1 , vector of weights for the TPS inter-

polation cI , vector of coefficients for polynomial aI and shifted associated values {ĥi}N1
1 Determine the significant points of the given data {χu}S1 and calculate the functional values and

absolute values of the first curvatures in them, Algorithm 1.
2 Add χ1 to set {x̂v} and g(χ1) to set {ĝv}
3 for u = 2, . . . , S − 1 do
4 if

∣∣1k(χu)
∣∣ is zero then

5 Add χu to set {x̂v} and g(χu) to set {ĝv}

6 Add χS to set {x̂v} and g(χS) to set {ĝv}
7 Compute the vector of weights cI = (cI1, . . . , cIM1) and vector of polynomial coefficients aI , eq. (18)

8 Compute shifted values ĥi, where i = 1, . . . , N , eq. (20)

This global RBF is chosen because it is not depen-
dent on a shape parameter.

When the vector of weights cI and vector of
coefficients aI are determined, the new associated
values (i.e. shifted associated values) for original
dataset {xi}N1 can be computed:

ĥi = hi −
M1∑
v=1

cIvφTPS (‖xi − x̂v‖)− P (xi)

i = 1, . . . , N ,

(20)

where φTPS is given by (19).
The whole algorithm for the first step of the

proposed approach, i.e. determination of shifted
associated values {ĥi}N1 , is summarized in Algo-
rithm 2.

3.2. Second Step of the Proposed Approach

This section will be focused on the second step
of our approach. In the input of this step, we as-
sume that we have given the unordered dataset
{xi}N1 ∈ E1 and each point xi from this dataset

is associated with a shifted scalar value ĥi (these
values were calculated in the first step), see Fig. 5.
Our goal is to determine the RBF approximation
with a variable shape parameter and Lagrange mul-
tipliers for the described data. Therefore, the set
of reference points has to be determined. It should
be noted that the placement of reference points
has a significant influence on the quality of the
approximation. If the reference points are located

at the significant points of the given data, then

better approximation results are obtained.

h

x

Local extrema
Points for TPS interpolation from 1st pass

Fig. 5. Course of the input sampled function for the second
step of the proposed approach. The set of reference points
for the second step of our approach are marked. Hexagons

indicate input points for the TPS interpolation from the
first step (i.e. stationary and non-stationary inflection points

and endpoints) and circles denote local extrema of shifted

functional values.

Therefore, the significant points {χ̂u} of the

input data for the second step are found using

the method which was introduced in Section 2.3.

This set of significant points is further used as

the reference points of the RBF approximation

{ξj}M1 . It should be noted that the inflection points

(stationary and non-stationary) and endpoints from

the second step correspond to the input points for

the TPS interpolation {x̂v}M1
1 from the first step,

i.e. only local extrema are newly added, see Fig. 5.
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3.3. Determination of Appropriate Variable Shape
Parameter

The variable shape parameters of RBF αj at
appropriate reference points ξj can be determined
when the reference points and absolute values of the
first curvatures in them are known. Our approach
for determining the variable shape parameters is
based on a requirement that the validity of the
following equality is required:(

ĥmax − ĥmin
)
·
∣∣1kφ(0, αj)

∣∣ = |φ(0)| ·
∣∣1k(ξj)

∣∣ , (21)

where ĥmax = max
i=1,...,N

(ĥi) is the maximum of

shifted associated values and ĥmin = min
i=1,...,N

(ĥi)

is the minimum of shifted associated values, φ(0)
is the value of the radial basis function at the
center,

∣∣1kφ(0, αj)
∣∣ is the absolute value of the first

curvature for radial basis function φ(‖x− ξj‖) at
point x = ξj . The above mentioned equality is
derived based on the consideration that the RBF
curve centered at reference point ξj has the greatest
influence from all used RBFs on the shape of the
approximating function at this point, and therefore,
the match of the absolute value of first curvature
is required. Moreover, the normalization of both
function is taken to account. The absolute value of
the first curvature for the RBF curve centered at
reference point ξj is obtained as:

∣∣1kφ(r, αj)
∣∣ =

∣∣∣∣ φrr(r, αj)

(1 + φ2
r(r, αj))

3/2

∣∣∣∣ , (22)

where φrr(r, αj) denotes the second derivative and
φr(r, αj) denotes the first derivative of the RBF.

From equality (21), the following equation can
be derived for variable shape parameter αj of the
RBF:

αj =
1

2

√√√√ |1k(ξj)| · |φ(0)|

ω ·
(
ĥmax − ĥmin

) , (23)

where ĥmax is the maximum of shifted values, ĥmin
is the minimum of shifted values,

∣∣1k(ξj)
∣∣ is the as-

sociated absolute value of the first curvature, which
was determined by the algorithm described in Sec-
tion 2.3, and ω is a constant parameter depending
on the type of RBF used, see Table 1.

Table 1

Different RBFs and their parameter ω, eg. (23).

RBF φ(r) ω

Gaussian RBF e−(αr)2 2

Inverse quadric 1
1+(αr)2 2

Wendland’s φ3,2 (1− αr)6+(35(αr)2 + 18αr + 3) 56

It should be noted that this approach can be
used only for RBFs which have smoothness of at
least C3 at the origin, because the first curvature
of the RBF curve should be smooth.

The last problem which has to be solved is the
case when shape parameter αj associated with
reference point ξj is zero (i.e. the reference point
is an inflection point of the given data), because
for such shape parameter the constant function
would be obtained. In these cases, correction of the
shape parameter is made. Specifically, the weighted
average of shape parameters associated with the
neighboring points is established and is used as the
value of shape parameter αj .

The whole algorithm for determination of appro-
priate variable shape parameters is summarized in
Algorithm 3.

3.4. Algorithm summary

In this section, a summary of the whole pro-
posed algorithm is provided. First, the first step
of the proposed approach is performed, see Algo-
rithm 2, i.e. the TPS interpolation and shift of

associated values
{
ĥi

}N
1

are determined, which

leads to the elimination of the problematic course
of the sampled function. Next, the reference points
{ξj}M1 are found and their appropriate absolute
values of the first curvatures are calculated for the
newly determined data, see Algorithm 1. Then,
the appropriate variable shape parameters {αj}M1
are computed, see Algorithm 3. After that, the
RBF approximation can be performed. For these
purposes, the RBF approximation with a variable
shape parameter and Lagrange multipliers, see Sec-
tion 2.2, is used. Therefore, the constraints (see
(5)) have to be defined. For the proposed approach,
the following constraints are used:{

f(x1) = ĥ1 = 0, f(xN ) = ĥN = 0
}

, (24)
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Algorithm 3: Determination of the variable shape parameters αj at appropriate reference points ξj .

Input: reference points and their associated absolute values of the first curvatures
{
ξj ,
∣∣1k(ξj)

∣∣}M
1

, the

minimum of shifted associated values ĥmin = min
i=1,...,N

(ĥi), the maximum of shifted associated

values ĥmax = max
i=1,...,N

(ĥi) and the coefficient ω for used RBF (see Table 1)

Output: variable shape parameters associated with appropriate reference points {αj}M1
1 Sort the given pairs

{
ξj ,
∣∣1k(ξj)

∣∣}M
1

in ascending order with respect to coordinates of reference points.

2 for j = 1, . . . ,M do

3 αj =
1

2

√
|1k(ξj)| · |φ(0)|

(hmax − hmin) · ω
4 for j = 1, . . . ,M do
5 if αj is zero then
6 if j = 1 then
7 αj = αj+1

8 else if j = M then
9 αj = αj−1

10 else

11 αj =
αj−1 · ‖ξj − ξj−1‖+ αj+1 · ‖ξj+1 − ξj‖

‖ξj+1 − ξj−1‖

i.e. the given values {sk} = {0, 0} have to be

strictly respected at endpoints {ηk} = {x1,xN}.
Now, using eq. (8), the vector of unknown weights

c = (c1, . . . , cM )
T

can be determined.

Finally, the approximated value is determined

as:

f(x) =

M1∑
v=1

cIvφTPS (‖x− x̂v‖) + P (x)

+
M∑
j=1

cjφ (‖x− ξj‖, αj) ,

(25)

where cI = (cI1, . . . , cIM1
) is the vector of weights

for the TPS interpolation, φTPS is the Thin-Plate-

Spline, {x̂v}M1
1 are input points for the TPS inter-

polation, M1 is number of interpolation points for

the first step, P (x) is polynomial function of first

order, c = (c1, . . . , cM ) is the vector of weights for

the RBF approximation, φ is the RBF used (see

Table 1), {ξj}M1 is the set of reference points, M is

number of reference points for the second step and

{αj}M1 are appropriate variable shape parameters.

4. Experimental Results

The above-proposed method of the RBF approx-
imation has been tested on different datasets using
Matlab. Moreover, a comparison with the RBF
approximation using the constant shape parameter
for different distributions of the set of reference
points has been made using different radial basis
functions, see Table 1.

4.1. Distribution of Reference Points

For the comparison of our approach, the follow-
ing sets of reference points were used:

Uniform points: This set contains the points dis-
tributed uniformly at a given interval.

Epsilon points: This is a special distribution of
points which is based on uniform points.
Specifically, the points from uniform distribu-
tion are randomly drift about value from a
range (−εx, εx), where εx responds to a quar-
ter of the step of uniform points.

Optimal points: The set of reference points from
the second step of the proposed approach is
used.
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4.2. Testing datasets

A uniform distribution of points was used for
the testing data. The given dataset contains 200
points uniformly distributed in the interval [0, 1].
Moreover, each point from this dataset is associated
with a function value at this point. For this purpose,
many different functions have been used. Results
for some representative functions are presented
below.

f1(x) = sin
(
15x2

)
+ 5x (26)

f2(x) =(4.88x−1.88)·sin
(
(4.88x−1.88)2

)
+ 1 (27)

f3(x) = e10x−6 · sin
(
(5x− 2)2

)
+ (3x− 1)3 (28)

4.3. Experimental Results and Comparisons

The experimental results for the proposed ap-
proach will be presented and their comparison with
results for another RBF approximation using the
constant shape parameter for different distribu-
tions of reference points will be made. The shape
parameters α for the RBFs used, in the case of
approximation with the constant shape parameter,
were determined experimentally with regard to the
quality of the approximation, i.e. they were selected
the shape parameters α for which the lowest mean
absolute error of the approximation was obtained.
Moreover, the RBF approximation using the con-
stant shape parameter was applied in two ways.
The first one is that the RBF approximation with
the constant shape parameter was performed for
the original input data. The second one is that the
original input data was preprocessed and then the
RBF approximation with the constant shape pa-
rameter was applied. This preprocessing consists of
the application of the first step from the proposed
approach to the original input data, i.e. the RBF
approximation using the constant shape parameter

is applied to shifted data. The setups for presented
experiments are presented in Table 2.

The trends of the original data for the different
experiments from Table 2 are shown in Fig. 6 (top).
Figure 7 presents the results for the different ex-
periments in which each point is associated with
a value from some sampling function (26) - (28)
and some RBF from Table 1 is used. The specific
choice of the sampling function and RBF for each
experiment is mentioned in Table 2. Using the pro-
posed approach, M significant points (see Table 2)
were found for the chosen datasets and M1 of them
(see Table 2) were classified as inflection points or
endpoints. These M1 significant points were used
for the TPS interpolation in the first step. The
trends of the data after the first step, i.e. after per-
forming the shift of associated values, can be seen
in Fig. 6 (bottom) for the different experiments
from Table 2. The points for the TPS interpolation
from the first step and reference points used for
the second step for the different experiments are
visualized in Fig. 6 (bottom) on the shifted data
and in Fig. 6 (top) on the original data.

Figure 7 (left), in addition to the RBF approxi-
mation using the proposed approach, also presents
the results of the RBF approximation using the
constant shape parameter, where the set of refer-
ence points has uniform, epsilon or optimal distri-
bution and contains M points (see Table 2). In this
case, the RBF approximation using the constant
shape parameter was applied to the original input
data, i.e. the preprocessing is not included. The
magnitudes of error for these approximations can
be seen in Fig. 7 (right). The error is defined as the
absolute value of the difference between the sam-
pling function, some of the equations (26) - (28),
and the approximated function. The differences of
frequencies of errors for different experiments are
shown in Fig. 8. Moreover, the three basic error
measures (mean absolute error, deviation of error
and mean relative error) for all experiments men-

Table 2

Experimental setups - {hi}Ni=1 indicates the sampling function of the associated values, N is size of input dataset, M1 is
number of interpolation points for the first step, M is number of reference points for the second step and φ(r) is RBF used.

{hi}Ni=1 N M1 M φ(r)

Experiment no. 1 f1, eq. (26) 200 7 13 Gaussian RBF

Experiment no. 2 f2, eq. (27) 200 7 13 Inverse quadric

Experiment no. 3 f3, eq. (28) 200 6 11 Wendland’s φ3,2
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(a) Experiment no. 1, first step (b) Experiment no. 2, first step (c) Experiment no. 3, first step

(d) Experiment no. 1, second step (e) Experiment no. 2, second step (f) Experiment no. 3, second step

Fig. 6. Trends of input data for the first step (top) and trends of input data for the second step (bottom) for different
experiments, see Table 2. The sets of reference points for both steps are marked.

Table 3

The RBF approximation error for the tested datasets and different initial configurations.

Phenomenon

original data shifted data

proposed uniform epsilon optimal uniform epsilon optimal

approach ref. pts. ref. pts. ref. pts. ref. pts. ref. pts. ref. pts.

Experiment no. 1

mean absolute error 3.13E-03 8.55E-03 8.20E-03 6.21E-03 1.23E-02 1.22E-02 9.09E-03

deviation of error 3.71E-06 1.01E-04 7.56E-05 2.11E-05 1.74E-04 1.62E-04 1.48E-04

mean relative error 1.17E-03 3.18E-03 3.05E-03 2.31E-03 4.59E-03 4.54E-03 3.38E-03

Experiment no. 2

mean absolute error 9.49E-03 1.80E-02 1.77E-02 1.18E-02 2.23E-02 2.23E-02 1.52E-02

deviation of error 9.94E-05 5.24E-04 6.09E-04 1.37E-04 5.51E-04 6.06E-04 1.21E-04

mean relative error 7.94E-03 1.51E-02 1.48E-02 9.83E-03 1.86E-02 1.86E-02 1.27E-02

Experiment no. 3

mean absolute error 7.52E-02 2.04E+00 1.98E+00 8.12E-02 2.14E+00 2.37E+00 1.45E-01

deviation of error 8.62E-03 1.37E+01 1.48E+01 2.18E-02 1.67E+01 1.58E+01 4.79E-02

mean relative error 1.75E-02 4.74E-01 4.61E-01 1.89E-02 4.98E-01 5.52E-01 3.37E-02
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(a) Results for experiment no. 1 (b) Absolute errors for experiment no. 1

(c) Results for experiment no. 2 (d) Absolute errors for experiment no. 2

(e) Results for experiment no. 3 (f) Absolute errors for experiment no. 3

Fig. 7. Results of the RBF approximation (left) and their errors (right) for different initial configurations and different

experiments, see Table 2. The RBF approximation with the constant shape parameter is applied to the original data, i.e. the

preprocessing is not included. The initial configurations are: constant shape parameter and uniform reference points (uniform),
constant shape parameter and epsilon reference points (epsilon), constant shape parameter and optimal reference points

(optimal) and the proposed approach (note that values of the proposed method are nearly equal to the exact ones).

tioned are shown in Table 3. It can be observe that

the proposed approach returns better results than

the other methods in terms of the error.

The results of comparison of the proposed ap-
proach with the RBF approximation using the con-
stant shape parameter for different distributions
of the set of reference points and different exper-
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Experiment no. 1

(a) Proposed approach vs. uniform ref-
erence points.

(b) Proposed approach vs. epsilon ref-
erence points.

(c) Proposed approach vs. optimal ref-
erence points.

Experiment no. 2

(d) Proposed approach vs. uniform ref-
erence points.

(e) Proposed approach vs. epsilon ref-
erence points.

(f) Proposed approach vs. optimal ref-
erence points.

Experiment no. 3

(g) Proposed approach vs. uniform ref-

erence points.

(h) Proposed approach vs. epsilon ref-

erence points.

(i) Proposed approach vs. optimal ref-

erence points.

Fig. 8. Difference histograms of approximation errors for different experiments, see Table 2. The RBF approximation with the
constant shape parameter is applied to the original data, i.e. the preprocessing is not included.

iments from Table 2 when the preprocessing was

used, i.e. the approximation was applied to shifted

data, see Fig. 6 (bottom), have the similar visual

results as when the preprocessing is not included,

and therefore, these experiments are presented only

by the three basic error measures, see Table 3.

The proposed algorithm was applied on data for

recovering smooth robot trajectory in the space

which can be computed as the curve parameter-

ized by time. Description of results for this experi-

ment follows. The two separate functions, x(t) and

y(t), each representing its respective coordinate

and depending on time t on which the proposed

algorithm was used, are shown in Fig. 9 (a). These

two functions are represented the parametric curve

which is presented together with the original data

in Fig. 9 (b). The histograms of absolute errors for

both functions x(t) and y(t) when the proposed ap-
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(a) Results of proposed approach - parametric representation (b) Results of proposed approach

(c) Histogram of absolute errors for pro-
posed approach

(d) Curve x(t) - proposed approach vs.
uniform reference points

(e) Curve y(t) - proposed approach vs.
uniform reference points

Fig. 9. Recovering the smooth robot trajectory from real data [40] using the proposed RBF approximation (N = 407 - number

of given points for both curves x(t) and y(t), M1x = 38 and M1y = 28 - number of points for the TPS interpolation, Mx = 63
and My = 50 - number of reference points for the second step of the proposed algorithm.

proach is used can be seen in Fig. 9 (c). Finally, the
differences of frequencies of errors for comparison
with the RBF approximation using the constant
shape parameter for uniform distribution of set of
reference points is presented in Fig. 9 (d) - (e). It
can be seen that the proposed approach returns
better results than the other methods in terms of
the error. Moreover, the proposed algorithm is able
to reconstruct and smoothly connect a path even
if data is missing for a certain period of time. It
should be noted that the smooth connection of
path is the key property for robot path planning.

Further, the application of the proposed ap-
proach on real dataset which represents the terrain
profile (2711 points) was performed and the com-
parison with the RBF approximation using the con-
stant shape parameter for uniform distribution of

the set of reference points is presented, see Fig. 10.
It can be seen that the proposed approach can well
approximate the global trend of terrain profile for
a small set of reference points. The further improv-
ing of result could be obtained e.g. by application
of some incremental method. Moreover, it can be
seen that the proposed approach returns again bet-
ter results than the other methods in terms of the
error.

It can be concluded that the RBF approximation
for which the distribution of the set of reference
points does not reflect the features of the approxi-
mated data and the number of reference points is
minimal in terms of usability, i. e. uniform and ep-
silon distribution in our experiments, returns much
worse results than the approximation for which
features of the given data are reflected.
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(a) Results of proposed approach. (b) Histogram of relative errors for pro-
posed approach.

(c) Proposed approach vs. uniform ref-
erence points.

Fig. 10. Result of the proposed RBF approximation for real dataset which represents the terrain profile (N = 2711 - number

of given points, M1 = 30 - number of points for the TPS interpolation and M = 55 number of reference points for the second
step of the proposed algorithm).

5. Conclusion

In this paper, a new algorithm for the radial
basis function (RBF) approximation of functions
y = f(x) with the variable and adaptive shape
parameter based on curve curvature behavior is
presented. The proposed method has two steps
based on exploiting features of the given dataset,
such as extreme points and inflection points. The
first step of the proposed approach is applying the
global RBF interpolation of the selected subset of
significant points, which leads to an adaptive shift
of the given data in terms of associated values. Af-
ter that, the RBF approximation with the variable
shape parameter is performed on modified data.
The set of reference points is derived using signif-
icant points of the shifted data and the variable
shape parameters are determined according to the
first curvature in them.

The experiments proved that the proposed
method gives significantly better results over other
relevant competing methods. Moreover, it can be
observed that the RBF approximation for which
features of the given data are not respected is not
capable of competing with the RBF approxima-
tion respecting data features, especially when the
number of reference points is small.

The proposed method significantly eliminates
problems with a shape parameter estimation inher-
ited from the RBF’s general properties. The pro-
posed algorithm can be used for the RBF approxi-
mation of a curve which is parameterized by one
variable in multidimensional space. In future, the
proposed approach is to be extended for explicit
functions of two variables, i.e. to higher dimensions.
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