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Abstract

Vector field simplification aims to reduce the complexity of the flow by removing
features according to their relevance and importance. Our goal is to preserve only
the important critical points in the vector field and thus simplify the vector field
for the visualization purposes. We use Radial Basis Functions (RBF) approximation
with Lagrange multipliers for vector field approximation. The proposed method was
experimentally verified on synthetic and real weather forecast data sets. The results
proved the quality of the proposed approximation method compared to other existing
approaches. A significant contribution of the proposed method is an analytical form
of the vector field which can be used in further processing.
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1. Introduction

Interpolation and approximation are probably the most frequent operations used
in computational techniques [1]. Several techniques have been developed for data
interpolation and approximation, but they require some kind of data ”ordering”,
e.g. structured mesh, rectangular mesh, unstructured mesh etc. A typical example
is a solution of partial differential equations (PDE), where derivatives are replaced
by differences and rectangular or hexagonal meshes are used in the vast majority of
cases. However, in many engineering problems, data are not ordered and they are
scattered in k-dimensional space, in general. The k-dimensional space is sometimes
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not only spatial but also contains a time dimension or a dimension relating to age
or temperature or other environmental conditions. Usually, in technical applications
the scattered data are tessellated using triangulation, but this approach is quite
prohibitive for the case of k-dimensional data interpolation or approximation because
of the computational cost [2].

The technique for visualizing topological information in fluid flows is well known
[3]. However, when the technique is used in complex and information-rich data
sets, the result will be a cluttered image which is difficult to interpret. The paper
[4] presents a simplification approach that removes pairs of critical points from the
dataset, based on relevance measures. The approach does no grid changes since the
whole method uses small local changes of the vector values defining the vector field.
A simplification of vector field can be achieved by merging critical points within a
prescribed radius into higher order critical points [5]. After building clusters contain-
ing the singularities to merge, the method generates a piecewise linear representation
of the vector field in each cluster containing only one higher order singularity. Paper
[6] presents a method to segment regions around a higher order critical point into
areas of different 3D flow behavior. This method can be applied to any area of
interest, e.g. around clusters of critical points. This can be used for a topological
simplification tool by replacing the topological skeleton inside the area of interest.
Combination of topological simplification technique and topology preserving com-
pression for 2D vector fields is presented in [7]. A vector field is compressed in such
way that its important topological features are preserved while its unimportant fea-
tures are allowed to collapse and disappear. [8] presents a Delaunay based algorithm
for simplifying vector fields. The algorithm controls a local metric during remov-
ing vertices from Delaunay triangulation and maintains regions near critical points
to prevent topological changes. The paper [9] uses a filtering technique based on
the vorticity of the vector field to eliminate the less interesting critical points. The
magnitude of the curl of the scalar field provides a basis to control the boundary
thresholds as well as the number of critical points to include in the vector field. The
paper [10] presents a technique for the visualization of multi-level topology in flow
data sets. It provides the user with a mechanism to visualize the topology without
excessive cluttering while maintaining the global structure of the flow. [11] and [12]
enable the pruning of sets of critical points according to a quantitative measure of
their stability, that is, the minimum amount of vector field perturbation required to
remove them. This leads to a hierarchical simplification scheme that encodes flow
magnitude in its perturbation metric. A topological denoising technique based on a
global energy optimization is proposed in [13], which allows the topology-controlled
denoising of scalar fields. It allows processing small patches of the domain indepen-
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dently while still avoiding the introduction of new critical points. In the paper [14],
they performed a numerical investigation of the differences between RBF global and
local methods, in order to investigate the possible advantage of using local meth-
ods for the approximation of vector fields. The paper [15] presents a vector field
approximation for two-dimensional vector fields that preserves their topology and
significantly reduces the memory footprint. This approximation is based on a seg-
mentation. The flow within each segmentation region is approximated by an affine
linear function.

2. Vector Field

Vector fields on surfaces are important objects, which appear frequently in sci-
entific simulation in CFD (Computational Fluid Dynamics) [16], [17] or modeling
by FEM (Finite Element Method) [18], [19]. To be visualized, such vector fields are
usually linearly approximated for the sake of simplicity and performance considera-
tions.

The vector field can be easily analyzed when having an approximation of the
vector field near some location point. The important places to be analyzed are so
called critical points [20]. Analyzing the vector field behavior near these points gives
us the information about the characteristic of the vector field.

Critical points x0 of the vector field are points at which the magnitude of the
vector vanishes

dx

dt
= v(x) = 0, (1)

i.e. all components are equal to zero[
dx
dt

dy

dt

]
=

[
0

0

]
. (2)

A critical point is said to be isolated, or simple, if the vector field is non vanishing
in an open neighborhood around the critical point. Thus for all surrounding points
xε of the critical point x0 the equation (1) does not apply, i.e.

dxε

dt
�= 0, (3)

At critical points, the direction of the field line is indeterminate, and they are the
only points in the vector field where field lines can intersect (asymptotically). The
terms singular point, null point, neutral point or equilibrium point are also frequently
used to describe critical points.
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These points are important because together with the nearby surrounding vectors,
they have more information encoded in them than any such group in the vector field,
regarding the total behavior of the field. The critical points are classified based on
the vector field around these points, see Figure 1.

Figure 1: Classification of 2D first order critical points. R1, R2 denote the real parts of the
eigenvalues of the Jacobian matrix while I1, I2 denote their imaginary parts [20].

3. Radial Basis Functions

Radial basis function (RBF) is a technique for scattered data interpolation [21]
and approximation [22], [23]. The RBF interpolation and approximation is computa-
tionally more expensive compared to interpolation and approximation methods that
use an information about mesh connectivity, because input data are not ordered and
there is no known relation between them, i.e. tessellation is not made. Although RBF
has a higher computational cost, it can be used for d-dimensional problem solution
in many applications, e.g. solution of partial differential equations [24], [25], image
reconstruction [26], neural networks [27], [28], [29], GIS systems [30], [31], optics [32]
etc. It should be noted that it does not require any triangulation or tessellation mesh
in general. There is no need to know any connectivity of interpolation points, all
points are tied up only with distances of each other. Using all these distances we can
form the interpolation or approximation matrix, which will be shown later.
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The RBF is a function whose value depends only on the distance from its center
point. Due to the use of distance functions, the RBFs can be easily implemented to
reconstruct the surface using scattered data in 2D, 3D or higher dimensional spaces.
It should be noted that the RBF interpolation and approximation is not separable
by dimension.

Radial function interpolants have a helpful property of being invariant under all
Euclidean transformations, i.e. translations, rotations and reflections. It does not
matter whether we first compute the RBF interpolation function and then apply a
Euclidean transformation, or if we first transform all the data and then compute
the radial function interpolants. This is a result of the fact that Euclidean transfor-
mations are characterized by orthonormal transformation matrices and are therefore
two-norm invariant. Radial basis functions can be divided into two groups according
to their influence. The first group are ”global” RBFs [33]. Application of global
RBFs usually leads to ill-conditioned system, especially in the case of large data sets
with a large span [34], [35].

The ”local” RBFs were introduced in [36] as compactly supported RBF (CSRBF)
and satisfy the following condition:

ϕ(r) = (1− r)q+P (r)

=

{
(1− r)qP (r) 0 ≤ r ≤ 1

0 r > 1

(4)

where P (r) is a polynomial function, r is the distance of two points and q is a
parameter. The subscript in (1− r)q+ means:

(1− r)+ =

{
(1− r) (1− r) ≥ 0

0 (1− r) < 0
(5)

3.1. Radial Basis Function Approximation

RBF interpolation was originally introduced by [37] and is based on computing
the distance of two points in any k-dimensional space. The interpolated value, and
approximated value as well, is determined as (see [38]):

h(x) =
M∑
j=1

λjϕ(‖x− ξj‖) (6)

where λj are weights of the RBFs, M is the number of the radial basis functions, ϕ
is the radial basis function and ξj are centers of radial basis functions. For a given
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Figure 2: Data values, the RBF collocation functions, the resulting interpolant.

dataset of points with associated values, i.e. in the case of scalar values {xi, hi}
N
1 ,

where N�M , the following overdetermined linear system of equations is obtained:

hi = h(xi) =
M∑
j=1

λjϕ(‖xi − ξj‖)

for ∀i ∈ {1, . . . , N} (7)

where λj are weights to be computed; see Figure 2 for a visual interpretation of (6)
or (7) for a 21

2
D function. Point in 21

2
D is a 2D point associated with a scalar value.

The same also applies to 3D point associated with a scalar value, thus 31
2
D point.

Equation (7) can be rewritten in a matrix form as

Aλ = h, (8)

where Aij = ϕ(‖xi − ξj‖) is the entry of the matrix in the i−th row and j−th column,
the number of rows N�M , M is the number of unknown weights λ = [λ1, . . . , λM ]T ,
i.e. a number of reference points, and h = [h1, . . . , hN ]

T is a vector of values in the
given points. The presented system is overdetermined, i.e. the number of equations
N is higher than the number of variables M . This linear system of equations can be
solved by the least squares method (LSE) as

ATAλ = ATh, (9)

where the matrix ATA is symmetrical.
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The RBF approximation can be done using ”global” or ”local” functions. When
using ”global” radial basis functions, the matrix A will be full, but when using
”local” radial basis functions, the matrix A might be sparse, which can be beneficial
when solving the overdetermined system of linear equations Aλ = h.

In the case of the vector data, i.e. {xi,hi}
N
1 values hi are actually vectors, the

RBF is to be performed for each coordinate of the vector hi.

3.2. RBF approximation with Lagrange multiplier

We want to minimize a multivariate function f(x, y) subject to a constraint
g(x, y) = 0. The method of Lagrange multipliers relies on the intuition that at
a minimum, f(x, y) cannot be decreasing in the direction of any neighboring point
where g(x, y) = 0. Thus, the gradient of f(x, y) is perpendicular to the constraint
g(x, y) = 0 and thus the gradients of f and g are parallel, see Figure 3, i.e.

∇f (x, y) = η∇g (x, y) , (10)

where η represents some constant.

(a) 2D view. (b) 3D view.

Figure 3: The red line shows the constraint g(x, y) = 0. The blue lines are contours of f(x, y). The
point where the red line tangentially touches a blue contour is the maximum of f(x, y).

The method of Lagrange multipliers is a powerful tool for solving this class of
problems without the need to explicitly solve the conditions and use them to eliminate
extra variables. Lagrange presented a special new function which takes in all the same
input variables as f and g, along with η, thought of now as a variable called Lagrange
multiplier. The Lagrange function is [39], [40], [41]

F (x, y, η) = f(x, y) + ηg(x, y). (11)
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To find a minimum of (11) we need to set the gradient of (11) equal to zero

∂F

∂x
= 0

∂F

∂η
= 0,

(12)

where x = [x, y]T .
We will use Lagrange multipliers together with RBF approximation. The RBF

approximation function is

h(x) =
M∑
j=1

λjϕ (‖x− ξj‖), (13)

where ξj are centers of radial basis functions, λj are weights of radial basis functions
and ϕ is a radial basis function. We want to minimize

f(λ) =
N∑
i=1

(
M∑
j=1

λjϕ (‖xi − ξj‖)− hi

)2

, (14)

where N is the number of input points for approximation and hi are associated

function values at xi. The constrain for some points x(0) =
[
x
(0)
1 , . . . ,x

(0)
Nc

]
that the

RBF function is equal to zero is

g(x(0)
c ) =

M∑
j=1

λjϕ
(∥∥x(0)

c − ξj
∥∥) = 0

for ∀c ∈ {1, . . . , Nc}, (15)

where Nc is the number of constrains.
Using (14) as f(x, y) in (11) and (15) as g(x, y) in (11) we form the Lagrange

function

F (λ,η) =
N∑
i=1

(
M∑
j=1

λjϕ (‖xi − ξj‖)− hi

)2

+
Nc∑
c=1

ηc

(
M∑
j=1

λjϕ
(∥∥x(0)

c − ξj
∥∥)). (16)

This formula can be rewritten in a matrix form as

F (λ,η) = (Aλ− h)2 + λTRTη

= λTATAλ− 2hTAλ+ hTh+ λTRTη,
(17)
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where Aij = ϕ (‖xi − ξj‖) is the entry of the matrix A in the i-th row and the j-th

column, Rcj = ϕ
(∥∥∥x(0)

c − ξj

∥∥∥) is the entry of the matrix R, λ = [λ1, . . . , λM ]T ,

h = [h1, . . . , hN ]
T and η = [η1, . . . , ηNc

]T . To find the minimum of (17) we need to
compute the partial derivatives of (17)

∂F

∂λ
= 2ATAλ+RTη − 2ATh (18)

and
∂F

∂η
= Rλ. (19)

To find the minimum, both partial derivatives (18), (19) must be equal zero

∂F

∂λ
= 0 ⇒ 2ATAλ+RTη − 2ATh = 0,

∂F

∂η
= 0 ⇒ Rλ = 0.

(20)

Using (20), we can form the system of linear equations for RBF approximation
with Lagrange multipliers[

2ATA RT

R 0

] [
λ

η

]
=

[
2ATh

0

]
(21)

Solving those equations and finding λ, we made the RBF approximation and can
compute the function values using (13).

4. Proposed Approach

Importance measure for minima and maxima of 2D scalar fields called scale space
persistence is introduced in [42]. This method is based on the mathematical con-
cepts scale space, homological persistence, discrete Morse theory, and combinatorial
feature flow fields. The combination of these powerful approaches to data analysis
results in an importance measure that can deal with noisy data containing outliers.
Robustness, a notion related to persistence, is used to represent the stability of criti-
cal points and evaluate their significance with respect to perturbations of the vector
field. Intuitively, the robustness of a critical point is the minimum amount of per-
turbation that is required to cancel this critical point within a local neighborhood.

The proposed algorithm aims to reduce critical points in the vector field and thus
simplify it. Critical points are located on places where the zero iso-lines of vx and vy
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intersect. The importance of the critical point is based on how the two zero iso-lines
of vx and vy intersect and how long are these iso-lines.

If two iso-lines are almost parallel at a critical point, then this critical point does
not have high importance as can be seen in the synthetic example in Figure 4. The
two zero iso-lines have two intersections (Figure 4a), thus the vector field has two
critical points at that locations. If we change the vector field in Figure 4a so that
the vector field has only one critical point and both the vx and vy zero iso-lines
touches at one point, i.e. at critical point, see Figure 4b. If we change the vector
field Figure 4a even more, we can end up with the vector field Figure 4c, which has
no critical point. All the vector fields Figure 4a-c have the same global character
and differ only in the number of critical points. Due to inaccuracy in measurement
or numerical simulation or vector field data noise, there may be confusion between
the individual cases in Figure 4a-c. Some non existing critical points can occur in
the data set and are disturbing for visualization purposes.

(a) (b) (c)

Figure 4: Vector fields with almost parallel zero iso-lines. All the vector fields have the same global
character.

If two iso-lines have an intersection, where one iso-line is a relatively short closed
curve, the influence of the critical point is only local and has almost no global influ-
ence for the vector field. Examples are visualized in Figure 5 and Figure 6. We can
change the vector field Figure 5 (left) that the vy component of the vector field is
always greater than zero, i.e. there is no zero iso-line, see Figure 5 (right). However
this modified vector field has no critical point, the global character of the vector field
remains the same as in Figure 5 (left). The same implies for vector field in Figure 6
as well. Critical points created with a relatively short closed curve have the influence
proportional to the size of the zero iso-line.
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Figure 5: Vector fields with one short zero iso-lines. Both the vector fields have the same global
character.

Figure 6: Vector fields with one short zero iso-lines. Both the vector fields have the same global
character.

It can be seen that for the both cases mentioned above, i.e. almost parallel iso-
lines in Figure 4 and relatively short closed curve in Figure 5 and Figure 6, the vector
fields have the same global character with the critical points as without them. In the
following text we will show how to detect critical points affecting only local behavior
of the vector field.

4.1. Critical points reduction

The first step of the proposed method is the critical points detection. Critical
points in the vector field can be located using several methods [43], [44], [45]. Critical

11

Advances in Engineering Software, Vol.123, pp.117-129, 2018, Elsevier ISSN 0965-9978

https://doi.org/10.1016/j.advengsoft.2018.06.013



points of the 2D vector field are places, where the two zero iso-lines of vx and vy
component intersect. Our goal is to trace both zero iso-lines in both directions from
the critical point and compute the approximated zero iso-lines.

For the vx zero iso-line approximation we need to compute intersections with
the input data grid. From these intersections, we find some number of the closest
ones to the critical point x0. In the testing we used 6 closest intersection points{
x
(1)
c , . . . ,x

(6)
c

}
. This points need to be interlaced with an implicit line. For this

purpose we use the method of total least square error computation in E2 taken from
[46]. This method computes implicit line

a(x)x+ b(x)y + d(x) = 0, (22)

where a(x), b(x) and d(x) are parameters of implicit line for vx, similarly a(y), b(y) and
d(y) for vy. This line has a normal vector

n(x) = [a(x), b(x)]T , (23)

and thus the direction vector of the implicit line is

u(x) = [b(x),−a(x)]T . (24)

The direction vector is a smooth approximation of the zero iso-line, see Figure 7. For
the vy zero iso-line smooth approximation, we compute u(y) using the same approach
like for u(x).

If two zero iso-lines are almost parallel (as in Figure 4), the two corresponding
direction vectors u(x) and u(y) computed using (24) are almost parallel as well. The
angle θ between this two vectors is computed using

θ = acos

(
u(x) · u(y)

‖u(x)‖ ‖u(y)‖

)
. (25)

To distinguish cases, when vectors are almost parallel and when not, we can compute
only the argument of function acos in (25)

ν =
u(x) · u(y)

‖u(x)‖ ‖u(y)‖
. (26)

The two vectors u(x) and u(y) are almost parallel, when

|ν| −→ 1. (27)
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(a) (b)

Figure 7: Examples of zero iso-line approximation. The black line is the zero iso-line approximation
at the critical point. The red and green curves are zero iso-lines.

In our approach we are going to remove all critical points for which the condition
(27) is true for some small ε in

|ν| ≥ 1− ε. (28)

This critical points have only local character and are not important for the global
character of the vector field.

The next type of critical points that have only local character is described in
Figure 5 and Figure 6. To detect this type of critical points, we need to trace the
zero iso-line of vx and vy and compute how long this zero iso-lines are. If one zero iso-
line is shorter than some threshold, then the critical point have only local character
and can be removed. The threshold length needs to be determined experimentally
relatively to the size of input data set.

4.2. Vector field RBF approximation

Now, we know the critical points that can be removed from the vector field as
they change the vector field only locally and thus have no importance for the global
character of the vector field. The remaining critical points need to be preserved
in the approximated vector field. The vector field will be approximated using the
RBF with Lagrange multipliers as described in Section (3.2), so that the important
critical points will be preserved in the approximated vector field. For the RBF
approximation, we need to determine the centers of radial basis functions.

Centers of the RBF approximation need to be located in the positions of the
important critical points. The additional centers of RBF need to be located at the
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(a) Vector field. (b) Zero iso-lines and critical points.

Figure 8: Visualization of the input data set. The vector field (a) and the zero iso-lines with all
critical points (b).

extremes of vx, resp. vy. The number of extremes will be too high for real data
due to noise, measurement inaccuracies and calculation. Therefore, the vx, resp.
vy, component of the vector field is smoothed using Gaussian low-pass filter before
computing extremes. Now, we can compute the RBF approximation with Lagrange
multiplier as described in section 3.2. The conditions for Lagrange multiplier are the
zero values at critical points locations.

After computing RBF approximation, we have an analytical description of the
vector field. This approximated vector field can be used for visualization purposes as
the global character of the vector field remains the same and only small local changes
are neglected.
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(a) (b)

Figure 9: First (a) and second (b) step of critical points reduction algorithm.

5. Results

In this section, we show the results of our proposed approach. This approach
for vector field approximation using radial basis functions is especially convenient
for visualization purposes, data understanding and data compression. For testing
purposes, we used a numerical forecast wind data set taken from1 [47]. This data set
consists of 2.2·104 sampled points with associated vectors of wind flow, see Figure 8a.
The vector field contains 69 critical points as can be seen in Figure 8b, but only few

1Data set of wind flow at a height of 10m over the surface of the Czech Republic courtesy of the
Institute of Computer Science of the Czech Academy of Sciences.
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(a) Original vx component of the vector field. (b) Approximated vx component of the vector
field.

(c) Original vy component of the vector field. (d) Approximated vy component of the vector
field.

Figure 10: Original and RBF approximated components of vector field.

of then are important and have the global character.
We need to select only the important critical points and eliminate the others.

First set of critical points, that can be eliminated, are critical points laying on a rel-
atively short iso-lines. For processing only critical points with longer iso-lines length
are considered. The threshold of zero iso-line length was experimentally selected as
half of the minimum of x and y axis range, i.e.

min {rangex, rangey}

2
. (29)

After ignoring this short zero iso-lines, we obtain reduced set of critical points, see
Figure 9a. To eliminate the second group of critical points, we need to compute (26)
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(a) Original vector field. (b) Approximated vector field.

Figure 11: Original vector field (a) and approximated vector field using the proposed approach (b).

and compare it to some threshold value ε in (28). Experimentally, we selected the
value of ε = 0.06, which is relevant to an angle equal 20�, i.e. cos−1(1− ε) = 20�. As
the result we end up with only 12 critical points, this means that we eliminated 57
critical points, see Figure 9b.

Both the vector field components vx and vy were approximated by RBF using
the Lagrange multiplier. The result of approximation is visualized at Figure 10. It
can be seen that both approximations have more smoothed course of the function
compared to the original functions. This property is beneficial for the visualization
purposes as the final vector field does not contain small fluctuations.

Having approximation of both vector field components vx and vy, we can visualize
the approximated vector field, see Figure 11b and Figure 12. It can be seen that

17

Advances in Engineering Software, Vol.123, pp.117-129, 2018, Elsevier ISSN 0965-9978

https://doi.org/10.1016/j.advengsoft.2018.06.013



Figure 12: Approximated vector field with its all critical points (a) and zero iso-lines of the approx-
imated vector field (b).

the approximated vector field has visually the same global character as the original
vector field.

5.1. Comparison with existing approach

The proposed approach for vector field approximation using RBF needs to be
compared to a different competing approach. We selected an approach which uses
the discrete Fourier transform (DFT) to approximate a vector field and a second
approach which uses the discrete Cosine transform (DCT) to approximate a vector
field.

The discrete Fourier transform computes for both components vx and vy of the
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vector field the Fourier transform using the formula

F (α, β) =

∫
∞

−∞

∫
∞

−∞

v(x, y)e−2πi(xα+yβ)dxdy, (30)

where α and β are frequencies that represent the original data set after the Fourier
transform, see Figure 13. The inverse Fourier transform is computed using the
formula

v(x, y) =

∫
∞

−∞

∫
∞

−∞

F (α, β)e2πi(xα+yβ)dαdβ. (31)

(a) Frequency portrait. (b) Phase offset.

Figure 13: Fourier transform of the original data set. Figure (a) represents the frequency portrait
and (b) represents the phase offset (both images are rotated 90 counterclockwise).

The vector field can be approximated using the Fourier transform. We used the
discrete Fourier transform in our experiments. Then we used only some number of
low frequency coefficients, thereby removing the high frequencies from the input data
set and simplifying the vector field. This simplified vector field can be compared with
our proposed approach for vector field RBF approximation.

The discrete Cosine transform computes for both components vx and vy of the
vector field the Cosine transform using the formula

F (α, β) =

∫
∞

−∞

∫
∞

−∞

v(x, y) cos

[
π

(
x+

1

2

)
α

]
cos

[
π

(
y +

1

2

)
β

]
dxdy, (32)

where α and β are frequencies that represent the original data set after the Cosine
transform, see Figure 14. The inverse Cosine transform is computed using the formula

v(x, y) =

∫
∞

−∞

∫
∞

−∞

F (x, y) cos

[
π

(
x+

1

2

)
α

]
cos

[
π

(
y +

1

2

)
β

]
dαdβ. (33)
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Figure 14: Frequency portrait of the Cosine transform of the original data set.

The vector field can be approximated using the Cosine transform. We used the
discrete Cosine transform in our experiments. Then we used only some number of
low frequency coefficients, thereby removing the high frequencies from the input data
set and simplifying the vector field. This simplified vector field can be compared with
our proposed approach for vector field RBF approximation.

The approximation error can be measured using different formulas. The first way
is to compute the average difference of the approximated vector field and the original
vector field. The average difference is computed using

Err =

∑N

i=1 ‖vi − v̄i‖

N
, (34)

where vi is the approximated vector, v̄i is the original vector and N is the number
of the original samples. The approximation error for different compression ratios
is visualized in Figure 15a. The total number of input points for vector field ap-
proximation is around 2.2 · 104; the average vector length, i.e. average speed, is
2.21 m/s.

Next, we can measure the average vector length error, i.e. the average speed
error. This error is computed using

Err =

∑N

i=1 |‖vi‖ − ‖v̄i‖|∑N

i=1 ‖v̄i‖
. (35)

The average vector length error is divided by the average vector length of the original
data set, i.e. this error is relative and the result for different compression ratios is
visualized in Figure 15b. As the data set contains critical points (zero points),
standard relative error computation using the following formula cannot be applied,
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(a) The average difference approximation error.
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(b) The average vector length error.
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(c) The average angular displacement error.

Figure 15: Comparison of approximation error for the proposed RBF vector field approximation
with the DFT vector field approximation and the DCT vector field approximation for different
compression ratios. The total number of input points for vector field approximation is around
2.2 · 104; for approximation with compression ratio 8 : 1 are used 2.8 · 103 reference points; and for
compression ratio 512 : 1 only 43 reference points are used.

as there will be a division by zero and thus infinitely large relative error.

Err =
1

N

N∑
i=1

|‖vi‖ − ‖v̄i‖|

‖v̄i‖
. (36)

Last, we can measure the average angular displacement error using

Err =
1

N

N∑
i=1

acos

(
vi · v̄i

‖v‖ ‖v̄‖

)
. (37)

It can be seen that our proposed method have lower approximation error in all
the three cases mentioned before.

As the next step we tested the number of critical points in the approximated
vector fields. Our aim is to reduce the number of critical points and preserve only
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the important critical points. However, if we are reducing the critical points even
more we are still able to preserve more critical points in the approximated vector
field than the DFT and the DCT approximation, see Figure 16.
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Figure 16: Comparison of the number of critical points for the proposed RBF vector field approxi-
mation and the DFT and the DCT vector field approximation for different compression ratios. The
total number of critical points in the input data set is 69.

In spite of the fact that we know the distribution of approximation errors, it is
hard to compare the two histograms of approximation errors in Figure 17. Therefore
we computed the difference histogram, see Figure 18.

It can be seen that the proposed RBF approximation method has more smaller
approximation errors and fewer higher approximation errors than the discrete Fourier
approximation as well as the discrete cosine transform approximation, which means
that the proposed method is significantly more accurate while preserving the same
compression ratio and important features of the vector field.

6. Conclusion

We presented a new approach for simplification and approximation of a vector
field using radial basis functions. Important critical points are preserved in the
approximated vector field. The algorithm proved its simplicity and ability to ap-
proximate a complex vector field. The proposed algorithm was compared with the
standard Fourier approximation algorithm and the Cosine approximation algorithm.
It proved its capability of high compression while maintaining a low approximation
error. The proposed method also leads to an analytical RBF form of the vector field
which can be used for further processing. This is a significant advantage over other
methods.

In the future the proposed approach will be extended to approximate 3D vector
fields, as the visualization of complex and noisy vector fields can be confusing.
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(a) Proposed RBF approximation.

(b) DFT approximation. (c) DCT approximation.

Figure 17: The histograms of vector field average difference approximation error for compression
ratio 115 : 1.

(a) (b)

Figure 18: The difference histogram of vector field average difference approximation error (”RBF”
- ”DFT”) (a) and (”RBF” - ”DCT”) (b), see Figure 17, for compression ratio 115 : 1.
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