
Undefined 0 (0) 1 1
IOS Press

Large Scattered Data Interpolation with
Radial Basis Functions and Space
Subdivision
Michal Smolik a,∗ and Vaclav Skala a

a Department of Computer Science and Engineering, Faculty of Applied Sciences
University of West Bohemia, Plzen, Czech Republic
E-mail: smolik@kiv.zcu.cz
URL: http://www.VaclavSkala.eu

Abstract. We propose a new approach for the radial basis function (RBF) interpolation of large scattered data sets. It uses the
space subdivision technique into independent cells allowing processing of large data sets with low memory requirements and
offering high computation speed, together with the possibility of parallel processing as each cell can be processed independently.
The proposed RBF interpolation was tested on both synthetic and real data sets. It proved its simplicity, robustness and the ability
to handle large data sets together with significant speed-up. In the case of parallel processing, speed-up was experimentally
proved when 2 and 4 threads were used.

Keywords: Radial basis functions, interpolation, large data, space subdivision, scattered data

1. Introduction

Interpolation and approximation are probably the
most frequent operations used in computational tech-
niques [7]. Several techniques have been developed for
data interpolation, but they require some kind of data
"ordering", e.g. structured mesh, rectangular mesh, un-
structured mesh etc. A typical example is a solution of
partial differential equations (PDE), where derivatives
are replaced by differences and rectangular or hexago-
nal meshes are used in the vast majority of cases. How-
ever, in many engineering problems, data are not or-
dered and they are scattered in k-dimensional space,
in general. The k-dimensional space is sometimes not
only spatial but also contains a time dimension or a
dimension relating to age or temperature or other en-
vironmental conditions. Usually, in technical appli-
cations the scattered data are tessellated using trian-
gulation, but this approach is quite prohibitive for the

*Corresponding author. E-mail: smolik@kiv.zcu.cz.

case of k-dimensional data interpolation because of the
computational cost [32].

There exist some techniques using space subdivi-
sion to compute a radial basis function (RBF) interpo-
lation. Data point division into sub-domains using an
adaptive octree subdivision method and then blending
these local functions together with partition of unity is
used in [46]. This work is an extension of well-known
[31], which uses the multi-level partition of unity to
construct surface models from very large sets of points.
Spatial down sampling to construct a coarse-to-fine hi-
erarchy of point sets is used in [30]. They interpo-
late the sets starting from the coarsest level and then
they interpolate a point set of the hierarchy, as an off-
setting of the interpolating function computed at the
previous level. [48] proposed a highly parallel algo-
rithm for RBF interpolation with the time complexity
of O(N). The algorithm uses a generalized minimal
residual method (GMRES) iterative solver [35] with
a restricted additive Schwarz method [5]. The algo-
rithm [6] relies on PetRBF [48]. It improves PetRBF

0000-0000/0-1900/$00.00 © 0 – IOS Press and the authors. All rights reserved

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

2 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

for surface reconstruction and graphics processing unit
(GPU) acceleration. It shows how to make a suitable
choice of the algorithm parameters for accurate recon-
struction from synthetic, real or incomplete datasets.
The algorithm uses domain decomposition to acquire
high parallelization. The solution of the original sys-
tem is built up by solving set of smaller subprob-
lems that interact through their interfaces. [43] opti-
mizes the positions and the weights of the RBF centers
and then combines them with a hierarchical domain
decomposition technique for the RBF approximation.
Other approaches using domain decomposition for the
RBF interpolation are [14] which focuses on the par-
allelization of RBF interpolation with its application
for mesh deformation, [2] performs RBF interpolation
on divided input points and then iteratively updates all
RBF coefficients to create final interpolation, [9] uses
multiscale collocation and preconditioners to decrease
the condition number of the interpolation matrix, [22]
combines the RBF method and the least squares ap-
proximation cardinal basis functions (ACBF) precon-
ditioning technique with the domain decomposition
method.

All these approaches use space subdivision to com-
pute the RBF interpolation or approximation, but their
joining phase is usually not easy to implement. One
has many independent interpolations and needs to join
them together. These interpolations usually have some
overlapping parts and to join them together we need to
solve additional systems of equations or iteratively up-
date the resulting interpolation. Our aim is to improve
this joining phase and speed-up the calculation of the
RBF interpolation as well.

Another approach using virtual points for approxi-
mation is used in [25] and [42]. Of course, there are
other meshless techniques than RBF, such as discrete
smooth interpolation (DSI) [28], which avoids explic-
itly computing a function defined everywhere and pro-
duces values only at the grid points instead. [4], [24]
is based on statistical models that include autocorrela-
tion. The scattered data interpolation method described
in [20] exploits the topological structure and unsuper-
vised learning algorithm of a 2D self-organizing fea-
ture map (SOFM) to iteratively create a polygonal sur-
face mesh that takes a general shape of the under-
lying object. [29] describes a subdivision surface fit-
ting method based on parameter correction to achieve
better error measurement. For each given data point,
the closest point on the surface is found. This point
is expressed as a linear function of the control mesh
vertices via basis functions. This function is then de-

fined in a least squares sense as the summation of
the squared distances between the data points and the
surface points. Another technique, that can be used
for meshless interpolation is function-point clustering
method (FPCM) [19] which defines a function having
a property of being greater in regions where the den-
sity of points is higher and being minimal where the
density of data points is lower. Multiresolution analy-
sis and wavelets provide useful and efficient tools for
representing functions at multiple levels of detail [23].
Multiresolution analysis [8] offers a simple, unified,
and theoretically sound approach to deal with the prob-
lem of extreme complexity of meshes. The method
is based on the approximation of an arbitrary initial
mesh by a mesh that has subdivision connectivity and
is guaranteed to be within a specified tolerance.

Our goal is to propose a new simple method for in-
terpolation of scattered data points. In many applica-
tions, it is necessary to process and interpolate a large
amount of data, thus our method has to be able to pro-
cess such large datasets. There are other interpolation
methods, but they are usually quite hard to implement.

Our method is to be easy to implement and it must
achieve the same quality of interpolation like other
methods. Furthermore, the condition of small memory
requirements and low time requirements must be met
as well.

2. Radial Basis Functions

Radial basis function (RBF) is a technique for scat-
tered data interpolation [33] and approximation [10],
[38]. The RBF interpolation and approximation is
computationally more expensive compared to interpo-
lation and approximation methods that use an infor-
mation about mesh connectivity, because input data
are not ordered and there is no known relation be-
tween them, i.e. tessellation is not made. Although
RBF has a higher computational cost, it can be used for
k-dimensional problem solution in many applications,
e.g. solution of partial differential equations [21], [49],
image reconstruction [44], neural networks [18], [12],
[47], fuzzy systems [1], [17], [16], GIS systems [26],
optics [34] etc. It should be noted that it does not re-
quire any triangulation or tessellation meshing in gen-
eral. There is no need to know any connectivity of in-
terpolated points, all points are tied up only with dis-
tances of each other. Using all these distances we can
form the interpolation matrix, which will be shown
later.

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 3

The RBF is a function whose value depends only
on the distance from its center point. Due to the use
of distance functions, the RBFs can be easily imple-
mented to reconstruct the surface using scattered data
in 2D, 3D or higher dimensional spaces. It should be
noted that the RBF interpolation is not separable by a
dimension.

Radial function interpolants have a helpful property
of being invariant under all Euclidean transformations,
i.e. translations, rotations and reflections. It does not
matter whether we first compute the RBF interpolation
function and then apply a Euclidean transformation,
or if we first transform all the data and then compute
the radial function interpolants. This is a result of the
fact that Euclidean transformations are characterized
by orthonormal transformation matrices and are there-
fore two-norm invariant. Radial basis functions can be
divided into two groups according to their influence.
The first group are "global" RBFs [36], for example:

Thin Plate Spline ϕ(r) = r2 log r

Gauss function ϕ(r) = e−(εr)
2

Inverse Quadric ϕ(r) =
1

1 + (εr)2

Inverse Multiquadric ϕ(r) =
1√

1 + (εr)2

Multiquadric ϕ(r) =
√

1 + (εr)2

(1)

where ε is the shape parameter of the radial basis func-
tion [11]. Application of global RBFs usually leads to
ill-conditioned system, especially in the case of large
data sets with a large span [27], [39].

The "local" RBFs were introduced in [45] as com-
pactly supported RBF (CSRBF) and satisfy the follow-
ing condition:

ϕ(r) = (1− r)q+P (r)

=

{
(1− r)qP (r) 0 ≤ r ≤ 1

0 r > 1

(2)

where P (r) is a polynomial function and q is a param-
eter. The subscript in (1− r)q+ means:

(1− r)+ =

{
(1− r) (1− r) ≥ 0

0 (1− r) < 0
(3)

Typical examples of CSRBF are

ϕ1(r) = (1− r̂)+

ϕ2(r) = (1− r̂)3+(3r̂ + 1)

ϕ3(r) = (1− r̂)5+(8r̂2 + 5r̂ + 1)

ϕ4(r) = (1− r̂)2+
ϕ5(r) = (1− r̂)4+(4r̂ + 1)

ϕ6(r) = (1− r̂)6+(35r̂2 + 18r̂ + 3)

ϕ7(r) = (1− r̂)8+(32r̂3 + 25r̂2 + 8r̂ + 1)

ϕ8(r) = (1− r̂)3+
ϕ9(r) = (1− r̂)3+(5r̂ + 1)

ϕ10(r) = (1− r̂)7+(16r̂2 + 7r̂ + 1)

(4)

where r̂ = εr and ε is the shape parameter of the ra-
dial basis function, see Figure 1 for a visualization of
Eq. (4).

Fig. 1. Examples of CSRBF from Eq. (4).

2.1. Radial Basis Function interpolation

RBF interpolation was originally introduced by [15]
and is based on computing of the distance of two points
in any k-dimensional space. It is defined by the func-
tion

f(x) =
M∑
j=1

λjϕ(‖x− xj‖) (5)

where λj are weights of the RBFs, M is the number
of the radial basis functions, i.e. the number of inter-

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

4 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

polation points, and ϕ is the radial basis function. For
a given dataset of points with associated values, i.e. in
the case of scalar values {xi, hi}M1 , the following lin-
ear system of equations is obtained:

hi = f(xi) =
M∑
j=1

λjϕ(‖xi − xj‖)

for ∀i ∈ {1, . . . ,M} (6)

where λj are weights to be computed; see Figure 2
for a visual interpretation of Eq. (5) or Eq. (6) for a
2 1
2D function. Point in 2 1

2D is a 2D point associated
with a scalar value. The same also applies to 3D point
associated with a scalar value, thus 3 1

2D point.
Equation Eq. (6) can be rewritten in a matrix form

as

Aλ = h. (7)

As ϕ (‖xi − xj‖) = ϕ (‖xj − xi‖) the matrix A is
symmetrical.

Fig. 2. Data values, the RBF collocation functions, the resulting in-
terpolant.

The RBF interpolation can use "global" or "local"
functions. When using "global" radial basis functions,
the matrixA will be full, but when using "local" radial
basis functions, the matrix A might be sparse, which
can be beneficial when solving the system of linear
equationsAλ = h.

In the case of the vector data, i.e. {xi,hi}M1 values
hi are actually vectors, the RBF is to be performed for
each coordinate of the vector hi.

3. Proposed approach

In this section we describe our new proposed ap-
proach for large data sets RBF interpolation. The pro-
posed interpolation uses space subdivision to speed-up
the computation and to significantly reduce high mem-

ory requirements [26], [25]. The algorithm consists
of three main steps. The first one is the space subdi-
vision, the second one is the RBF interpolation and
the last one is the joining procedure of interpolated
cells ("blending") to create the final interpolation. The
pseudo-code of the proposed approach is in Algo-
rithm 1 and 2. We show the speed-up of the proposed
algorithm compared to the standard one for RBF inter-
polation as well.

Algorithm 1 Pseudocode of the proposed RBF inter-
polation method.

1: procedure RBF(Points P) . Pi = {xi, hi}
2: for all cells in grid do
3: Enlarge cell by 1/ε . where ε is the shape
4: parameter
5: p← Points in enlarged cell
6: Compute RBF interpolation of p

Algorithm 2 Pseudocode of interpolated value calcu-
lation using the proposed RBF interpolation method.

1: procedure RBF(Point p) . p = {x, y}
2: Find neighboring cells
3: Compute distances to cells
4: Compute interpolated RBF values for all cells
5: Blend RBF values together . using distances
6: to cells

3.1. Space subdivision

The approach proposed is based on a divide and con-
quer (D&C) strategy, and therefore input data set is
split into several subsets. In our case, we will use a
rectangular grid of the size n × m domains for 2 1

2D
input data, resp. n×m×l domains for 3 1

2D input data.
The grid does not have to be necessarily regular and
we can adjust it according to the properties of the in-
put data set. We will use an orthogonal regular grid of
domains for simplicity of explanation of the proposed
approach.

The input points need to be divided into some cells
according to the created grid for the space subdivision.
Every domain of the grid needs to be enlarged to a cell
and contains a few more points from the neighborhood,
see Figure 3. We will present the reason for this later
in this paper.

The input points need to be divided into some num-
ber of cells. This number can be estimated according

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 5

Fig. 3. 2D regular orthogonal grid with one cell visualized. Each
cell contains points from the grid domain plus points from the over-
lapping parts with neighborhood domains.

to the memory available. The RBF interpolation ma-
trix for n points in the cell has the size n×n elements,
which are usually stored as double precision numbers.
The size of the matrix in bytes is given as

size = sizeof(double) · n2 = 8n2 (Byte). (8)

Using this formula we can easily find out the maximal
average number of points in cells, see Figure 4, and set
up easily the size of the grid needed for the subdivi-
sion.

1E-4

1E-2

1E+0

1E+2

1E+4

1E+6

1E+1 1E+2 1E+3 1E+4 1E+5 1E+6

si
ze

 o
f

m
at

ri
x

(M
B

)

number of points

Fig. 4. The size of the RBF interpolation matrix for different num-
ber of interpolated points. The matrix is stored in double precision
and its size is in MB if full matrix structure is used. The memory
requirements are O(N2), where N is the number of points.

Data points are generally scattered, so it might be
further possible in the extreme case that nearly all
points lie within one cell. In this case it would be nec-
essary to split this cell again. Another possible case is
when no point lie inside a cell. In this case, the shape
parameter and grid size for RBF interpolation is inap-
propriately selected and must be changed in the sense
that the influencing of the basis function is greater and
sufficient for the data interpolation [27].

3.2. Cells RBF interpolation

Now, we have all input points divided into overlap-
ping cells and thus can do the RBF interpolation. Ra-
dial basis functions have one parameter, which is the
shape parameter ε. In the proposed approach, we use
the "local" radial basis functions (CSRBFs), as they
have the restricted maximal distance for the influence
of the RBF interpolation. The shape parameter should
be chosen so, that 1

ε is equal to the size r of the over-
lapping of each domain (Figure 3), resp. vice versa.
Points on the border of a cell are exactly r away from
the grid domain and RBF center points with a larger
distance than r will not have any influence on the in-
terpolated value inside a domain of the grid.

Points inside a cell need to be interpolated using the
RBF interpolation with CSRBF. This interpolation is
done using the standard calculation of the linear sys-
tem of equations Eq. (6). Each cell is interpolated as
an independent cell and thus the calculation can be
done totally in parallel. This parallel calculation will
increase the performance and speed-up the RBF com-
putation for each cell. The only problem that can arise
is the memory consumption, as we need to store mul-
tiple interpolation matrices at once, so this should be
kept in mind when computing the size of a grid for
space subdivision.

For each cell we get one set of weighting values of
the RBF interpolation λ = [λ1, λ2, . . . , λn]T . These
values have to be stored for later use. The matrix used
for their calculation, i.e. the RBF interpolation matrix,
can be discarded.

3.3. Blending of cells and reconstruction function

The interpolated cells computed in the previous step
are overlapping each other. In this section, we show
how to join, i.e. blend, them together to create a fi-
nal continuous interpolation function that covers all the
cells and thus all the input points for the interpolation
as well.

The total width of overlapping parts is 2r. To blend
all the neighborhood cells together, we will do some
kind of bilinear interpolation ("blending") between
them. The computed value from each cell needs to be
multiplied with a coefficient α. The coefficients αi are
computed as

α′ = min(1,
distance from the border

2r
), (9)

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

6 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

where distance from the border is the shortest dis-
tance from the location to the border and it is cal-
culated using the Euclidean metric. However, for the
axes-aligned grid, the distance can be calculated using
Chebychev metric, which is defined as

distance(P,Q) = max
i

(|pi − qi|), (10)

where P = [p1, ..., pk]T and Q = [q1, ..., qk]T are two
points in k-dimensional space.

The final coefficients αi are computed using Eq. (9)
as

αi =
αi
′

2k∑
j=1

αj ′
, (11)

where k is the dimension, i.e. k = 2 for 2 1
2D or k = 3

for 3 1
2D input data. The visual representation of coef-

ficients is shown in Figure 5.

(a)

(b) Red component of the
color from the Figure 5a.

(c) Blue component of the
color from the Figure 5a.

Fig. 5. Bilinear interpolation between cells for the overlapped ar-
eas. Red part of color represents the coefficient for the main cell
value, green part of color represents the coefficient for the down
cell value and blue part of color represents the coefficient for the
right cell value. The value for the corner cell is calculated as
1 − (red + green + blue).

Knowing all the coefficients αi and all function val-
ues from the RBF interpolations of cells, we can com-

pute the final value of the proposed radial basis func-
tion interpolation algorithm for large scattered data in-
terpolation .

f(x) =
2k∑
i=1

αi

Mi∑
j=1

λjϕ
(∥∥∥x− x(i)

j

∥∥∥)
, (12)

where k is the dimension, i.e. k = 2 or k = 3,Mi is the
number of points in the i-th cell, αi is the coefficient
from Eq. (11) andx(i)

j are interpolation points in a cell.
During the blending phase we perform the interpo-

lation between the interpolations of cells. The result of
the blending phase is thus again the interpolation of all
input points, as the resulting function passes through
all input points.

3.4. Speed-up of the proposed approach
(interpolation)

The proposed approach uses space subdivision to
speed-up the calculation of radial basis function inter-
polation and to reduce the needed memory as well. In
the following, we will use the notation shown in Fig-
ure 6.

1 g

1

g

… …

...

Δ

Δ+2r

ω

Ω

Fig. 6. Visualization of a grid.

The value g is equal to the number of divisions in
each dimension, k is the dimension, ∆ is the size of
one domain, r is the size of the overlap for each cell
and is equal to the radius of the RBF.

The number of points n in the area ω can be esti-
mated in the case of uniform distribution as

n =
N

gk
, (13)

where N is the total number of points for the interpo-
lation and g is equal to the number of divisions in each
dimension. Every domain ω is enlarged by the overlap

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 7

r, see Figure 3, at every side of the domain; thus the
enlargement of the domain is equal to

ξ =
∆ + 2r

∆
= 1 +

2r

∆
. (14)

The average number of points in the enlarged cell Ω is
equal to

m =
N

gk
ξk. (15)

When computing the RBF interpolation, we need to
solve a system of linear equations (LSE). Let us as-
sume that solving an LSE of size N ×N has the time
complexity O(N3). The time complexity of our pro-
posed interpolation for one enlarged cell ω, i.e. the cell
Ω, is

O

((
N

gk
ξk
)3
)
. (16)

Therefore, the expected speed-up of the proposed al-
gorithm compared to the standard one is

ν =
O
(
N3
)

O

(
gk
(
N
gk
ξk
)3) = O

 N3

gk
(
N
gk
ξk
)3

= O

((
g2

ξ3

)k)
,

(17)

where ν � 1 for the most grid resolutions, as can be
seen in Figure 7, which was generated for ∆ = 1 and
the overlap r = 0.2, i.e. 20% overlap at each side of
every domain. It should be noted, that the axis for ν is
in logarithmic scaling.

The time complexity of our proposed approach for
the RBF interpolation is

O

(
gk
(
N

gk
ξk
)3
)

= O

(
N

n

(
nξk
)3)

, (18)

where n and ξ can be constants. Then the only vari-
able in Eq. (18) is N . Thus, the time complexity of the
proposed approach is O (N), but only in cases when
the data points are uniformly distributed. Otherwise
the worst time complexity of the proposed approach is
O
(
N3
)
.

1E-02

1E+00

1E+02

1E+04

1E+06

1E+08

1E+10

1E+12

1 2 4 8 16 32 64 128

v
(s

pe
ed

-u
p)

g (divisions in each axis)2D 3D

Fig. 7. Expected speed-up of the proposed algorithm according to
Eq. (17) for different numbers g, i.e. resolution of the grid, for
∆ = 1 and the overlap r = 0.2.

3.5. Speed-up of the proposed approach (function
evaluation)

The proposed approach does not speed-up only the
RBF interpolation calculation, but it also speed-up the
evaluation of the interpolation function as well. The
time complexity of the function evaluation for the stan-
dard RBF is

O (N) . (19)

The time complexity of the function evaluation for
our proposed approach for the RBF interpolation is

O

(
2k
N

gk
ξk
)
. (20)

Using Eqs. (19) and (20), we can compute the
speed-up of our proposed algorithm when computing
one function value of the RBF interpolation:

η =
O (N)

O
(

2k N
gk
ξk
) = O

(
N

2k N
gk
ξk

)

= O

((
g

2ξ

)k)
.

(21)

For most grid resolutions the speed-up η � 1, as can
be seen in Figure 8, which was generated for ∆ = 1
and the overlap r = 0.2, i.e. 20% overlap at each side
of every domain. It should be noted that the axis for η
is in logarithmic scaling.

4. Results

In this section we show the results of our proposed
approach. This approach for RBF interpolation is espe-

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

8 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1 2 4 8 16 32 64 128

ƞ
(s

pe
ed

-u
p)

g (divisions in each axis)2D 3D

Fig. 8. Expected speed-up of function evaluation using the proposed
algorithm according to Eq. (21) for different numbers g, i.e. resolu-
tion of the grid, for ∆ = 1 and the overlap r = 0.2.

cially convenient for large data set interpolation. How-
ever, in the first sub-section we test it for the case of
its simplicity only with small synthetically generated
data sets to show some basic results of the proposed
method for RBF interpolation.

In the second sub-section we tested our approach
with real data sets. The second example is a data set
containing more than 6 · 106 points, which is much
more than the standard RBF interpolation is able to
handle and compute on an ordinary computer.

Any of the CSRBFs in Eq. (4) can be used for the
proposed RBF interpolation. However, in the tests we
present results for one basis function, namely

ϕ5(r) = (1− εr)4+(4εr + 1). (22)

We tested the proposed approach also with global
radial basis functions, specifically with thin plate
spline (TPS) and Gauss function. The results for global
RBFs are very similar to those when using CSRBFs.

The implementation of the RBF interpolation was
performed in MATLAB and tested on a PC with the
following configuration:

– CPU: Intel® Core™ i7-920
(4 × 2.67 GHz + hyper-threading),

– memory: 22GB RAM,
– operation system: Microsoft Windows 8 64 bit.

4.1. 2 1
2D synthetic data

We first tested the proposed RBF interpolation on a
synthetic data set of points using the function

f(x, y) = sin(x) + cos(y). (23)

We sampled the function at 104 random positions with
a Halton distribution (A.1 in [10]) where x ∈ [−2; 2]

and y ∈ [−1; 1], see Figure 9a. We used a grid of the
size 2×1 and ε = 5 and 10% of overlapping. The result
of the proposed interpolation can be seen in Figure 9b.
The result is continuous.

(a) Input points (b) RBF interpolated surface

Fig. 9. 104 input points were used to test the proposed RBF interpo-
lation.

We measured the difference of function values of the
two RBF interpolations of two cells on their common
border before the blending phase, see Figure 9a. We
should note that for this test, we did not blend these
two RBF interpolations. The absolute difference be-
tween those two cells along the border is visualized in
Figure 10.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
0

1

2

x 10
−4

Fig. 10. Absolute difference in function values along the common
border between the RBF interpolations of two cells without the
blending phase, i.e. without the linear interpolation between cells.

We measured the difference of function values be-
tween each cell RBF interpolation and the original
function Eq. (23) on the common border before the
blending phase. The difference between each cell and
the original function is visualized in Figure 11. We
should note that for this test, we did not blend these
two interpolations in any way.

Two cells are interpolated using RBF interpolation
independently and then blend together. We measured
the interpolation error between blended cells and the
original function Eq. (23). The results are visualized in
Figure 12. The proposed interpolation is continuous,
without any disparity between domains.

We measured the interpolation error between the
proposed RBF interpolation and the original function

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 9

Fig. 11. Difference of function values along the common border be-
tween the interpolation of each cell without the blending phase, i.e.
without the linear interpolation between cells, and the original func-
tion Eq. (23).

Fig. 12. Difference in function values between the proposed RBF
interpolation and the original function Eq. (23).

Eq. (23) on the common border. The error is visualized
in Figure 13. It can be seen that the error has a behavior
similar to that represented in Figure 12.

Fig. 13. Difference in function value between the proposed RBF in-
terpolation with blending phase and the original function Eq. (23).

The same measurement as in Figure 10 was done
for a different percentage of cells overlapping, see Fig-
ure 14. It can be seen that the error decreases and for
100% overlapping this error is 0, as both the RBF in-
terpolations use all points for the interpolation of their

cell. It means that the proposed RBF interpolation is
continuous, i.e. waterproof.

1E-14

1E-12

1E-10

1E-08

1E-06

1E-04

1E-02
0% 20% 40% 60% 80% 100%

er
ro

r

domains overlap

Fig. 14. Absolute difference in function values along the common
border between interpolations of the two cells for different sizes of
overlapping parts (for 100% error = 0).

However, we need also to measure the quality of this
RBF interpolation. For this purpose we compare our
proposed method using the space subdivision with the
standard RBF interpolation method (2.2 in [10]) using
2 · 104 randomly sampled points with the uniform dis-
tribution of the function [10]:

f(x, y) = 3(1− x)2e(−x
2−(y+1)2)

− 10(
x

5
− x3 − y5)e(−x

2−y2)

− 1

3
e(−(x+1)2−y2),

(24)

where x ∈ [−3; 3] and y ∈ [−3; 3].
We used a grid of size 4 × 4 and the shape param-

eter with the size 20% of the domain edge length. The
result of this interpolation is presented in Figure 15.
The standard RBF interpolation used the same points,
the same basis function and the same shape parameter
for interpolation.

To evaluate the quality of the interpolation we gen-
erated 1.5 · 105 randomly sampled points with Halton
distribution where x ∈ [−3; 3] and y ∈ [−3; 3]. Then
we computed function values of both the interpolations
and evaluate the absolute error of each interpolation.
For each point Pi = [xi, yi]

T we compute absolute er-
ror

Erri = ‖RBF (Pi)− f(xi, yi)‖2 , (25)

where RBF (Pi) is the interpolated value at point
Pi using standard RBF interpolation on the whole
dataset and RBF interpolation of the proposed ap-
proach, f(xi, yi) is the function value of Eq. (24). The

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

10 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

Fig. 15. The result of RBF interpolation using the proposed method
with space subdivision.

Figure 16 presents distribution histograms of the inter-
polation errors.

As both histograms in Figure 16 are visually identi-
cal, we created a difference histogram between the two
histograms. In Figure 17 it can be seen that the interpo-
lation errors distribution is almost identical. The differ-
ence in both histograms differs only slightly, see Fig-
ure 17. Thus both interpolations have almost the same
quality.

We also computed the average interpolation error
for each RBF interpolation. The result is in Table 1.
We can see that both average interpolation errors are
almost the same, there is only a difference of 0.03%.
Knowing all results from quality measurements we can
say that our proposed RBF interpolation has almost
identical quality as the standard RBF interpolation.

Table 1

Average interpolation error of the proposed approach and the stan-
dard RBF interpolation. The interpolation error difference between
both measured methods is only 0.03%.

proposed approach
standard RBF
interpolation

mean absolute error 3.1371 · 10−4 3.1362 · 10−4

4.2. Real data set

The proposed approach is mainly suited for large
data interpolation. For this reason we chose to use a

(a) Standard RBF interpolation.

(b) Proposed method RBF interpolation.

Fig. 16. Histograms of interpolation errors.

real data set. The LiDAR data of Mount Saint Helens1

in Skamania County, Washington, contains scanned
height data. The data set consists of 6, 743, 176 2D

points with associated heights, i.e. 2 1
2D data.

We chose to divide the input data set into a regu-
lar grid in a way such that the inside of a domain is
going to be on average 5, 000 points. To make square
domains, we created a grid of the size 29 × 46, as the
data range is around 2.1 · 104 ft × 3.3 · 104 ft, i.e.
6.4·103 m×1.0·104 m, in x and y coordinates. The vi-
sualization of the created grid domains is in Figure 18.

To perform the RBF interpolation, we needed to
choose the shape parameter ε of the CSRBF. We tested
different values of the shape parameter and selected the
best shape parameter which has the size of 20% of the
domain edge length. Each cell will therefore contain

1http://www.liblas.org/samples/

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 11

Fig. 17. Difference of histograms in Figure 16. Positive values mean
that the standard RBF interpolation has more errors with the specific
absolute value of interpolation error and the negative values mean
the same for the proposed method for RBF interpolation.

approximately

5, 000 · (1 + 2 · 0.2)2 = 9, 800 (26)

points. The number of points inside the cell is almost
double times more than number of points inside the do-
main, but the final speed-up will still be very high. For
clarity we can estimate the speed-up of the proposed
algorithm compared to the standard one as:

speed-up =
6, 743, 1763

29 · 46 · 9, 8003
≈ 2.4 · 105. (27)

It can be seen that the speed-up is significant and we
save a lot of calculations. The expected speed-up of the
function evaluation is

speed-up =
6, 743, 176

22 · 9, 800
≈ 172. (28)

This means that each RBF function computation for a
given x is approximately 172 times faster.

Moreover, the standard algorithm for RBF interpo-
lation would require around 330 TB to save the full
interpolation matrix to the memory when double pre-
cision is used.

The data set divided into cells was interpolated one
cell after another. We used one RBF interpolated cell
to reconstruct the terrain inside one domain of the grid
without blending step. The result can be seen together
with the grid of domains in Figure 18.

Figure 19 presents the result of the proposed RBF
interpolation method. We used Eq. (12) to compute in-
terpolation of the height values of the terrain for the

Fig. 18. Visualization of the interpolated terrain produced only as a
visualization of each domain separately. The orthogonal grid used
for the space subdivision with resolution of 29× 46 is visualized on
the terrain as well.

visualization. This terrain does not have any disconti-
nuity because of the proposed blending procedure.

Fig. 19. Visualization of the final result of the proposed method for
large scattered data interpolation with the RBF and space subdivi-
sion.

The proposed algorithm can be easily parallelized as
the RBF interpolation of each cell of the grid can be
done separately and thus in parallel. We measured the
running time of the interpolation when using 1 or 2 or
4 threads. The resulting speed-up in MATLAB is in the
Table 2. It can be seen that the speed-up is high because
the threads do not have to wait for any synchronization
and are independent of each other.

Table 2

Parallel speed-up of the proposed method compared to the serial ver-
sion of this method.

number of threads 1 2 4

speed-up 1 1.791 3.172

We tested our proposed approach with another data
set too. We chose a model of the terrain2 which con-

2http://www.badking.com.au/site/shop/environment/mountain-
terrain/

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

12 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

tains 131, 044 points with associated heights, i.e. 2 1
2D

data.
We divided the input data set to a regular grid so that

a domain contains 3, 000 points in average. We created
a grid of the size 6 × 6, with the data range is around
0.2172 miles× 0.2172 miles in x and y coordinates.
The visualization of the created grid of domains is in
Figure 20.

For the shape parameter, we used the size of 20% of
the domain edge length. Therefore, each cell contains
around

3, 000 · (1 + 2 · 0.2)2 = 5, 880 (29)

points. It is almost double times more, but the final
speed-up will still be very high. We can estimate the
speed-up of the proposed algorithm compared to the
standard one:

speed-up =
131, 0443

6 · 6 · 5, 8803
≈ 3 · 102. (30)

It can be seen that the speed-up is significant and will
save us a lot of calculations. The speed-up of interpo-
lating function evaluation is

speed-up =
131, 044

22 · 5, 880
≈ 5.6. (31)

Moreover, the standard algorithm for the RBF interpo-
lation needs around 128 GB to save the full interpo-
lation matrix to the memory when double precision is
used.

The data set divided into cells was interpolated one
cell after another. We did a visualization of this RBF
interpolation without doing any blending procedure.
We used one RBF interpolated cell to reconstruct the
terrain inside each domain of the grid. The result can
be seen in Figure 20, together with a visualization of
the grid.

Figure 21 presents the result of the proposed RBF
interpolation method. We used Eq. (12) to compute the
height values of the terrain for the visualization. This
terrain is continuous and does not have any disconti-
nuity because of the proposed blending procedure.

If CSRBF is used, many elements in the interpola-
tion matrix are equal to zero, as the matrix is sparse in
general. To decrease the memory requirements and be
able to solve large interpolation matrices we can use a
sparse matrix data structure. There are several existing
sparse matrix representations. e.g. [3], [37], [26]. The

Fig. 20. Visualization of the interpolated terrain produced only as a
visualization of each domain separately. The orthogonal grid used
for the space subdivision with resolution of 6 × 6 is visualized on
the terrain as well.

Fig. 21. Visualization of the final result of the proposed method for
large scattered data interpolation with the RBF and space subdivi-
sion.

main difference among existing storage formats is the
sparsity pattern, or the structure of nonzero elements,
for they are best suited. In our implementation, the co-
ordinate format is used, which is briefly described in
the following.

The coordinate (COO) format [13] is the simplest
storage scheme. The sparse matrix is represented
by three arrays: data, where the nonzero values are
stored, row, where the row index of each nonzero ele-
ment is kept, and col, where the column indices of the
nonzero values are stored. The benefit of this format is
its generality, i.e. an arbitrary sparse matrix can be rep-
resented by the COO format and the required storage
is always proportional to the number of nonzero val-
ues. The disadvantage of the COO format is that both
row and column indices are stored explicitly, which re-
duces the efficiency of memory transactions (e.g. read
operations).

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 13

Moreover, note that the elements in the interpolation
matrix are zero for far away points, when CSRBFs are
used. Therefore, we do not need to compute the ele-
ments for all pairs of points, so the kd-tree (A.2 in [10])
is used for computing the interpolation matrix.

As the proposed approach also needs to be com-
pared with the standard one for RBF interpolation; we
used the dataset in Figure 21 which contains 131, 044
points for interpolation. For the shape parameter for
RBF interpolation we used the size of 1/30 of the data
range. We measured the running times of our algorithm
running in sequential version for different grid reso-
lutions and computed the speed-up compared to the
standard algorithm for RBF interpolation, see Table 3.
Both methods are using sparse matrix with COO for-
mat and kd-tree structure. We also measured the mem-
ory requirements and the results are in Table 4.

Table 3

Speed-up of the proposed approach for large scattered data inter-
poloation compared to the standard RBF interpolation. Both meth-
ods are using sparse matrix with COO format and kd-tree structure.

grid resolution 4×4 6×6 8×8 10×10 12×12

speed-up 1.69 1.83 2.06 2.28 2.57

According to the results in Table 3, the proposed
algorithm is faster than the standard one and the
speed-up is increasing with increasing of the grid res-
olution; both methods used the COO sparse matrix
structure. We could not compute the speed-up when
using the full matrix data structure as we were unable
to fit such large data into the available memory for the
standard algorithm.

Table 4

Memory requirements for our proposed method and for the stan-
dard RBF interpolation method. The proposed method was tested
with full matrix data structure and also using sparse matrix with
COO format together with kd-tree structure. The standard algorithm
for RBF interpolation uses sparse matrix with COO format together
with kd-tree structure.

proposed method standard method

grid size
kd-tree and

sparse matrix
full matrix

kd-tree and
sparse matrix

4x4 590 MB 6,900 MB
6x6 290 MB 2,300 MB
8x8 180 MB 1,000 MB 8,800 MB
10x10 125 MB 500 MB
12x12 95 MB 400 MB

According to the results in Table 4, the proposed ap-
proach has much lower memory requirements than the

standard one. Therefore our approach enables to com-
pute the RBF interpolation for very large datasets even
on computers with standard memory size.

5. Conclusion

We presented a new approach for radial basis func-
tion interpolation of scattered data. It computes the in-
terpolation on partly overlapping cells and then blends
these interpolations together to create the final inter-
polation of the whole data set. This approach is espe-
cially efficient for large scattered data interpolation, as
it reduces the memory required. It significantly speeds
up computation of the interpolated value. The pro-
posed approach is suitable for parallelization and it
was tested on synthetic and large real data sets. It
proved its robustness and high performance.

In future the proposed approach will be used for vec-
tor fields interpolation of large data sets based on [40],
[41] and considering also vector field characteristics.
We plan to modify the proposed method for 3D scat-
tered data interpolation and approximation. In the case
of 3D, point data will be split into overlapping cubes
according to the grid. The joining phase, i.e. blending,
will be almost the same as when blending 2D cells.

Acknowledgment

The authors would like to thank their colleagues at
the University of West Bohemia, Plzen, for their dis-
cussions and suggestions, especially to Zuzana Ma-
jdisova, and anonymous reviewers for their valuable
comments and hints provided. The research was sup-
ported by projects Czech Science Foundation (GACR)
No. 17-05534S and SGS 2016-013.

References

[1] H. Adeli and A. Karim, Fuzzy-wavelet RBFNN model for free-
way incident detection, Journal of Transportation Engineering
126(6) (2000), 464–471.

[2] R.K. Beatson, W.A. Light and S.D. Billings, Fast Solution of
the Radial Basis Function Interpolation Equations: Domain
Decomposition Methods, SIAM J. Scientific Computing 22(5)
(2001), 1717–1740. doi:10.1137/S1064827599361771.

[3] N. Bell and M. Garland, Implementing sparse matrix-vector
multiplication on throughput-oriented processors, in: Proceed-
ings of the conference on high performance computing net-
working, storage and analysis, ACM, 2009, pp. 1–11.

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

14 M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision

[4] T.Q. Bui, T.N. Nguyen and H. Nguyen-Dang, A moving Krig-
ing interpolation-based meshless method for numerical simula-
tion of Kirchhoff plate problems, International Journal for Nu-
merical Methods in Engineering 77(10) (2009), 1371–1395.

[5] X.-C. Cai and M. Sarkis, A restricted additive Schwarz pre-
conditioner for general sparse linear systems, SIAM Journal on
scientific computing 21(2) (1999), 792–797.

[6] S. Cuomo, A. Galletti, G. Giunta and A. Starace, Surface re-
construction from scattered point via RBF interpolation on
GPU, in: Computer Science and Information Systems (FedC-
SIS), 2013 Federated Conference on, IEEE, 2013, pp. 433–
440.

[7] P.J. Davis, Interpolation and approximation, Courier Corpora-
tion, 1975. ISBN ISBN 978-0-486-62495-2.

[8] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery
and W. Stuetzle, Multiresolution analysis of arbitrary meshes,
in: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, ACM, 1995, pp. 173–
182.

[9] P. Farrell and J. Pestana, Block preconditioners for linear sys-
tems arising from multiscale collocation with compactly sup-
ported RBFs, Numerical Lin. Alg. with Applic. 22(4) (2015),
731–747. doi:10.1002/nla.1984.

[10] G.E. Fasshauer, Meshfree approximation methods with MAT-
LAB, Vol. 6, World Scientific, 2007.

[11] B. Fornberg and C. Piret, On choosing a radial basis func-
tion and a shape parameter when solving a convective PDE
on a sphere, J. Comput. Physics 227(5) (2008), 2758–2780.
doi:10.1016/j.jcp.2007.11.016.

[12] S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Principal com-
ponent analysis-enhanced cosine radial basis function neural
network for robust epilepsy and seizure detection, IEEE Trans-
actions on Biomedical Engineering 55(2) (2008), 512–518.

[13] J.R. Gilbert, C. Moler and R. Schreiber, Sparse matrices in
MATLAB: Design and implementation, SIAM Journal on Ma-
trix Analysis and Applications 13(1) (1992), 333–356.

[14] G. Haase, D. Martin and G. Offner, Towards RBF Interpola-
tion on Heterogeneous HPC Systems, in: Large-Scale Scien-
tific Computing - 10th International Conference, LSSC 2015,
2015, pp. 182–190.

[15] R.L. Hardy, Multiquadric equations of topography and other ir-
regular surfaces, Journal of geophysical research 76(8) (1971),
1905–1915.

[16] C.-F. Hsu, C.-M. Lin and R.-G. Yeh, Supervisory adaptive
dynamic RBF-based neural-fuzzy control system design for
unknown nonlinear systems, Applied Soft Computing 13(4)
(2013), 1620–1626.

[17] A. Karim and H. Adeli, Comparison of fuzzy-wavelet ra-
dial basis function neural network freeway incident detection
model with California algorithm, Journal of Transportation
Engineering 128(1) (2002), 21–30.

[18] A. Karim and H. Adeli, Radial basis function neural network
for work zone capacity and queue estimation, Journal of Trans-
portation Engineering 129(5) (2003), 494–503.

[19] J.O. Katz and F.J. Rohlf, Function-point cluster analysis, Sys-
tematic Biology 22(3) (1973), 295–301.

[20] G.K. Knopf and A. Sangole, Interpolating scattered data us-
ing 2D self-organizing feature maps, Graphical Models 66(1)
(2004), 50–69.

[21] E. Larsson and B. Fornberg, A numerical study of some radial
basis function based solution methods for elliptic PDEs, Com-
puters & Mathematics with Applications 46(5) (2003), 891–
902.

[22] L. Ling and E.J. Kansa, Preconditioning for radial basis
functions with domain decomposition methods, Mathemat-
ical and Computer Modelling 40(13) (2004), 1413–1427.
doi:10.1016/j.mcm.2005.01.002.

[23] M. Lounsbery, T.D. DeRose and J. Warren, Multiresolution
analysis for surfaces of arbitrary topological type, ACM Trans-
actions on Graphics (TOG) 16(1) (1997), 34–73.

[24] Y.Z. Ma, J.J. Royer, H. Wang, Y. Wang and T. Zhang, Fac-
torial kriging for multiscale modelling, Journal of the South-
ern African Institute of Mining and Metallurgy 114(8) (2014),
651–659.

[25] Z. Majdisova and V. Skala, A Radial Basis Function Approx-
imation for Large Datasets, in: Proceedings of SIGRAD 2016,
Linköping University Electronic Press, 2016, pp. 9–14.

[26] Z. Majdisova and V. Skala, Big geo data surface approximation
using radial basis functions: A comparative study, Computers
& Geosciences 109 (2017a), 51–58.

[27] Z. Majdisova and V. Skala, Radial Basis Function Approxi-
mations: Comparison and Applications, Applied Mathematical
Modelling 51 (2017b), 728–743.

[28] J.-L. Mallet, Discrete smooth interpolation, ACM Transactions
on Graphics (TOG) 8(2) (1989), 121–144.

[29] M. Marinov and L. Kobbelt, Optimization methods for scat-
tered data approximation with subdivision surfaces, Graphical
Models 67(5) (2005), 452–473.

[30] Y. Ohtake, A.G. Belyaev and H. Seidel, A Multi-scale Ap-
proach to 3D Scattered Data Interpolation with Compactly
Supported Basis Function, in: 2003 International Confer-
ence on Shape Modeling and Applications (SMI 2003), 2003,
pp. 153–164292. doi:10.1109/SMI.2003.1199611.

[31] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk and H.-P. Seidel,
Multi-level partition of unity implicits, in: ACM Siggraph 2005
Courses, ACM, 2005, p. 173.

[32] J. O’Rourke, A.J. Mallinckrodt et al., Computational geometry
in C, Computers in Physics 9(1) (1995), 55–55.

[33] R. Pan and V. Skala, A two-level approach to implicit surface
modeling with compactly supported radial basis functions, En-
gineering with Computers 27(3) (2011), 299–307.

[34] G. Prakash, M. Kulkarni and U. Sripati, Using RBF Neural
Networks and Kullback-Leibler distance to classify channel
models in Free Space Optics, in: Optical Engineering (ICOE),
2012 International Conference on, IEEE, 2012, pp. 1–6.

[35] Y. Saad and M.H. Schultz, GMRES: A generalized mini-
mal residual algorithm for solving nonsymmetric linear sys-
tems, SIAM Journal on scientific and statistical computing 7(3)
(1986), 856–869.

[36] I.P. Schagen, Interpolation in two dimensions - a new tech-
nique, IMA Journal of Applied Mathematics 23(1) (1979), 53–
59.

[37] I. Simecek, Sparse matrix computations using the quadtree
storage format, in: Symbolic and Numeric Algorithms for Sci-
entific Computing (SYNASC), 2009 11th International Sympo-
sium on, IEEE, 2009, pp. 168–173.

[38] V. Skala, Meshless Interpolations for Computer Graphics, Vi-
sualization and Games, in: Eurographics 2015 - Tutorials,
2015. doi:10.2312/egt.20151046.

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

M. Smolik, V. Skala / Large Scattered Data Interpolation with RBF and Space Subdivision 15

[39] V. Skala, RBF Interpolation with CSRBF of Large Data Sets,
Procedia Computer Science 108 (2017), 2433–2437.

[40] M. Smolik and V. Skala, Vector Field Interpolation with Radial
Basis Functions, in: Proceedings of SIGRAD 2016, Linköping
University Electronic Press, 2016, pp. 15–21.

[41] M. Smolik and V. Skala, Classification of Critical Points Using
a Second Order Derivative, Procedia Computer Science 108
(2017), 2373–2377.

[42] M. Smolik, V. Skala and O. Nedved, A Comparative Study
of LOWESS and RBF Approximations for Visualization, in:
Computational Science and Its Applications - ICCSA 2016 -
16th International Conference, Part II, 2016, pp. 405–419.
doi:10.1007/978-3-319-42108-7_31.

[43] J. Süßmuth, Q. Meyer and G. Greiner, Surface reconstruction
based on hierarchical floating radial basis functions, Computer
Graphics Forum 29(6) (2010), 1854–1864.

[44] K. Uhlir and V. Skala, Reconstruction of damaged images us-
ing radial basis functions, in: Signal Processing Conference,
2005 13th European, IEEE, 2005, pp. 1–4.

[45] H. Wendland, Computational aspects of radial basis func-
tion approximation, Studies in Computational Mathematics 12
(2006), 231–256.

[46] J. Yang, Z. Wang, C. Zhu and Q. Peng, Implicit Surface Recon-
struction with Radial Basis Functions, in: International Con-
ference on Computer Vision and Computer Graphics, Springer,
2007, pp. 5–12.

[47] L. Yingwei, N. Sundararajan and P. Saratchandran, Perfor-
mance evaluation of a sequential minimal radial basis function
(RBF) neural network learning algorithm, IEEE Transactions
on neural networks 9(2) (1998), 308–318.

[48] R. Yokota, L.A. Barba and M.G. Knepley, PetRBF-A paral-
lel O(N) algorithm for radial basis function interpolation with
Gaussians, Computer Methods in Applied Mechanics and En-
gineering 199(25) (2010), 1793–1804.

[49] X. Zhang, K.Z. Song, M.W. Lu and X. Liu, Meshless meth-
ods based on collocation with radial basis functions, Computa-
tional mechanics 26(4) (2000), 333–343.

Integrated Computer Aided Engineering, IOS Press DRAFT Vol.25, No.1, pp.49-62, ISSN 1069-2509

