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Abstract—This contribution describes a new approach to a 

solution of multidimensional dynamical systems using the La-

place transform and geometrical product, i.e. using inner prod-

uct (dot product, scalar product) and outer product (extended 

cross-product). It leads to a linear system of equations Ax=0 or 

Ax=b which is equivalent to the outer product if the projective 

extension of the Euclidean system and the principle of duality 

are used. The paper explores property of the geometrical prod-

uct in the frame of multidimensional dynamical systems. 

The proposed approach enables to avoid division operation 

and extents numerical precision as well. It also offers applica-

tions of matrix-vector and vector-vector operations in symbolic 

manipulation, which can lead to new algorithms and/or new for-

mula. The proposed approach can be applied also for stability 

evaluation of dynamical systems. In the case of numerical com-

putation, it supports vector operation and SSE instructions or 

GPU can be used efficiently. 

Keywords—Linear system of equations, linear system of differ-

ential equations, Laplace transform, extended cross product, outer 

product, homogeneous coordinates, duality, geometrical algebra, 

dynamic systems, stability, GPGPU computation, SSE instruc-

tions. 

I LAPLACE TRANSFORM 

Integral transform maps a problem from the original do-

main to another one, where the problem can be solved in sim-

ple way and the result is converted back to the original do-

main using inverse transform. One such transform was dis-

covered by Pierre-Simon Laplace in 1785, which is called the 

Laplace transform, now. It is an integral transform applied on 

a real function 𝑓(𝑡) with a real positive argument  𝑡 ≥ 0 and 

converts the function it to a complex function 𝐹(𝑠) with a 

complex argument 𝑠 = 𝛿 + 𝑖𝜔. 

 
Fig.1.Laplace transform (taken from https://en.wikibooks.org [24]) 

 

The Laplace transform is defined as: 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 
 

(1) 

The Laplace transform, see Fig.1, is often used for trans-

form of differential system of equations to algebraic equa-

tions and convolution to multiplication  [3],[4],[21],[25]. 

 

It means, that a system of differential equations is trans-

formed to a system of linear equations, which is to be solved 

and then this solution is transformed back to the time domain 

using inverse Laplace transform; in many cases the result is 

decomposed to some “patterns” for which the inverse trans-

form is known.  

The solution is then transformed back to the time domain 

using the inverse Laplace transform. 

𝑓(𝑡) = ℒ−1{𝐹(𝑠)} =
1

2𝜋𝑖
lim
𝑇→∞

∫ 𝐹(𝑠)𝑒𝑠𝑡𝑑𝑡

𝛼+𝑖𝑇

𝛼−𝑖𝑇

 (2) 

where 𝛼 is taken so that all singularities of  𝐹(𝑠)  are on the 

left of 𝑅𝑒(𝑠). In many cases the result is decomposed to some 

“patterns” for which the inverse transform is known.  

In the following, we introduce basic information projec-

tive representation, duality and geometric algebra. 

II PROJECTIVE SPACE AND HOMOGENEOUS 

COORDINATES 

The Euclidean space is used nearly exclusively in compu-

tational sciences. In some applications, like computer vision, 

computer graphics etc., the projective extension of the Eu-

clidean space is used [2][9][20]. The projective extension 

in 𝐸2 is defined as 

TABLE I.  TYPICAL LAPLACE TRANSFORM PATTERNS 

Time domain 𝒔 domain 

𝑓(𝑡) 𝐹(𝑠) 

𝑎𝑓(𝑡) + 𝑏𝑔(𝑡) 𝑎𝐹(𝑠) + 𝑏𝐺(𝑠) 

𝑓′(𝑡) 𝑠𝐹(𝑠) − 𝑓(0) 

𝑓′′(𝑡) 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0) 

𝑡 1
𝑠2⁄  

𝑓(0) 
lim
𝑠→∞

𝑠𝐹(𝑠) 

lim
𝑡→∞

𝑓(𝑡) lim
𝑠→0
𝑠𝐹(𝑠) 

𝑓(𝑡) ∗ 𝑔(𝑡) (convolution) 𝐹(𝑠)𝐺(𝑠) 
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 𝑋 =
𝑥

𝑤
 𝑌 =

𝑦

𝑤
 𝑤 ≠ 0 

 

(3) 

where  𝑥, 𝑦, 𝑤  are homogeneous coordinates, i.e.  𝒙 =
[𝑥, 𝑦: 𝑤]𝑇 ∈ 𝑃2, 𝑿 = (𝑋, 𝑌) ∈ 𝐸2 are coordinates in the Eu-

clidean space. This concept is valid generally for the 𝑛-di-

mensional space. In general, a value in the projective space is 

represented as: 

     𝒙 = [𝑥1, … , 𝑥𝑛: 𝑤]
𝑇     or     𝒙 = [𝑥0: 𝑥1, … , 𝑥𝑛]

𝑇 

𝒙 ∈ 𝑃𝑛 
(4) 

where: 𝑥0 stands for 𝑤; this notation is mostly used in math-

ematical resources. The symbol “:” means that the homoge-

nous coordinate 𝑤 is just a “scaling factor” and has no phys-

ical unit, while 𝑥1, … , 𝑥𝑛 do have. 

Let us introduce the extended cross product and its use 

with the projective space representation with simple geomet-

rical examples for simplicity of explanation. 

III DUALITY 

The projective representation offers also one very im-

portant property – principle of duality. The principle of dual-

ity in 𝐸2 states that any theorem remains true when we inter-

change the words “point” and “line”, “lie on” and “pass 

through”, “join” and “intersection”, “collinear” and “concur-

rent” and so on. Once the theorem has been established, the 

dual theorem is obtained as described above [1][5][7]. In 

other words, the principle of duality says that in all theorems 

it is possible to substitute the term “point” by the term “line” 

and the term “line” by the term “point” etc. in and the given 

theorem stays valid. Similar duality is valid for 𝐸3 as well, 

i.e. the terms “point” and “plane” are dual etc. it can be shown 

that operations “join” and “meet” are dual as well.  

IV OUTER AND INNER PRODUCT 

Solving system of linear algebraic equations is often used 

in many applications. However, methods for solution differ if 

the linear system of equations is homogeneous, i.e.  𝑨𝒙 = 𝟎, 

or non-homogeneous 𝑨𝒙 = 𝒃. If the projective extension of 

the Euclidean space is used and principle of duality applied, 

the both cases can be solved using extended cross-product 

as 𝜶1 × 𝜶2 × …× 𝜶𝑛 or as  𝜶1 ∧ 𝜶2 ∧ …∧ 𝜶𝑛 if outer prod-

uct is used, where  𝜶𝑖  is the 𝑖 − th row of the matrix  𝑨 , 

resp. [𝑨| − 𝒃] [10]-[18]. 

In the case of differential equations, the Laplace transform 

transforms differential system to an algebraic system of equa-

tions. It can be seen that the extended cross-product does not 

use any division operation as would be expected in solution 

of a linear system of equations. In addition, it means that 

standard vector and/or matrix operations can be applied in 

further processing and solution of the system of equations can 

be avoided in principle. Symbolic manipulations using vector 

notation might lead to better understanding and possibly to 

derive new formulas. 

The outer product (cross-product) of two vectors  𝒂, 𝒃 

in 𝐸3 is defined: 

 𝒒 = 𝒂 ∧ 𝒃 = det [

𝒊 𝒋 𝒌
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧

] (5) 

where: 𝒊 = [1,0,0]𝑇, 𝒋 = [0,1,0]𝑇, 𝒌 = [0,0,1]𝑇  are unit vec-

tors. The result of the cross-product 𝒒 is a “bivector” which 

is an oriented area of a rhomboid in 𝐸3  given by the vec-

tors 𝒂, 𝒃. It should not be handled as a “movable vector” in 

general [17][18]. 

Let us consider computation of the intersection point  

𝑿 = (𝑋, 𝑌) of two given lines  𝑝1 and 𝑝2 in 𝐸
2: 

𝑝1: 𝑎1𝑋 + 𝑏1𝑌 + 𝑐1
= 0 

𝑝2: 𝑎2𝑋 + 𝑏2𝑌 + 𝑐2
= 0 

 

(6) 

Multiplying those equations by 𝑤 ≠ 0 we get: 

𝑎1𝑤𝑋 + 𝑏1𝑤𝑌 + 𝑐1𝑤
= 0 

𝑎2𝑤𝑋 + 𝑏2𝑤𝑌 + 𝑐2𝑤
= 0 

 

(7) 

Now, the projective representation can be used and as  

𝑥 = 𝑤𝑋 and 𝑦 = 𝑤𝑌, i.e.: 

𝑎1𝑤𝑋 + 𝑏1𝑤𝑌 + 𝑐1𝑤 = 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑤 = 0 

𝑎2𝑤𝑋 + 𝑏2𝑤𝑌 + 𝑐2𝑤 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑤 = 0 
(8) 

in the vector notation then: 

 𝒑1
𝑇𝒙 = 0 𝒑2

𝑇𝒙 = 0 
 

(9) 

where 𝒙 = [𝑥, 𝑦:𝑤]𝑇 is the intersection point in the homoge-

neous coordinates of two lines  𝒑1 = [𝑎1, 𝑏1: 𝑐1]
𝑇  and 

𝒑2 = [𝑎1, 𝑏1: 𝑐1]
𝑇. 

It is easy to show that the intersection point 𝒙 expressed in 

the projective space can be computed as [11][13]: 

 𝒙 = 𝒑𝟏 ∧ 𝒑𝟐 = det [

𝒊 𝒋 𝒌
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

] = [𝑥, 𝑦: 𝑤]𝑇 (10) 

where  𝒊 = [1,0: 0]𝑇 , 𝒋 = [0,1: 0]𝑇 , 𝒌 = [0,0: 1]𝑇  are unit 

vectors in the projective space.  

It is simple to prove that the above formula is correct. If 

two planes are parallel, then the coordinate 𝑤 = 0, i.e. the in-

tersection is in infinity. 

The extended cross-product for  𝐸4 has a form [17][18]: 

 𝒒 = 𝒂 ∧ 𝒃 ∧ 𝒄 = det [

𝒊 𝒋 𝒌 𝒍
𝑎1 𝑎2 𝑎3 𝑎4
𝑏1 𝑏2 𝑏3 𝑏4
𝑐1 𝑐2 𝑐3 𝑐4

] (11) 

where:  𝒊 = [1,0,0: 0]𝑇 , 𝒋 = [0,1,0,0]𝑇 , 𝒌 = [0,0,1: 0]𝑇 , 

𝒍 = [0,0,0: 1]𝑇.  

Now, due to the linearity it is possible to compute inter-

section of three planes 𝝆1, … , 𝝆3 in  𝑃3 as: 

 𝒙 = 𝝆1 ∧ 𝝆2 ∧ 𝝆3 = det [

𝒊 𝒋 𝒌 𝒍
𝑎1 𝑏1 𝑐1 𝑑1
𝑎2 𝑏2 𝑐2 𝑑2
𝑎3 𝑏3 𝑐3 𝑑3

] (12) 

where  𝝆𝑖 = [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖: 𝑑𝑖]
𝑇 , i.e. 𝑎𝑖𝑋 + 𝑏𝑖𝑌 + 𝑐𝑖𝑍 + 𝑑𝑖 = 0 

and 𝒙 = [𝑥, 𝑦, 𝑧:𝑤]𝑇.  

Geometric Product for Multidimensional Dynamical Systems - Laplace Transform and Geometric Algebra, EECS 2018 conference

IEEE proceedings, pp.45-49,  ISBN -13: 978-1-7281-1929-8, DOI 10.1109/EECS.2018.00018, 2019



It means that we can solve 𝑨𝒙 = 𝒃 using the extended 

cross-product. Now, we use the principle of duality for solv-

ing 𝑨𝒙 = 𝟎 case. 

It can be seen, that the implicit formulation and projective 

space representation offer clarity of formulation, simplicity 

and robustness of algorithms. 

V GEOMETRIC ALGEBRA 

The inner product is the most often algebraic construction in the 𝑛-

dimensional Euclidean space. The Geometric Algebra (GA) is an 

inner product extension. The GA is not commutative and member 

of GA are called multivectors. The geometric product of two vectors 

in 𝐸𝑛 is connected to the algebraic construction  

𝒖𝒗 = 𝒖 ∙ 𝒗 + 𝒖 ∧ 𝒗 (13) 

where 𝒖𝒗 is the geometric product, 𝒖 ∙ 𝒗 is the inner product and 

𝒖 ∧ 𝒗 is the outer product (in 𝐸3 equivalent to the cross product, i.e. 

𝒖 × 𝒗). If 𝒆𝑖 are orthonormal basis vectors, then 

1 0-vector (scalar) 

𝒆1, 𝒆2, 𝒆3 1-vectors (vectors) 

𝒆1𝒆2, 𝒆2𝒆3, 𝒆3𝒆1 2-vectors (bivectors) 

𝐼 = 𝒆1𝒆2𝒆3 3-vector (pseudoscalar) 
 

(14) 

It can be easily proved that the inner product is  

𝒖 ∙ 𝒗 =
1

2
(𝒖𝒗 + 𝒗𝒖) (15) 

There is something “strange” in the case of 𝐸3  as the geometric 

product 𝒖𝒗 = 𝒖 ∙ 𝒗 + 𝒖 ∧ 𝒗  actually “accumulate” scalar value and 

result of the outer product, i.e. the cross product  𝐸3 , which is a 

bivector, actually not a vector. The size of it is an area of a rhomboid 

determined by the 𝒖, 𝒗 vectors the 𝑛-dimensional space in general. 

Due to the non-commutativity 

𝒖 ∧ 𝒗 = −𝒗 ∧ 𝒖 𝒖𝒖 = 𝒖 ∙ 𝒖 = |𝒖|2 
 

(16) 

for all 𝒖 ∈ 𝑅𝑛. It means, that there is an inverse defined as 

𝒖−1 = 𝒖 |𝒖|2⁄  (17) 

There is another “object” called a blade. A 𝑘-blade 𝑩 is a subspace 

given by orthogonal vectors 𝒆𝑖1 , … , 𝒆𝑖𝑘, where 𝒆𝑖 ≠ 𝒆𝑗 .  Similar op-

erations with vectors, operations with 𝑘 -blades are introduced 

[2][5][6][19].  

In the next, a modification of the geometric product for projec-

tive space is shortly described, as a user should be careful as the 

projective space is not just one dimension more in formulas. 

VI GEOMETRIC PRODUCT AND PROJECTIVE SPACE 

In geometry, scalar product (dot product), i.e. inner prod-

uct, and cross product, i.e. outer product, are mostly used. 

However, there is no clear, simple geometric model, what the 

geometric product actually means, as the result of it is a set 

of objects with different properties and dimensionalities in 

the  𝐸𝑛 case. Also computation of geometric product seems 

to be complicated even for the  𝐸3 case and especially of ho-

mogeneous coordinates are to be used. 

Geometric product 𝒂𝒃 = 𝒂 ∙ 𝒃 + 𝒂 ∧ 𝒃 of two vectors, us-

ing homogeneous coordinates, as  𝒂 = [𝑎1, 𝑎2, 𝑎3: 𝑎4]
𝑇  and 

𝒃 = [𝑏1, 𝑏2, 𝑏3: 𝑏4]
𝑇 can be easily computed using standard 

matrix operation, respecting anti-commutativity, as: 

𝒂𝒃
𝑟𝑒𝑝𝑟
⇔  𝒂𝒃𝑇 = 𝒂⊗ 𝒃

= [

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3 𝑎1𝑏4
𝑏1𝑎2 𝑎2𝑏2 𝑎2𝑏3 𝑎2𝑏4
𝑏1𝑎3 𝑏2𝑎3 𝑎3𝑏3 𝑎3𝑏4
𝑏1𝑎4 𝑏2𝑎4 𝑏3𝑎4 𝑎4𝑏4

]

= 𝑳 + 𝑼 + 𝑫 

(18) 

where  𝑳, 𝑼, 𝑫 are Lower triangular, Upper triangular, Diag-

onal matrices, 𝑎4, 𝑏4 are the homogeneous coordinates.  

Note, that the outer product is anti-commutative as 

𝒆𝑖𝒆𝑗 = −𝒆𝑗𝒆𝑖 for 𝑖 ≠ 𝑗. 

It can be seen that the diagonal of the matrix 𝑫 actually 

represents the inner product in the projective representation: 

𝒂 ∙ 𝒃 = [(𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3): 𝑎4𝑏4]
𝑇

≜
𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3

𝑎4𝑏4
 (19) 

where ≜ means projectively equivalent. 

The outer product is then represented by due to anti-com-

mutativity as 

𝒂 ∧ 𝒃
𝑟𝑒𝑝𝑟
⇔  ∑ 𝑎𝑖𝑏𝑗𝒆𝑖𝒆𝑗

𝟑

𝒊,𝒋=𝟏 &𝒊≠𝒋

 

= ∑ (𝑎𝑖𝑏𝑗𝒆𝑖𝒆𝑗 − 𝑏𝑖𝑎𝑗𝒆𝑖𝒆𝑗)

𝟑

𝒊,𝒋=𝟏 & 𝒊>𝒋

 

= ∑ (𝑎𝑖𝑏𝑗 − 𝑏𝑖𝑎𝑗)𝒆𝑖𝒆𝑗

𝟑,𝟑

𝒊,𝒋 & 𝒊>𝒋

 

(20) 

and it can be seen a close relation to the Plücker coordinates 

as well. The outer product can be used for a solution of a lin-

ear system of equations, which is needed for a solution of 

multidimensional dynamical systems using the Laplace trans-

form. 

VII SOLUTION OF LINEAR SYSTEMS 

The system 𝑨𝒙 = 𝒃 can be rewritten as: 

[𝑨| − 𝒃] [
𝒙
𝑤
] = [

𝑎11 ⋯ 𝑎1𝑛 −𝑏1
⋮ ⋱ ⋮ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛 −𝑏𝑛

] [

𝑥1
⋮
𝑥𝑛
𝑤

] = [
𝟎
0
] (21) 

and solution is given using the extended cross-product as: 

 𝜶1 ∧ 𝜶2 ∧ …∧ 𝜶𝑛 = [𝑥1, … , 𝑥𝑛: 𝑤]
𝑇 (22) 

where 𝜶𝑖 = [𝑎𝑖1, … , 𝑎𝑖𝑛: 𝑏𝑖], 𝑖 = 1,… , 𝑛. 

It should be noted, that the presented approach offers an 

unique approach to a solution of both types of the linear sys-

tems of equations, i.e. 𝑨𝒙 = 𝟎 and 𝑨𝒙 = 𝒃. It also offers pos-

sibility of further symbolic manipulations using standard vec-

tor operations, including dot product and cross-product. 

Now, it is possible to apply the above presented concept 

with the Laplace transform to a solution of the linear system 

of differential equations.  

VIII OUTER PRODUCT AND LAPLACE TRANSFORM 

Let us consider again a simple system of differential equa-

tions: 
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𝑥′ = 3𝑥 − 3𝑦 + 2 𝑦′ = −6𝑥 − 𝑡 
 

(23) 

with initial conditions 𝑥(0) = 1, 𝑦(0) = −1.  

Applying the Laplace transform, we obtain a system of 

linear algebraic equations with respect to 𝑥, 𝑦 as: 

𝑠𝑋(𝑠) − 𝑥(0) = 3𝑋(𝑠) − 3𝑌(𝑠) +
2

𝑠
 

𝑠𝑌(𝑠) − 𝑦(0) = −6𝑋(𝑠) −
1

𝑠2
 

(24) 

Including initial conditions this yield to: 

(𝑠 − 3)𝑋(𝑠) + 3𝑌(𝑠) = 1 +
2

𝑠
 

6𝑋(𝑠) + 𝑠𝑌(𝑠) = −1 −
1

𝑠2
 

(25) 

It means that the system described by equations: 

 [
𝑠 − 3 3
6 𝑠

] [
𝑋(𝑠)
𝑌(𝑠)

] = [

𝑠 + 2

𝑠

−
𝑠2 + 1

𝑠2

] (26) 

In the projective representation, it is represented as: 

𝒙(𝑠) = 𝝃1(𝑠) ∧ 𝝃2(s) = det

[
 
 
 
 
𝒊 𝒋 𝒌

𝑠 − 3 3 −
𝑠 + 2

𝑠

6 𝑠
𝑠2 + 1

𝑠2 ]
 
 
 
 

= [�̅�(𝑠), �̅�(𝑠): �̅�(𝑠)]T 

(27) 

where: 

𝝃1(s) = [𝑠 − 3, 3: −
𝑠 + 2

𝑠
]
𝑇

 

𝝃2(s) = [6, 𝑠: 
𝑠2 + 1

𝑠2
]

𝑇

 

(28) 

Applying the extended cross-product, a solution is obtained: 

𝒙(𝑠) = [�̅�(𝑠), �̅�(𝑠): �̅�(𝑠)]T 

                               =

[
 
 
 
 3

𝑠2 + 1

𝑠2
+
𝑠 + 2

𝑠
𝑠

−6
𝑠 + 2

𝑠
− (𝑠 − 3)

𝑠2 + 1

𝑠2

𝑠(𝑠 − 3) − 18 ]
 
 
 
 

 
(29) 

i.e. 

�̅�(𝑠) = 3
𝑠2 + 1

𝑠2
+
𝑠 + 2

𝑠
𝑠 

�̅�(𝑠) = −6
𝑠 + 2

𝑠
− (𝑠 − 3)

𝑠2 + 1

𝑠2
 

�̅�(𝑠) = 𝑠(𝑠 − 3) − 18 

(30) 

If the conversion to the Euclidean space representation is 

needed, then: 

𝑋(𝑠) =
�̅�(𝑠)

�̅�(𝑠)
=
3
𝑠2 + 1
𝑠2

+ 𝑠 + 2

𝑠(𝑠 − 3) − 18
 

=
𝑠2(𝑠 + 2) + 3𝑠2 + 3

𝑠2(𝑠2 − 3𝑠 − 18)
 

=
𝑠3 + 5𝑠2 + 3

𝑠2(𝑠2 − 3𝑠 − 18)
 

(31) 

and 

𝑌(𝑠) =
�̅�(𝑠)

�̅�(𝑠)
= −

(𝑠 − 3)
𝑠2 + 1
𝑠2

+ 6
𝑠 + 2
𝑠

𝑠(𝑠 − 3) − 18
 

= −
𝑠3 + 3𝑠2 + 13𝑠 − 3

𝑠2(𝑠2 − 3𝑠 − 18)
 

(32) 

Of course, the above presented approach can be applied with 

including general (unspecified) initial conditions [22].  

The presented approach demonstrates an equivalence of 

system of linear equations and the extended cross product, a 

more general approach can be found in [6][8][19][23]. It also 

enables symbolic manipulation and non-trivial transforms de-

scribed in [14]. 

However, there is also inner product, which is part of the ge-

ometric product. 

IX INNER PRODUCT AND LAPLACE TRANSFORM 

Let us consider the recent example.  

𝝃1(s) = 

[𝑠 − 3, 3: −
𝑠 + 2

𝑠
]
𝑇

 

𝝃2(s) = 

[6, 𝑠: 
𝑠2 + 1

𝑠2
]

𝑇

 
 

(33) 

Then the inner product of 𝝃1(𝑠) ∙ 𝝃2(𝑠) using the projective 

notation is 

𝝃1(𝑠) ∙ 𝝃2(𝑠) 

 

= [(6(𝑠 − 3) + 3s): (−
𝑠 + 2

𝑠
) (
𝑠2 + 1

𝑠2
)] 

(34) 

It results using the inverse Laplace transform into: 

ℒ𝑠
−1
[(6(𝑠 − 3) + 3s): (−

𝑠 + 2

𝑠
) (
𝑠2 + 1

𝑠2
)] (𝑡) 

 

= −
288

5
𝑒−2𝑡 −

9

5
(4 sin 𝑡 + 3 cos 𝑡) + 36 𝛿(𝑡)

− 9 𝛿′(𝑡) 

(35) 

 

 

Fig.2. Result of the inner product in time (produced by WolframAlpha) 

The question is what the inner product part in the geometric 

product does mean in the frame of the multidimensional dy-

namical system solution.  

This is even more important question as the geometric al-

gebra enables to manipulate with objects having different di-

mensionality efficiently keeping clarity and simplicity of for-

mulation and finally robustness of the solution. 
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X CONCLUSION 

The geometric product is a general tool enabling to de-

scribe multidimensional objects and used for a description of 

physical problems, including geometrical problems and their 

solutions as well. This paper describes application of the 

outer product, which is a part of the geometrical product, for 

the multidimensional dynamical systems. This led to a detec-

tion, that there is “hidden”, resp. not used, part, i.e. influence 

of the inner product within the geometric product. In the ex-

ample presented above, the inner product reflect some kind 

of oscillating behavior, which will be analyzed in future more 

detailed research.  

The presented approach is easily applicable to multidi-

mensional dynamical systems. 
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