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Abstract

Approximation of scattered data is often a task in many engineering problems.

The Radial Basis Function (RBF) approximation is appropriate for large

scattered (unordered) datasets in d-dimensional space. This approach is

useful for a higher dimension d > 2, because the other methods require

the conversion of a scattered dataset to an ordered dataset (i.e. a semi-

regular mesh is obtained by using some tessellation techniques), which is

computationally expensive. The RBF approximation is non-separable, as it

is based on the distance between two points. This method leads to a solution

of Linear System of Equations (LSE) Ac = h.

In this paper several RBF approximation methods are briefly introduced

and a comparison of those is made with respect to the stability and accuracy

of computation. The proposed RBF approximation offers lower memory

requirements and better quality of approximation.
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1. Introduction

Radial Basis Functions (RBFs) are widely used across of many fields

solving technical and non-technical problems. A RBF method was originally

introduced by [1] and it is an effective tool for solving partial differential equa-

tions in engineering and sciences. Moreover, RBF applications can be found
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in neural networks, fuzzy systems, pattern recognition, data visualization,

medical applications, surface reconstruction [2], [3], [4], [5], reconstruction of

corrupted images [6], [7], etc. The RBF approximation technique is really

meshless and is based on collocation in a set of scattered nodes. This method

is independent with respect to the dimension of the space. The computational

cost of RBF approximation increases nonlinearly with the number of points

in the given dataset and linearly with the dimensionality of data.

There are two main groups of basis functions: global RBFs and Compactly

Supported RBFs (CS−RBFs) [8]. Fitting scattered data with CS−RBFs leads
to a simpler and faster computation, because a system of linear equations has

a sparse matrix. However, approximation using CS−RBFs is quite sensitive

to the density of approximated scattered data and to the choice of a shape

parameter. Global RBFs lead to a linear system of equations with a dense

matrix and their usage is based on sophisticated techniques such as the fast

multipole method [9]. Global RBFs are useful in repairing incomplete datasets

and they are insensitive to the density of approximated data.

2. RBF Approximation using Lagrange Multipliers

RBF approximation introduced by Fasshauer [10] (Chapter 19) is based

on Lagrange multipliers. In this section, the properties of this method will be

briefly summarized.

This RBF approximation is formulated as a constrained quadratic op-

timization problem. The goal of this method is to approximate the given

dataset by function:

f(x) =
M∑
j=1

cjφ(‖x− ξj‖), (1)

where the approximating function f(x) is represented as a sum of M RBFs,

each associated with a different reference point ξj, and weighted by an

appropriate coefficient cj . Therefore, it is necessary to determine the vector of

weights c = (c1, . . . , cM)T , which leads to the minimization of the quadratic

form:
1

2
cTQc, (2)

where Q is some M ×M symmetric positive definite matrix. This quadratic

form is minimized subject to the N linear constraints Ac = h, where A is an

N ×M matrix with full rank, and the right-hand side h = (h1, . . . , hN)T is
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given. Thus the constrained quadratic minimization problem can be described

as a LSE:

F (c,λ) =
1

2
cTQc− λT (Ac− h), (3)

where λ = (λ1, . . . , λN)T is the vector of Lagrange multipliers, and we need

to find the minimum of (3) with respect to c and λ. This leads to solving

the following system:

∂F (c,λ)

∂c
= Qc−ATλ = 0

∂F (c,λ)

∂λ
= Ac− h = 0 (4)

or, in matrix form: (
Q −AT

A 0

)(
c

λ

)
=

(
0

h

)
, (5)

where Qi,j = φ(‖ξi− ξj‖) and Q is a symmetric matrix. Equation (5) is then

solved.

It should be noted that we want to minimize M in order to reduce the

computational cost of the approximated value f(x) as much as possible.

3. RBF Approximation

Another approach is RBF interpolation, which is based on a solution of a

linear system of equations (LSE) [11]:

Ac = h, (6)

where A is a matrix of this system, c is a column vector of variables and h

is a column vector containing the right sides of equations. In this case, A is

an N ×N matrix, where N is the number of given points, the variables are

weights for basis functions and the right sides of equations are values in the

given points. The disadvantage of RBF interpolation is the large and usually

ill-conditioned matrix of the LSE. Moreover, in the case of an oversampled

dataset or intended reduction, we want to reduce the given problem, i.e.

reduce the number of weights and used basis functions, and preserve good

precision of the approximated solution. The approach, which includes the

reduction, is called RBF approximation. In the following, the method recently

introduced in [11] is described in detail.
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For simplicity, we assume that we have an unordered dataset {xi}N1 in E2.

However, note that this approach is generally applicable for d-dimensional

space. Further, each point xi from the dataset is associated with vector

hi ∈ Ep of the given values, where p is the dimension of the vector, or scalar

value hi ∈ E1. For an explanation of the RBF approximation, let us consider

the case when each point xi is associated with scalar value hi. Now we extend

the given dataset by a set of new reference points {ξj}M1 , see Fig. 1.

Given points x
New reference points ξ

Figure 1: RBF approximation and reduction of points.

These reference points may not necessarily be in a uniform grid. It is

appropriate, that their placement reflects the given surface as well as possible.

A good placement of the reference points improves the approximation of

the underlying data. For example, when a terrain is to be approximated,

placement along features such as break lines leads to better approximation

results. The number of added reference points ξj is M , where M � N . The

RBF approximation is based on computing the distance of given point xi and

reference point ξj from the extended dataset.

The approximated value can be determined similarly as for interpolation

(see [11]):

f(x) =
M∑
j=1

cjφ(rj) =
M∑
j=1

cjφ(‖x− ξj‖), (7)

where the approximating function f(x) is represented as a sum of M RBFs,

each associated with a different reference point ξj, and weighted by an

appropriate coefficient cj.
It can be seen that we get an overdetermined LSE for the given dataset:

hi = f(xi) =
M∑
j=1

cjφ(‖xi − ξj‖) =
M∑
j=1

cjφi,j i = 1, . . . , N . (8)
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The linear system of equations (8) can be represented as the matrix equation:

Ac = h, (9)

where the number of rows is N � M and M is the number of unknown

weights [c1, . . . , cM ]T , i.e. the number of reference points. Equation (9) can

be expressed in the form:

φ1,1 · · · φ1,M
...

. . .
...

φi,1 · · · φi,M
...

. . .
...

φN,1 · · · φN,M



c1

...

cM

 =



h1

...

hi
...

hN

 . (10)

Thus the presented system is overdetermined, i.e. the number of equations N
is higher than number of variables M . This LSE can be solved by the least

squares method as ATAc = ATh or singular value decomposition, etc.

4. RBF Approximation with Polynomial Reproduction

The method which was introduced in Sect. 3 can theoretically have

problems with stability and solvability. Therefore, the RBF approximant

(7) is usually extended by polynomial function Pk(x) of degree k. Now, the
approximated value can be expressed in the form:

f(x) =
M∑
j=1

cjφ(‖x− ξj‖) + Pk(x). (11)

where ξj are reference points specified by a user. This leads to solving the

LSE:

hi = f(xi) =
M∑
j=1

cjφ(‖xi − ξj‖) + Pk(xi)

=
M∑
j=1

cjφi,j + Pk(xi) i = 1, . . . , N . (12)

In practice, a linear polynomial:

P1(x) = aTx + a0 (13)
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is used. Geometrically, the coefficient a0 determines the placement of the hy-

perplane and the expression aTx represents the inclination of the hyperplane.

It can be seen that for d-dimensional space a linear system of N equations

in (M+d+1) variables has to be solved, where N is the number of points in the

given dataset, M is the number of reference points and d is the dimensionality

of space, e.g. for d = 2 vectors xi and a are given as xi = (xi, yi)
T and

a = (ax, ay)
T . Using the matrix notation, we can write for E2:



φ1,1 · · · φ1,M x1 y1 1
...

. . .
...

...
...

...

φi,1 · · · φi,M xi yi 1
...

. . .
...

...
...

...

φN,1 · · · φN,M xN yN 1





c1

...

cM
ax
ay
a0


=



h1

...

hi
...

hN

 . (14)

Equation (14) can also be expressed in the form:

(
A P

) c

a

a0

 = h. (15)

It can be seen that for E2 we have a linear system of N equations in (M + 3)

variables, where M � N . Thus the presented system is overdetermined

again and can also be solved by the method of least squares or singular value

decomposition.

5. Experimental Results

The above presented methods of the RBF approximation have been tested

on synthetic and real datasets. Moreover, different global radial basis functions

with shape parameter α, see Table 1, and different sets of reference points

have been used for testing. These sets of reference points have different types

of distributions described in Sect. 5.1.

5.1. Distribution of Reference Points

For these experiments, the following sets of reference points were used:

Points on regular grid

This set contains the points on a regular grid in E2.
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Table 1: Used global RBFs (α is a shape parameter)

RBF φ(r)

Gauss function [12] e−(αr)2

Inverse Quadric (IQ)
1

1 + (αr)2

Thin-Plate Spline (TPS) [13] (αr)2log(αr)

Epsilon points

This distribution of reference points is described in the following text.

Epsilon points + AABB corners

This set of points is determined in the same manner as the previous

case. Moreover, the corners of axis aligned bounding box (AABB) of

Epsilon points are added to the set of reference points.

Halton points

This distribution of points is described in the following text in detail.

However, note that this set of reference points equals the subset of the

given dataset, for which we determine the RBF approximation.

Halton points + AABB corners

This set of reference points is determined in the same manner as Halton

points. Moreover, the corners of AABB are added to this set.

5.1.1. Halton points

Construction of a Halton sequence is based on a deterministic method.

This sequence generates well-spaced “draws” points from the interval [0, 1].

The sequence uses a prime number as its base and is constructed based on

finer and finer prime-based divisions of sub-intervals of the unit interval. The

Halton sequence [10] can be described by the following recurrence formula:

Halton(p)k =

blogpkc∑
i=0

1

pi+1

(⌊
k

pi

⌋
mod p

)
, (16)
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where p is the prime number and k is the index of the calculated element.

For the E2 space, subsequent prime numbers are used as a base. In this

test, {2, 3} were used for the Halton sequence and the following sequence of

points in a rectangle (a, b) was derived:

Halton(2, 3) =

{(
1

2
a,

1

3
b
)
,
(

1

4
a,

2

3
b
)
,
(

3

4
a,

1

9
b
)
,
(

1

8
a,

4

9
b
)
,
(

5

8
a,

7

9
b
)
,

(
3

8
a,

2

9
b
)
,
(

7

8
a,

5

9
b
)
,
(

1

16
a,

8

9
b
)
,
(

9

16
a,

1

27
b
)
, . . .

}
, (17)

where a is the width of the rectangle and b is the height of the rectangle.

Visualization of the dataset with 103 points of the Halton sequence from

(17) can be seen in Fig. 2. We can see that the Halton sequence in E2 space

covers this space more evenly than randomly distributed uniform points in

the same rectangle.

Figure 2: Halton points in E2 generated by Halton(2, 3) (left) and random points in a
rectangle with uniform distribution (right). The number of points is 103 in both cases.

5.1.2. Epsilon points

This is a special distribution of points in E2, which is based on a regular

grid. Each point is determined as follows:

Pij =

[
i ·∆x+ rand(−εx, εx), j ·∆y + rand(−εy, εy)

]
,

εx ≈ 0.25 ·∆x, i = 0, . . . , Nx,

εy ≈ 0.25 ·∆y, j = 0, . . . , Ny,

(18)

where ∆x and ∆y are real numbers representing the grid spacing, Nx indicates

the number of grid columns, Ny is the number of grid rows and rand(−εx, εx)
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or rand(−εy, εy) is a random drift with a uniform distribution from −εx to

εx or from −εy to εy.
Figure 3 presents the dataset with 40 × 25, (i.e. 103) epsilon points.

Moreover, we can see the comparison of this distribution of points with points

on a regular grid.

Figure 3: Epsilon points (left) and points on a 2D regular grid (right). The number of
points is 40× 25 = 103 in both cases.

5.2. Synthetic Datasets

The Halton distribution of points was used for synthetic data. Moreover,

each point from this dataset is associated with a function value at this point.

For this purpose, different functions have been used for experiments. Results

for a 2D sinc function, see Fig. 4, are presented in this paper.

0

0.5

1 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

yx

Figure 4: 2D sinc function sinc(πx) · sinc(πy) whose domain is restricted to [0, 1]× [0, 1].

5.2.1. Examples of RBF Approximation Results

Some examples of RBF approximation to 1089 Halton data points sampled

from a 2D sinc function, for a Halton set of reference points, which consists

of 81 points, and different RBFs are shown in Fig. 5 and Fig. 6.
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RBF approximation
(proposed)

RBF approximation
with linear reproduction

(a) Gauss, α = 1, Halton points (b) Gauss, α = 1, Halton points
RBF approximation

using Lagrange multipliers

(c) Gauss, α = 1, Halton points

Figure 5: Approximation to 1089 data points sampled from a 2D sinc function with 81
Halton-spaced Gaussian basis functions false-colored by magnitude of absolute error.

It can be seen that the RBF approximation using Lagrange multiplies

(Fasshauer [10]) returns the worst result in terms of the error in comparison

with the proposed methods. Further, in Fig. 6, it can be seen that the errors

for all RBF approximation methods are much higher when the TPS is used.

There is a question of how the RBF approximation depends on the shape

parameter α. This is described in the following section.
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RBF approximation
(proposed)

RBF approximation
with linear reproduction

(a) TPS, α = 1, Halton points (b) TPS, α = 1, Halton points
RBF approximation

using Lagrange multipliers

(c) TPS, α = 1, Halton points

Figure 6: Approximation to 1089 data points sampled from a 2D sinc function with 81
Halton-spaced TPS false-colored by magnitude of absolute error.

5.2.2. Comparison of Methods

In this section, the different versions of RBF approximation which were

presented in Sect. 2 - Sect. 4 are compared. Figure 7 presents the mean

absolute error of RBF approximation for the dataset, which consists of 1089

Halton points in the range [0, 1] × [0, 1], sampled from a 2D sinc function,

while the set of reference points contains 81 points with Halton behavior of

the distribution, and for different global radial basis functions. The graphs
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Figure 7: The mean absolute error of approximation to 1089 data points sampled from a
2D sinc function with 81 reference Halton points for different RBF approximation methods,
different RBFs and different shape parameters. The used approximation methods are:
proposed RBF approximation (approx), RBF approximation using Lagrange multipliers
(approxMult) and RBF approximation with linear reproduction (approxLin). RBFs are:
(a) Gauss function, (b) IQ, (c) TPS.

represent the mean absolute error according to a shape parameter α of used

RBFs. We can see that for RBF approximation using Lagrange multipliers

(Fasshauer [10]) we obtain a higher mean absolute error. Mean absolute errors

for RBF approximation and RBF approximation with linear reproduction

are almost the same. Moreover, the Gaussian RBF gives the best result for

shape parameter α = 1 and the inverse quadric for α = 0.5. Further, the

TPS function is not appropriate to solve the given problem, see Fig. 7c. Note,

the standard deviation of errors was also measured and the same behavior

and order of magnitude was obtained as for the mean absolute errors.
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5.2.3. Comparison of Different Distributions of Reference Points

In this section, we focus on a comparison of the presented RBF approxi-

mation methods due to used distribution of reference points. Measurements

of errors were performed for different type of RBFs with different shape pa-

rameters. Mean absolute error according to shape parameter α for Gaussian

RBF is presented in Fig. 8.
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Figure 8: The mean absolute error of approximation to 1089 data points sampled from a
2D sinc function with 81 spaced Gaussian basis functions for different RBF approximation
methods, different shape parameters and different sets of reference points. The sets of
reference points are: Halton points (h), Halton points + AABB (haabb), epsilon points
(eps), epsilon points + AABB (epsaabb), points on a regular grid (u). Their description is in
Sect. 5.1. Versions of approximation are: (a) RBF approximation, (b) RBF approximation
with linear reproduction, (c) RBF approximation using Lagrange multipliers.
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We can see that for all versions of RBF approximation the worst result

is obtained for reference points on a regular grid (u). For the proposed

RBF approximation, the remaining sets of reference points give almost the

same results. Reference points corresponding to epsilon points + AABB

(epsaabb) almost always give the best result for RBF approximation with

linear reproduction. For RBF approximation using Lagrange multipliers, the

best results are for the reference points which have a Halton distribution.

5.2.4. Comparison by Placement of the Dataset in E2

This section is focused on placement of the actual dataset in the domain

space and the used function generating associated scalar values in E2. The

given dataset has a range of one in both axes and the function generating

associated scalar values is a 2D sinc function. Two configurations for place-

ment of the origin of the dataset and the maximum of the 2D sinc function

were used. The first configuration is at point (0; 0); the second is moved to

point (3, 951, 753; 2, 785, 412).

Figure 9 presents the mean absolute error for these configurations, when

the Gaussian basis functions and Halton set of reference points were chosen.

We can see that RBF approximation with linear reproduction gives a higher er-

ror for the second configuration, i.e. placement at point (3, 951, 753; 2, 785, 412).
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Figure 9: The mean absolute error of approximation to 1089 data points sampled from a 2D
sinc function with 81 spaced Gaussian basis functions for a Halton set of reference points,
different RBF approximation methods and different shape parameters. The placement of
the given dataset and the maximum of the 2D sinc function are at point (0; 0) (circles) or at
point (3, 951, 753; 2, 785, 412) (squares). Versions of approximation are RBF approximation
with linear reproduction (left) and RBF approximation using Lagrange multipliers (right).
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For RBF approximation using Lagrange multiplier the decision is not ambigu-

ous. Note that a graph for the proposed RBF approximation is not presented,

because both configurations give the same results.

5.2.5. Optimal Number of Reference Points

This section focuses on the influence of the number of reference points.

The number of reference points is determined relative to the number of points

in the given dataset. Measurements for different shape parameters were

performed many times and average mean absolute errors were computed, see

Fig. 10 - Fig. 12. Note that the reference points were distributed by Halton

distribution. Figure 10 presents the mean absolute error for the Gaussian

RBF approximation. Experimental results for the IQ are shown in Fig. 11.

We can see that for the small shape parameter α the mean absolute errors are

almost constant. However, for greater shape parameters the mean absolute

error decreases with the increasing number of reference points.
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Figure 10: The mean absolute error of the proposed RBF approximation to 1089 data
points sampled from a 2D sinc function for different numbers of reference points, Gaussian
RBF with different shape parameters α.

Figure 12 presents experimental results obtained for the TPS function.

We can see that the mean absolute error decreases with the increasing number

of reference points as would be expected.
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points sampled from a 2D sinc function for different numbers of reference points, IQ RBF
with different shape parameters α.
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RBF with different shape parameters α.
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Finally, note that the results for RBF approximation with reproduction

are very similar to the proposed RBF approximation. RBF using Lagrange

multipliers has unpredictable behavior and no trend can be established.

5.3. Real Datasets

The presented methods of the RBF approximation have been also tested

on real data. Let us introduce results for real dataset which was obtained

from GPS data of mount Veľký Rozsutec in the Malá Fatra, Slovakia1. Each

point of this dataset is associated with its elevation. Moreover, as a first

step, the real dataset is translated so that its estimated center of gravity

corresponds to the origin of the coordinate system. This step is used due

to the limitation of the influence of dataset placement in space and it was

chosen based on the results of experiments described in Sect. 5.2.4. Table 2

gives an overview of the used dataset.

Figure 13: Mount Veľký Rozsutec, Slovakia (left) and its contour map (right).

Table 2: Overview information for the tested real dataset. The Axis-Aligned Bounding Box
(AABB) of the tested dataset has a size width× length× relief, i.e. xrange×yrange×zrange.

Veľký Rozsutec

number of pts. 24, 190

relief [m] 818.8000

width [m] 2608.5927

length [m] 2884.1169

1http://www.gpsvisualizer.com/elevation
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5.3.1. Examples of RBF Approximation Results

Results for RBF approximation of mount Veľký Rozsutec dataset using

Halton set of reference points, which consists of 484 points, and Gaussian

RBF with shape parameter α = 0.0025 are shown in Fig. 14 and histograms

of errors for these results are shown in Fig. 15.

Note, that the results of RBF approximation using Lagrange multipliers

(a) RBF approximation: Gauss, N = 24, 190, M = 484, α = 0.0025, Halton points (left)
and its contour map (right)

(b) RBF approximation with reproduction: Gauss, N = 24, 190, M = 484, α = 0.0025,
Halton points (left) and its contour map (right)

Figure 14: Results for mount Veľký Rozsutec approximated by 484 Halton-spaced Gaussian
basis functions with shape parameter α = 0.0025.
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RBF approximation
(proposed)

RBF approximation
with linear reproduction

Figure 15: Histograms of errors for mount Veľký Rozsutec approximated by 484 Halton-
spaced Gaussian basis functions with shape parameter α = 0.0025.

are not presented for real data because this method has unpredictable behavior

and is unusable for real dataset, which was already evident from results for

synthetic datasets. From presented results, it can be seen that the RBF

approximation with linear reproduction returns the worst result in terms of

the error in comparison with the proposed method. Moreover, if the results of

approximation are compared with the original, it can be seen that the RBF

approximation with the global Gaussian RBFs cannot preserve the sharp

ridge.

Results for RBF approximation of mount Veľký Rozsutec dataset using

Halton set of reference points, which contains different number of points, and

TPS with shape parameter α = 0.005 are show in Fig. 16. The histograms

of errors for these results are shown in Fig. 17. From these results, it can be

seen that with an increasing number of reference points, approximation error

is improved and some surface details also begin to appear. However, it can be

again seen that the RBF approximation with the global TPS cannot preserve

the sharp ridge.

There is a question of how the RBF approximation of real dataset depends

on the shape parameter α and distribution of reference points. This is

described in the following sections.
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(a) RBF approximation: TPS, N = 24, 190, M = 484, α = 0.005, Halton points (left) and
its contour map (right)

(b) RBF approximation: TPS, N = 24, 190, M = 1089, α = 0.005, Halton points (left)
and its contour map (right)

Figure 16: Results for mount Veľký Rozsutec approximated by Halton-spaced TPS with
shape parameter α = 0.005.

5.3.2. Comparison of Different Distributions of Reference Points

In this section, we focus on a comparison of the presented RBF approxi-

mation methods due to used distribution of reference points when the real

data are approximated. Measurements of errors were performed for different

type of RBFs with different shape parameters. Mean relative error according

to shape parameter α for the Gaussian RBF is presented in Fig. 18 and for
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(a) M = 484 (b) M = 1089

Figure 17: Histograms of errors for mount Veľký Rozsutec approximated by Halton-spaced
TPS with shape parameter α = 0.005.

the IQ is shown in Fig. 19. Note that the mean relative error is presented for

real data. The reason for this choice is that the function values of the real

dataset are not normalized to the interval [0, 1].
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Figure 18: The mean relative error of approximation for mount Veľký Rozsutec with 484
spaced Gaussian basis functions for different RBF approximation methods, different shape
parameters and different sets of reference points. The sets of reference points are: Halton
points (h), Halton points + AABB (haabb), epsilon points (eps), epsilon points + AABB
(epsaabb), points on a regular grid (u), described in Sect. 5.1.
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Figure 19: The mean relative error of approximation for mount Veľký Rozsutec with
484 spaced IQ for different RBF approximation methods, different shape parameters and
different sets of reference points. The sets of reference points are: Halton points (h), Halton
points + AABB (haabb), epsilon points (eps), epsilon points + AABB (epsaabb), points
on a regular grid (u), described in Sect. 5.1.

We can see that for all versions of RBF approximation, if the shape

parameter α is not close to the optimum, the worst results are obtained for

reference points with Halton distribution ((h) and (haabb)). The best results

are obtained for reference points on a regular grid (u). If the shape parameter

is chosen close to the optimum (for the presented configuration α ≈ 0.0025)

then the mean relative error has only minor differences for different distribution

of reference points. These results are different in comparison with results

obtained for synthetic data.

Finally, note that the mean relative error for approximation of mount

Veľký Rozsutec dataset according to shape parameter is constant for the TPS

and deviation of mean relative error for different distribution of reference

points is almost negligible.

5.3.3. Comparison of Different Radial Basis Functions

In this section, we focus on a comparison of the results of RBF approxima-

tions using different types of RBFs. Real datasets were used for experiments

and results of the mount Veľký Rozsutec are presented. Measurements of

errors were performed for Halton set with 484 reference points. The shape

parameter α = 0.0025 was chosen for all types of RBFs. The differences of
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frequencies of errors are shown in Fig. 20. It can be seen that the best error is

obtained for the RBF approximation using the IQ function. On the contrary,

the worst error returns the RBF approximation using the TPS function.

(a) IQ vs. Gaussian RBF (b) IQ vs. TPS

Figure 20: Difference of frequencies of error for mount Veľký Rozsutec approximated by
484 Halton-spaced RBFs with shape parameter α = 0.0025.

Finally, note that the results for the RBF approximation with linear

reproduction are similar to the proposed RBF approximation.

5.3.4. Optimal Number of Reference Points

This section focuses on the influence of the number of reference points

for RBF approximation of mount Veľký Rozsutec dataset. The number

of reference points is determined relative to the number of points in the

given dataset. Measurements for different shape parameters were performed

many times and average mean relative errors were computed, see Fig. 21 -

Fig. 23. Note that the reference points were distributed by Halton distribution.

Figure 21 presents the mean relative error for the Gaussian RBF approximation

and Fig. 22 presents results for the IQ. It can be seen that for small shape

parameter α the mean relative errors are almost constant. However, for

the greater shape parameters the mean relative error decreases with the

increasing number of reference points. These results are consistent with

results for synthetic dataset.

Figure 23 presents experimental results obtained for TPS. We can see

that the mean relative error is independent on the shape parameter α and

decreases with the increasing number of reference points.
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Figure 21: The mean relative error of the proposed RBF approximation of mount Veľký
Rozsutec dataset for different numbers of reference points, Gaussian RBF with different
shape parameters α.
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Figure 22: The mean relative error of the proposed RBF approximation of mount Veľký
Rozsutec dataset for different numbers of reference points, IQ RBF with different shape
parameters α.
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Figure 23: The mean relative error of the proposed RBF approximation of mount Veľký
Rozsutec dataset for different numbers of reference points, TPS RBF with different shape
parameters α.

Finally, note that the results for RBF approximation with linear repro-

duction are very similar to the proposed RBF approximation.

6. Conclusion

Comparisons of different methods of RBF approximation with respect

to various criteria were presented. The proposed RBF approximation intro-

duced in Sect. 3 gives the best results due to the smallest error. The RBF

approximation with a linear reproduction can be influenced by placement of

the given dataset in space. Therefore, it is appropriate that the translation

of the estimated center of gravity to the origin of the coordinate system is

made as the first step. The worst results according to error were obtained

using the RBF approximation using Lagrange multipliers. Moreover, this

method of approximation has unpredictable behavior, the matrix for RBF

approximation using Lagrange multipliers is mostly ill-conditioned and its

size is high, i.e. it is of the (M +N)× (M +N) size.

The experiments proved that the proposed RBF approximation gives sig-

nificantly better result over other methods used in the experiments described

above. It also offers a possible data compression as the matrix is only M ×M ,
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where M � N , which is a significant factor for large datasets processing.

On the other hand, experiments made also proved that all methods have

problems with the preservation of sharp edges if global functions are used.

Future work will be devoted to evaluation of Compactly-Supported RBFs

(CS-RBFs) which will lead to sparse matrices, decrease of memory require-

ments and significant increase of speed of computation. A special attention

will be given to finding optimal shape parameters which is critical for the

RBF approximation quality.
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