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Abstract. Visualization of vector fields plays an important role in many 

applications. Vector fields can be described by differential equations. For 

classification null points, i.e. points where derivation is zero, are used. However, 

if vector field data are given in a discrete form, e.g. by data obtained by 

simulation or a measurement, finding of critical points is difficult due to huge 

amount of data to be processed and differential form usually used. This 

contribution describes a new approach for vector field null points detection and 

evaluation, which enables data compression and easier fundamental behavior 

visualization. The approach is based on implicit form representation of vector 

fields.  
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1 Introduction 

Many physical problems are described by differential equations of three basic types: 

ordinary differential equations (ODEs), partial differential equations (PDEs), algebraic-

differential equations (ADEs or DAEs). They also can be classified as autonomous or 

t-varying, i.e. when functions depend on time. In this contribution, vector fields of 

autonomous system ODEs will be explored. 

Let us imagine that a differential equation is given in 𝐸2 as 

 �̇� = 𝒇(𝒙(𝑡), 𝑡) (1) 

where 𝒇(𝒙, 𝑡) = [ 𝑓(𝒙, 𝑡)𝑥 , 𝑓(𝒙, 𝑡)
𝑦

]
𝑇
. Implicit formulation is given as 

 𝐹(𝒙(𝑡), 𝑡) = 0 (2) 

where 𝑡 ∈ ⟨0,∞), 𝒙 ∈ 𝐸2. Derivation of the Eq.2. leads to 

 
𝑑𝐹(𝒙,𝑡)

𝑑𝑡
=

𝜕𝐹(𝒙,𝑡)

𝜕𝒙
 

𝑑𝒙

𝑑𝑡
+

𝜕𝐹(𝒙,𝑡)

𝜕𝑡
 (3) 
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As the only autonomous ODEs are considered, i.e. 𝜕𝐹(𝒙, 𝑡)/𝜕𝑡 = 0,  

 
𝑑𝐹(𝒙,𝑡)

𝑑𝑡
=

𝜕𝐹(𝒙,𝑡)

𝜕𝒙
 

𝑑𝒙

𝑑𝑡
= ∇𝐹(𝒙(𝑡))

𝑑𝒙

𝑑𝑡
= ∇𝐹(𝒙(𝑡))𝒇(𝒙(𝑡)) = ∇𝐹�̇� (4) 

It means that a normal vector must be orthogonal to the particle velocity vector. 

2 Extremes and inflection points 

An inflection point of a curve given by the implicit function 𝐹(𝑥, 𝑦) = 0 in 𝐸2 is 

determined as det 𝑸 = 0, i.e. 

 det 𝑸(𝑥, 𝑦) = |

𝐹𝑥𝑥 𝐹𝑥𝑦 𝐹𝑥

𝐹𝑦𝑥 𝐹𝑦𝑦 𝐹𝑦

𝐹𝑥 𝐹𝑦 0
| = 0 (5) 

where 𝐹𝑥𝑥, resp. 𝑓𝑦
𝑥  etc. are partial derivatives of 𝐹(𝒙), resp. 𝑓𝑦

𝑥 =
𝜕 𝑓𝑥

𝜕𝑦
 , etc. In the 

following, we expect that 𝐹𝑥𝑦 = 𝐹𝑦𝑥. Details and extensions to a higher dimension can 

be found in (Goldman, 2005). 

3 Critical points 

The aim is to represent discreetly given vector field using Radial Basis Function (RBF) 

approximation as precise as possible in the form 

 𝑓𝑥 (𝒙) = ∑ 𝑐𝑖
𝑁
𝑖=1 𝜙(𝑟𝑖) (6) 

where 𝑐𝑖 are weights to be computed, 𝜙(∙) is chosen RBF, e.g. 𝜙(∙) = 𝑟2 log 𝑟,  
𝑟𝑖 = ‖𝒙 − 𝒙𝑖‖ and 𝒙𝑖 are points in which the particle speed is given or acquired. 

Similarly for the 𝑓
𝑦 (𝒙). The advantage of the RBF use is that it leads to a linear system 

of equations 𝑨𝒙 = 𝒃 (Smolik & Skala, 2017), (Majdisova & Skala, 2017). 

Critical points of ODEs (or null points) are defined as 𝑑𝒙(𝑡)/𝑑𝑡 = 𝟎. Finding of 

critical points of ODEs reliably is difficult and the Taylor’s series is used usually, i.e. 

 𝒇(𝒙) = 𝒇(𝒙0) +
𝜕𝒇(𝒙0)

𝜕𝒙
(𝒙 − 𝒙0) + ⋯ (7) 

where 𝒙0 is a point where 𝒇(𝒙(𝑡)) = 𝟎 and 
𝜕𝒇(𝒙0)

𝜕𝒙
 is a Jacobian. It means that a local 

linearization is made and critical point classification is based on eigenvalues of the 

Jacobian (Helman & Hesselink, 1989). However for detailed inspection of a vector field 

a Hessian can be used (Smolik & Skala, 2017). Finding a null point of the ODE from 

acquired discrete data is a numerically sensitive problem.  

Let us define a function 𝐹(𝑥, 𝑦) related to speed of a particle as: 

 𝐹(𝑥, 𝑦) = �̇�2 + �̇�2 (8) 

Then the critical points are given as:  

 lim
𝜀→0

𝐹(𝑥, 𝑦) − 𝜀 = 0  (9) 

The inflection points including the critical ones are given by det 𝑸 = 0.  
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Let us consider two simple ODEs examples, Fig.1., Fig.2., where critical points are 

shown. The example Ex.1 has two critical points, while the Ex.2 has three ones. 

Ex.1.: [
�̇�
�̇�

] = [
2𝑥 + 𝑦2 − 1

6𝑥 − 𝑦2 + 1
] Ex.2.: [

�̇�
�̇�

] = [
𝑥𝑦 − 4

(𝑥 − 4)(𝑦 − 𝑥)
] 

  

Fig. 1. Vector field with two critical points Fig. 2. Vector field with three critical points 

When the contour plot of det 𝑸 values is made, some other interesting features of the 

given vector field can be found, Fig.3., Fig.4.  

  
Fig. 3. det(𝑸) values for the Ex.1 case Fig. 4. det(𝑸) values for the Ex.2 case 

It can be seen, that also other important points/areas, not only critical points, can be 

easily detected. The red curves represent points where det(𝑸) = 0, i.e. extremes and 

inflection points. The density of contours gives information on changes. If the RBF 

approximation of a vector field is to be efficiently used, reference points (Majdisova & 

Skala, 2017) are to be placed respecting the vector field behavior.  
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Fig. 5. det(𝑸) values for the Ex.1 case Fig. 6. det(𝑸) values for the Ex.2 case 

It can be seen that in some cases the det 𝑸(𝑥, 𝑦) function might be quite flat in some 

areas, which might cause some numerical problems. For better vector field properties 

evaluation, another specification of the 𝐹(𝑥, 𝑦) function using a similar approach, i.e.: 

 [
�̇�
�̇�

] = [
𝑓𝑥 (𝑥, 𝑦)

𝑓
𝑦

(𝑥, 𝑦)
] (10) 

then the det 𝑹 is determined as: 

 det 𝑹(𝑥, 𝑦) = |

𝑓𝑥
𝑥 𝑓𝑦

𝑥 𝑓𝑥

𝑓𝑥
𝑦

𝑓𝑦
𝑦

𝑓
𝑦

𝑓𝑥 𝑓
𝑦

0

| = |
𝑱(𝒙) 𝒇(𝒙)

𝒇𝑇(𝒙) 0
| = 0 (11) 

where 𝑱(𝒙) is the Jacobian 𝑱(𝒙) = [
𝑓𝑥

𝑥 𝑓𝑦
𝑥

𝑓𝑦
𝑥 𝑓𝑦

𝑦 ] and �̇� = 𝒇(𝒙) is the given ODE. 

  
Fig. 7. det(𝑹) values for the Ex.1 case Fig. 8. det(𝑹) values for the Ex.2 case 

It can be seen, that another types of vector field important features are obtained. This 

is important for the vector field topology evaluation and curvatures estimation.  
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Ex.3.: [
�̇�
�̇�

] = [
1 − 𝑥2 − 𝑦2

2𝑥𝑦
] Ex.4.:[

�̇�
�̇�

] = [
𝑦

(1 − 𝑥2)𝑦 − 𝑥
] 

  
Fig. 9. det(𝑹) values for the Ex.3 case Fig. 10. det(𝑹) values for the Ex.4 case 

(Van der Pole ODEs) 

The red curves in Fig.9, Fig.10 represent the inflection of curves given as det 𝑸 = 0. 

However, in some cases critical point finding using Eq.9 might be a numerical 

problem, if the function bed is too flat. Then the criterion can be modified to  

 𝐹(𝑥, 𝑦) = √�̇�2 + �̇�2 (12) 

In this case, the convergence for iterative method might be significantly faster and 

critical points more accurately determined. 

4 Experimental evaluation 

The proposed approach has been tested on different ODEs. Numerical computation of 

derivatives (forward, central, backward) was stable and critical points were determined 

correctly. The experiments proved novelty of the approach as an additional information 

of a vector field behavior is obtained. It can be used for efficient placing of reference 

points for RBF approximation (Majdisova & Skala, 2017). Also, if the RBF 

approximation is used, then the given vector field is described in an analytic form. 

5 Conclusion 

A new approach for vector field null points, i.e. critical points, is described briefly. 

The approach is based on an implicit formulation and it gives possibility to represent 

main features of vector fields more precisely. It also, in connection with RBF 

approximation, offers analytical representation of vector fields and data compression 

as well. In future, the presented approach will be extended to time varying systems. 
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Fig. 11. Ex.3. det(𝑸) using Eq.12 Fig. 12. Ex.4. det(𝑸) using Eq.12 
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