
 

 

 

Abstract—This contribution presents a new analysis of 

properties of the Radial Bases Functions (RBF) interpolation 

and approximation related to data sets with a large data span. 

The RBF is a convenient method for scattered d-dimensional 

interpolation and approximation, e.g. for solution of partial 

differential equations (PDE) etc. The RBF method leads to a 

solution of linear system of equations and computational 

complexity of solution is nearly independent of a dimensionality 

of a problem solved. However, the RBF methods are usually 

applied for small data sets with a small span of geometric 

coordinates. 

In this paper, we show influence of polynomial reproduction 

mostly used in RBF interpolation and approximation methods in 

the context of large span data sets. The experiments made 

proved expected theoretical results. 

I. INTRODUCTION 

NTERPOLATION and approximation techniques are used 

in solutions of many engineering problems. However, the 

interpolation and approximation of unorganized scattered 

data is still a severe problem. The standard approaches are 

based on tessellation of the domain in 𝑥, 𝑦 or 𝑥, 𝑦, 𝑧 spaces 

using, e.g. Delaunay triangulation etc. This approach is 

applicable for static data and 𝑡-varying data, if data in the time 

domain are “framed”, i.e. given for specific time samples. 

However, it leads to increase of the dimensionality, i.e. from 

triangulation in 𝐸2 to triangulation in 𝐸3 or from triangulation 

in 𝐸3 to triangulation in 𝐸4 etc. It results into significant 

increase of triangulation complexity and complexity of a 

triangulation algorithm implementation. On the contrary, 

interpolations based on Radial Basis Functions (RBF) offer 

several significant advantages: 

 RBF formulation leads to a solution of a linear system 
of equations, i.e. 𝑨𝒙 = 𝒃  

 RBF interpolation is applicable to 𝑑-dimensional 
problems and does not require tessellation of the 
definition domain 

 RBF interpolation and approximation is especially 
convenient for scattered data interpolation, including 
interpolation of scattered data in time 
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 RBF interpolation and approximation are smooth by a 
definition 

 RBF interpolation can be applied for interpolation of 
scalar fields and vector fields as well, which can be 
used for scalar and vector fields visualization 

 if Compactly Supported RBFs (CSRBF) are used, 
sparse matrix data structures can be used as the 
matrix 𝑨 is sparse, which decreases memory 
requirements significantly. 

However, there are some weak points of the RBF application 

in real problems solution, e.g.: 

 there is a real problem with robustness and reliability 
of the RBF computation due to low conditionality of 
the matrix 𝑨 of the system of linear equations, 
especially if “global” RBFs are to be used 

 numerical stability and representation if interpolation 
or approximation is to be applied over a large span 
of 𝑥, 𝑦, 𝑧 values, i.e. if values are spanned over several 
magnitudes 

 problems with memory management as the memory 
requirements are of 𝑂(𝑁2) complexity, where 𝑁 is a 
number of points in which values are given 

 computational complexity of a solution of the LSE, 
which is 𝑂(𝑁3), resp. 𝑂(𝑘𝑁2), where  𝑘 is a number 
of iteration if iterative method is used, but 𝑘 is 
relatively high, in general. 

 problems with unexpected behavior at borders of 
geometrical objects 

There are many contributions solving some issues of the RBF 

interpolation and approximation available. Numerical tests 

are mostly made using some standard testing functions and 

restricted domain span, mostly taking interval < 0,1 > or 

similar. However, in many physically based applications, the 

span of a domain is high, usually over several magnitudes and 

large data sets need to be processed.  

As the meshless techniques are easily scalable to higher 

dimensions and can handle spatial scattered data and scattered 

spatial-temporal data as well, they can be used in many 

engineering and economical computations, etc. Nowadays, 

polygonal representations (tessellated domains) are used in 
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computer graphics and visualization as a surface 

representation and for surface rendering nearly exclusively. 

In time varying objects, a surface is represented as a triangular 

mesh with a constant connectivity.  

On the other hand, all polygonal based techniques, in the 

case of scattered data, require tessellations, e.g. Delaunay 

triangulation with 𝑂 (𝑁⌊𝑑 2⁄ +1⌋) computational complexity 

(the worst case) for 𝑁 points in  𝑑-dimensional space or 

another tessellation method. The complexity of tessellation 

algorithms implementation grows significantly with 

dimensionality and severe problems with robustness might be 

expected as well.  

In the case of data visualization smooth interpolation or 

approximation on unstructured meshes is required, e.g. on 

triangular or tetrahedral meshes, when physical phenomena is 

associated with points, in general. This is quite a difficult task 

especially if smoothness of interpolation is needed. However, 

it is a natural requirement in physically based problems. 

Interpolations methods used are usually separable, i.e. 

interpolation can be made along selected axis followed by 

another along the second axis etc. In the following meshless 

(meshfree) interpolations and approximation methods will be 

described, but they are not separable. 

II. MESHLESS INTERPOLATION 

Meshless (meshfree) methods are based on the idea of 

Radial Basis Function (RBF) interpolation [2], [22], [23], 

[16], which is not separable. RBF based techniques are easily 

scalable to 𝑑-dimensional space and do not require 

tessellation of the geometric domain and offer smooth 

interpolation naturally. In general, meshless techniques lead 

to a solution of a linear system equations (LSE) [4], [5] with 

a full or sparse matrix. 

Meshless methods for scattered data can be split into two 

main groups in computer graphics and visualization: 

 “implicit” – 𝐹(𝒙) = 0, i.e. 𝐹(𝑥, 𝑦, 𝑧) = 0 used in the 

case of a surface representation in E3, e.g. surface 

reconstruction resulting into an implicit function 

representation. This problem is originated from the 

implicit function modeling [14] approach, 

 “explicit” –  𝐹(𝒙) = ℎ used in interpolation or 

approximation resulting into a functional 

representation, e.g. a height map in E2 – 2&1/2D,  

where: 𝒙 is a point representated generally in 𝑑-dimensional 

space, e.g. in the case of 2-dimensional case 𝒙 = [𝑥, 𝑦: 1]𝑇 

(expressed in the projective space notation) and ℎ is a scalar 

value or a vector value associated with the point 𝒙. 

The RBF interpolation is based on a distance of two points 

computation in the 𝑑-dimensional space. It is defined as: 

𝑓(𝒙) = ∑ 𝜆𝑗 𝜑(‖𝒙 − 𝒙𝑗‖)

𝑀

𝑗=1

= ∑𝜆𝑗  𝜑(𝑟𝑗)

𝑀

𝑗=1

 (1) 

and 

𝑟𝑗 = ‖𝒙 − 𝒙𝑗‖2
≝ √(𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2

= √(𝑥 − 𝑥𝑗)
2
+ (𝑦 − 𝑦𝑗)

2
+ (1 − 1)2 

(2) 

where: 𝜆𝑗   are weights to be computed, 𝑀 is the number of 

points given.  

It means that for the given data set  {〈𝒙𝑖 , ℎ𝑖〉}1
𝑀, where ℎ𝑖 are 

associated values to be interpolated and 𝒙𝑖 are domain 

coordinates, we obtain a linear system of equations: 

ℎ𝑖 = 𝑓(𝒙𝑖) = ∑ 𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

 + 𝑃𝑘(𝒙𝑖) 

𝑖 = 1,… ,𝑀,    𝒙 = [𝑥, 𝑦: 1]𝑇 

(3) 

Due to some stability issues, usually a polynomial 𝑃𝑘(𝒙) of 

a degree k is added. For a practical use, the polynomial of the 

1st degree is used, i.e. linear polynomial 𝑃1(𝒙) = 𝒂𝑇𝒙 in many 

applications. Therefore, the interpolation function has the 

form:  

𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊

= ∑ 𝜆𝑗 𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊 

ℎ𝑖 = 𝑓(𝒙𝑖)     𝑖 = 1,… ,𝑀 

(4) 

and additional conditions are to be applied: 

∑𝜆𝑖𝒙𝑖 = 𝟎

𝑀

𝑗=1

 (5) 

i.e. 

∑ 𝜆𝑖𝑥𝑖 = 0

𝑀

𝑗=1

 ∑ 𝜆𝑖𝑦𝑖 = 0

𝑀

𝑗=1

 ∑ 𝜆𝑖 = 0

𝑀

𝑗=1

 

 

(6) 

Now, for 𝑑-dimensional case a system of (𝑀 + 𝑑 + 1) LSE 

has to be solved, where M is a number of points in the dataset 

and 𝑑 is the dimensionality of data. For 𝑑 = 2, vectors 𝒙𝑖 =

[𝑥𝑖 , 𝑦𝑖 : 1]𝑇 and  𝒂 = [𝑎𝑥 , 𝑎𝑦: 𝑎0]
𝑇
, we can write : 

[
 
 
 
 
 
𝜑1,1 . . 𝜑1,𝑀 𝑥1 𝑦1 1
: ⋱ : : : :

𝜑𝑀,1 . . 𝜑𝑀,𝑀 𝑥𝑀 𝑦𝑀 1

𝑥1 . . 𝑥𝑀 0 0 0
𝑦1 . . 𝑦𝑀 0 0 0
1 . . 1 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝜆1

:
𝜆𝑀

𝑎𝑥

𝑎𝑦

𝑎0 ]
 
 
 
 
 

=

[
 
 
 
 
 
ℎ1

:
ℎ𝑀

0
0
0 ]

 
 
 
 
 

 (7) 

This can be rewritten in the matrix form as: 

[ 
𝑩 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 

𝑨𝒙 = 𝒃      𝒂𝑇𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 
(8) 

For the two-dimensional case and M points given a system of 

(𝑀 + 3) linear equations has to be solved. If “global” 

functions, e.g. 𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟 or 𝜑(𝑟) = 𝑒−(𝜖𝑟)2, are used, 

then the matrix 𝑩 is “full”, while if “local” functions 

(Compactly Supported RBF – CSRBF) are used, the matrix 𝑩 

can be sparse. The RBF interpolation was originally 

introduced by the multiquadric method in 1971 [5], which 

was called Radial Basis Function (RBF) method. Since then 

many different RFB interpolation schemes have been 

developed with some specific properties, e.g. [4] uses 𝜑(𝑟) =
𝑟2𝑙𝑔 𝑟, which is called Thin-Plate Spline (TPS), a function 

𝜑(𝑟) = 𝑒−(𝜖𝑟)2  was proposed in [22]. The CSRBFs were 

introduced as: 
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𝜑(𝑟) = {
(1 − 𝑟)𝑞 𝑃(𝑟),     0 ≤ 𝑟 ≤ 1

 0,                   𝑟 > 1
  (9) 

where: 𝑃(𝑟) is a polynomial function and 𝑞 is a parameter. 

Theoretical problems with numerical stability were solved in 

[4]. In the case of global functions, the linear system of 

equations is becoming ill conditioned and problems with 

convergence can be expected. On the other hand if the 

CSRBFs are taken, the matrix 𝑨 is becoming relatively sparse, 

i.e. computation of the LSE will be faster, but we need to 

carefully select the shape factor 𝛼 (which can be “tricky”) and 

the final function might tend to be “blobby” shaped, see 

Tab.1. and Fig.1. 

 

Table 1. Typical examples of “local” functions – CSRBF 

(“+” means – value zero out of 〈0,1〉 ) 
ID Function ID Function 

1 (1 − 𝑟)+ 6 
(1 − 𝑟)+

6  
(35𝑟2 + 18𝑟 + 3) 

2 (1 − 𝑟)+
3 (3𝑟 + 1) 7 

(1 − 𝑟)+
8  

(32𝑟3 + 25𝑟2 + 8𝑟 + 3) 

3 
(1 − 𝑟)+

5  
(8𝑟2 + 5𝑟 + 1) 

8 (1 − 𝑟)+
3  

4 (1 − 𝑟)+
2  9 (1 − 𝑟)+

3 (5𝑟 + 1) 

5 (1 − 𝑟)+
4 (4𝑟 + 1) 10 (1 − 𝑟)+

7 (16𝑟2 + 7𝑟 + 1) 

 

All CSRBFs are defined for a “normalized” interval 

 𝑟 ∈ 〈0 ,  1 〉, but for a practical use a scaling is used, i.e. the 

value 𝑟 is multiplied by a shape factor 𝛼, where 𝛼 > 0. 

Meshless techniques are primarily based on approaches 

mentioned above. They are used in engineering problem 

solutions, nowadays, e.g. partial differential equations [6] 

surface modeling [8], surface reconstruction of scanned 

objects [3], [18] reconstruction of corrupted images [23], etc. 

More generally, meshless object representation is based on 

specific interpolation or approximation techniques 

[1][2][6][19][22]. 

The resulting matrix 𝑨 tends to be large and ill-conditioned. 

Therefore, some specific numerical methods have to be taken 

to increase robustness of a solution, like preconditioning 

methods or parallel computing on GPU [11] etc. In addition, 

subdivision or hierarchical methods are used to decrease sizes 

of computations and increase robustness [14][20]. 

It should be noted, that Computational complexity of 

meshless methods actually covers complexity of tessellation 

itself and interpolation and approximation methods. This 

results into problems with large data set processing, i.e. 

numerical stability and memory requirements, etc.  

If global RBF functions are considered, the RBF matrix is 

full and in the case of 106 of points, the RBF matrix is of the 

size approx.106 × 106 ! On the other hand, if CSRBF used, 

the relevant matrix is sparse and computational and memory 

requirements can be decreased significantly using special data 

structures for sparse matrix representation.  

On the other hand, in the case of physical phenomena 

visualization, data received by simulation, computation or 

obtained by experiments usually are oversampled in some 

areas and also numerically more or less precise. It seems 

possible to apply approximation methods and decrease 

computational complexity significantly by adding virtual 

points in the place of interest and use analogy of the least 

square method modified for the RBF case.  

Due to CSRBF representation the space domain of data can 

be subdivided, interpolation, resp. approximation can be split 

to independent parts and computed more or less 

independently. This process can be also parallelized and if 

appropriate computational architecture is used, e.g. GPU etc. 

It will lead to faster computation as well. This approach was 

experimentally verified for scalar and vector data used in 

visualization of physical phenomena [12][17]. 

III. MESHLESS APPROXIMATION 

The RBF interpolation relies on solution of a LSE 𝑨𝒙 = 𝒃 

of the size M × M in principle, where M is a number of the 

data to be processed. If “global” functions are used, the matrix 

𝑨 is full, while if “local” functions are used (CSRBF), the 

matrix 𝑨 is sparse. 

However, in visualization applications it is necessary to 

compute the final function 𝑓(𝒙) many times and even for 

already computed 𝜆𝑖 values, the computation of 𝑓(𝒙) is too 

expensive. Therefore it is reasonable to significantly “reduce” 

the size of the relevant LSE 𝑨𝒙 = 𝒃. Of course, we are now 

changing the interpolation property of the RBF to RBF 

approximation, i.e. the values computed do not pass the given 

values exactly. 

Simple approach 

Probably the best way is to formulate the problem using the 

Least Square Method (LSM) approximation. Let us consider 

the modified formulation of the RBF interpolation, where 𝑀 

is a number of the given points [19]. 

𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝝃𝑗‖)

𝑃

𝑗=1

 

ℎ𝑖 = 𝑓(𝒙𝑖)           𝑖 = 1,… ,𝑀 

(10) 

 

 
Figure 1. Geometrical properties of CSRBF 
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where: 𝝃𝑗 are not given points, but points in a pre-defined 

“virtual mesh” (in positions of area of interest etc.) as only 

coordinates are needed (there is no tessellation needed). This 

“virtual mesh” can be irregular, regular or adaptive etc. For a 

simplicity (just for explanation purposes), let us consider a 

two-dimensional squared (orthogonal) mesh, see Fig.2.  

The 𝝃𝑗 coordinates are the nodes of this “virtual” mesh. It 

means that the given scattered data will be actually “re-

sampled”, e.g. to the “virtual” mesh. 

In many applications, the given data sets are heavily over 

sampled. For fast previews, we can afford to “down sample” 

the given data set, e.g. for data visualization, WEB 

applications, etc. 

Let us consider that for the visualization purposes we want 

to represent the final scalar field by 𝑃 values instead of 𝑀 

and 𝑃 ≪ 𝑀. The reason is very simple as if we need to 

compute the function 𝑓(𝒙) in many points, the formula above 

needs to be evaluated many times. We can expect that the 

number of evaluation 𝑄 can be easily requested at 102 𝑀 of 

points (new points) used for visualization.  

If we consider that  𝑄 ≥ 102 𝑀  and  𝑀 ≥ 102 𝑃 then  

the speed up factor in evaluation can be easily 

about 𝟏𝟎𝟒 ! 
just for one function value evaluation 

The formulation above leads to a solution of an over 

determined system of linear equations 𝑨𝒙 = 𝒃 where number 

of rows 𝑀 ≫ 𝑃 number of unknown 𝝀 = [𝜆1 , … , 𝜆𝑃  ]𝑇. The 

linear system of equations 𝑨𝒙 = 𝒃. It can be solved by the 

Least Square Method (LSM) as  𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃.  

[
 
 
 
 
𝜑1,1 ⋯ 𝜑1,𝑃

⋮ ⋱ ⋮
𝜑𝑖,1 . . 𝜑𝑖,𝑃

⋮ ⋱ ⋮
𝜑𝑀,1 ⋯ 𝜑𝑀,𝑃]

 
 
 
 

[
𝜆1

⋮
𝜆𝑃

] =

[
 
 
 
 
ℎ1

⋮
⋮
⋮

ℎ𝑀]
 
 
 
 

        𝑨𝒙 = 𝒃 (11) 

When the system of LSE is solved, computation of one 

function value 𝑓(𝑥) will be sped-up by a factor  𝜈: 

𝜈 = 𝑀
𝑃⁄  (12) 

It should be noted, that the computation of 𝝀 will be sped-up 

by a factor 𝑂((𝑀/𝑃)3) as LSE computational is of 𝑂(𝑀3). 

RBF with Lagrange Multipliers 

Let us consider more general approach based on extreme 

finding with constrains described in [6]. Let us assume again: 

𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑀

𝑗=1

 

𝑖 = 1,… , 𝑁     𝑨𝝀 = 𝒇 

(13) 

where 𝑀 ≤ 𝑁. We want to determine 𝝀 = [𝜆1, … , 𝜆𝑀]𝑇 

minimizing a quadratic form 
1

2
𝝀𝑇𝑸𝝀 with a linear constrains  

𝑨𝝀 − 𝒇 = 𝟎 , where 𝑸 is a positive symmetric matrix. This 

can be solved using Lagrange multipliers 𝝃 = [𝜉1, … , 𝜉𝑁]𝑇, 

i.e. minimizing the expression: 
1

2
𝝀𝑇𝑸𝝀 − 𝝃𝑻(𝑨𝝀 − 𝒇) (14) 

i.e. 𝝀 and 𝝃 are unknowns. 

As the matrix 𝑸 is positive and symmetric, we obtain 

𝜕

𝜕𝝀
(
1

2
𝝀𝑇𝑸𝝀 − 𝝃𝑻(𝑨𝝀 − 𝒇)) = 𝑸𝝀 − 𝑨𝑇𝝃 = 𝟎 

𝜕

𝜕𝝃
(
1

2
𝝀𝑇𝑸𝝀 − 𝝃𝑻(𝑨𝝀 − 𝒇)) = 𝑨𝑇𝝀 − 𝒇 = 𝟎 

(15) 

In more compact matrix form we can write: 

[𝑸 −𝑨𝑇

𝑨 𝟎
] [

𝝀
𝝃
] = [

𝟎
𝒇
] (16) 

As the matrix 𝑸 is symmetric and positive definite, block in 

matrix operations can be applied and we get: 

𝝀 = 𝑸−1𝑨𝑇(𝑨𝑸−1𝑨𝑇)−1𝒇 

𝝃 = (𝑨𝑸−1𝑨𝑇)−1𝒇 
(17) 

As 𝑨 = 𝑨𝑇 and it is invertible, computation can be further 

simplified. This approach is more robust, however also more 

computationally expensive. 

It should be noted, that if the Least Square Method (LSM) 

is used directly, i.e.  𝑨𝑇𝑨𝒙 = 𝑨𝑇𝒃 is to be solved directly, the 

𝑨𝑇𝑨 matrix is ill conditioned and for large 𝑀 the system of 

linear equations is difficult to solve. In addition, selection of 

the 𝑸 matrix elements is not fully determined and depends on 

a user, actually. The advantage of this approach is that values 

of the matrix 𝑨 have only a linear influence. It should be noted 

that the matrix size is 2𝑀 × 2𝑀, where 𝑀 is a number of 

points. It means that the memory requirements are no 

acceptable even for medium data sets. Also the cost of the 

value computation, i.e. computation of a value 𝑓(𝒙) for the 

given 𝒙 is doubled.  

For real applications of the RBF approximation, we need to 

decrease memory requirements significantly. 

  

New reference points  ξ

Given points  x

 
Figure 2. RBF approximation and points’ reduction 
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Least Square Method with a Polynomial Reproduction 

Let us consider again the overdetermined system: 

𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝝃𝑗‖)

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊

= ∑ 𝜆𝑗  𝜑𝑖,𝑗

𝑀

𝑗=1

+ 𝒂𝑇𝒙𝒊  

(18) 

It can be rewritten in the matrix form as  

𝑨𝝀 + 𝑷𝒂 = 𝒇 (19) 

Now, we can define an error 𝑟 of a solution as 

𝑟2 = ‖𝑨𝝀 + 𝑷𝒂 − 𝒇‖2 

= (𝑨𝝀 + 𝑷𝒂 − 𝒇)𝑇(𝑨𝝀 + 𝑷𝒂 − 𝒇) 
(20) 

where: 

𝑷𝒂 = [
𝑥1 𝑦1 1
⋮ ⋮ ⋮

𝑥𝑚 𝑦𝑚 1
] [

𝑎𝑥

𝑎𝑦

𝑎0

] (21) 

To minimize the error 𝑟 the following conditions must be 

valid: 

𝜕𝑟2

𝜕𝝀
= 𝑨𝑇𝑨𝝀 + 𝑨𝑇𝑷𝒂 − 𝑨𝑇𝒇 = 𝟎 

𝜕𝑟2

𝜕𝒂
= 𝑷𝑇𝑨𝝀 + 𝑷𝑇𝑷𝒂 − 𝑷𝑇𝒇 = 𝟎 

(22) 

or in a matrix form as 𝑴𝒙 = 𝒚, i.e. 

[𝑨
𝑇𝑨 𝑨𝑇𝑷

𝑷𝑇𝑨 𝑷𝑇𝑷
] [

𝝀
𝒂
] = [

𝑨𝑇𝒇

𝑷𝑇𝒇
] (23) 

The above presented formula leads to correct results [9]. 

However, it can be seen, that the values 𝑚𝑖𝑗 of the matrix 𝑴 

are influenced by: 

 elements of the matrix 𝑨𝑇𝑨, i.e. by used radial basis 

function and mutual positions of the given points 

 elements of the matrix 𝑷𝑇𝑷, i.e. by coordinates of the 

given points.  

It is a significant problem if data sets with a large  span are to 

be processed and the interval of 𝒙 values, i.e. 𝑥, 𝑦, is high, as 

the values are squared due to 𝑷𝑇𝑷 submatrix etc.  

Let us analyze this property more in detail, now, in order to 

be able to estimate problems in real application use. 

IV. DECOMPOSITION OF RBF INTERPOLATION 

The RBF interpolation can be described in the matrix form as: 

[ 
𝑨 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 

𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 
(24) 

where: 𝒙 = [𝑥, 𝑦: 1]𝑇 , the matrix 𝑨 is symmetrical and 

semidefinite positive (or strictly positive) definite. Let us 

consider the Schur’s complement (validity of all operation is 

expected): 

𝑴 = [
𝑨 𝑩
𝑪 𝑫

] = [
𝑰 𝟎

𝑪𝑨−1 𝑰
] [

𝑨 𝟎
𝟎 𝑴/𝑨

] [𝑰 𝑨−1𝑩
𝟎 𝑰

] 

𝑴 𝑨⁄ ≝ 𝑫 − 𝑪𝑨−1𝑩 

(25) 

where: 𝑴/𝑨 is the Schur’s complement. Then the inversion 

matrix 𝑴−1 is defined as: 

𝑴−1

= [𝑰 −𝑨−1𝑩
𝟎 𝑰

] [
𝑨−1 𝟎
𝟎 (𝑴/𝑨)−𝟏] [

𝑰 𝟎
−𝑪𝑨−1 𝑰

] 
(26) 

Now, the Schur’s complement can be applied to the RBF 

interpolation. As the matrix 𝑴 is nonsingular, inversion of the 

matrix 𝑴 can be used. Using the Schur’s complement (as the 

matrix 𝑫 = 𝟎) we get: 

𝑴−1

= [𝑰 −𝑨−1𝑷
𝟎 𝑰

] [
𝑨−1 𝟎
𝟎 (𝑴/𝑨)−𝟏] [

𝑰 𝟎
−𝑷𝑇𝑨−1 𝑰

] 

𝑴 𝑨⁄ ≝ 𝑷𝑇𝑨−1𝑷 

(27) 

Then det(𝑴) ≠ 0, det(𝑴/𝑨) ≠ 0 and det(𝑴/𝑨) ≠ 0 as the 

matrices are nonsingular.  

However, if RBF interpolation is used for larger data sets, 

there is a severe problem with robustness and numerical 

stability, i.e. numerical computability. Using the Schur’s 

complement we can see, that: 

det(𝑴) = det(𝑨) det(𝑴 𝑨⁄ ) (28) 

and therefore 

det(𝑴−1) =
1

det(𝑨)
 

1

det(𝑴 𝑨⁄ )

=
1

det(𝑨)
 

1

det(𝑷𝑇𝑨−1𝑷)
 

(29) 

Properties of the matrix 𝑨 are determined by the RFB function 

used. The value of det(𝑨) depends also on the mutual 

distribution of points. However, the influence of 

det(𝑷𝑇𝑨−1𝑷) is also significant as the value depends on the 

points mutual distribution due to the matrix 𝑨 but also to 

points distribution in space, due to the matrix 𝑷. It means that 

translation of points in space does have significant influence 

as well. Let us imagine for a simplicity that the matrix 𝑨 = 𝑰 

(it can happen if CSRBF is used and only one point is within 

the radius 𝑟 = 1). Then the distance of a point from the origin 

has actually quadratic influence as the point position is in the 

matrices 𝑷𝑇 and 𝑷. There is a direct significant consequence 

for the RBF interpolation. 

Let us conseder the RBF interpolation again: 

𝑓(𝒙) = ∑𝜆𝑗  𝜑(‖𝑥 − 𝒙𝑗‖)

𝑀

𝑗=1

+ 𝑃𝑘(𝒙) (30) 

where: the 𝑃𝑘(𝒙), 𝑘 = 1, 2 is a quadratic polynomial: 

𝑃1(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 (31) 

resp. 

𝑃2(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 + 𝑎5𝑦

2 (32) 

In the case of 𝑨 = 𝑰, we get a matrix 𝑷𝑇𝑷 of the size (3 × 3) 

and det(𝑷𝑇𝑷) in the case of a linear polynomial 𝑃1(𝒙) as: 
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det(𝑷𝑇𝑷) =

|

|
∑ 𝑥𝑖

2
𝑀

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑥𝑖

𝑀

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

2
𝑀

𝑖=1
∑ 𝑦𝑖

𝑀

𝑖=1

∑ 𝑥𝑖

𝑀

𝑖=1
∑ 𝑦𝑖

𝑀

𝑖=1
∑ 1

𝑀

𝑖=1

|

|

 

= 𝑛 (∑𝑥𝑖
2 ∑𝑦𝑖

2) − ∑ 𝑦𝑖 (… ) + ∑𝑦𝑖 (… ) 

(33) 

It means that points distribution in space and their distances 

from the origin play a significant role as the det(𝑷𝑇𝑷) 

contains elements ∑ 𝑥𝑖
2𝑀

𝑖=1  and ∑ 𝑦𝑖
2𝑀

𝑖=1  in multiplicative etc. 

in the linear polynomial case. 

If a quadratic polynomial 𝑃2(𝒙) is used, the matrix 𝑷𝑇𝑷 is 

of the size (6 × 6): 

𝑷𝑇𝑷 = 

[
 
 
 
 
 

𝑥1
2 ⋯ 𝑥𝑀

2

𝑦1
2 ⋯ 𝑦1

2

𝑥1𝑦1 ⋯ 𝑥𝑀𝑦𝑀

𝑥1 ⋯ 𝑥𝑀

𝑦1 ⋯ 𝑦𝑀

1 ⋯ 1 ]
 
 
 
 
 

 

[
𝑥1

2 𝑦1
2 𝑥1𝑦1 𝑥1 𝑦1 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑥𝑀

2 𝑦𝑀
2 𝑥𝑀𝑦𝑀 𝑥𝑀 𝑦𝑀 1

] 

(34) 

and then: 

det(𝑷𝑇𝑷)

= det

[
 
 
 
 
 
 
 ∑ 𝑥𝑖

4
𝑀

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖
2

𝑀

𝑖=1
⋯ ∑ 𝑥𝑖

2
𝑀

𝑖=1

∑ 𝑥𝑖
2𝑦𝑖

2
𝑀

𝑖=1
⋱ ⋯ ∑ 𝑦𝑖

2
𝑀

𝑖=1

⋮ ⋮ ⋱

∑ 𝑥𝑖
2

𝑀

𝑖=1
∑ 𝑦𝑖

2
𝑀

𝑖=1
⋯ ∑ 1

𝑀

𝑖=1 ]
 
 
 
 
 
 
 

 
(35) 

In the quadratic polynomial case, the det(𝑷𝑇𝑷) contains 

elements ∑ 𝑥𝑖
4𝑀

𝑖=1 , ∑ 𝑦𝑖
2𝑀

𝑖=1 ,…, ∑ 1𝑀
𝑖=1  in multiplicative, which 

brings even numerically worst situation as the matrix 𝑷𝑇𝑷 

contains small and very high values. As a direct consequence, 

eigenvalues will have large span and therefore the linear 

system of equations will become ill-conditioned. 

V. DECOMPOSITION OF RBF APPROXIMATION 

Decomposition for RBF approximation is analogous to the 

interpolation decomposition. Let us explore decomposition of 

the RBF approximation using the Schur’s complement. Let us 

consider the system of linear equation for the RBF 

approximation in the form 𝑴𝒙 = 𝒚: 

[𝑨
𝑇𝑨 𝑨𝑇𝑷

𝑷𝑇𝑨 𝑷𝑇𝑷
] [

𝝀
𝒂
] = [

𝑨𝑇𝒇

𝑷𝑇𝒇
] (36) 

Let us consider again the Schur’s complement (validity of 

operations is expected and the matrix 𝑫 ≠ 𝟎) 

𝑴 = [
𝑨 𝑩
𝑪 𝑫

] = [
𝑰 𝟎

𝑪𝑨−1 𝑰
] [

𝑨 𝟎

𝟎
𝑴

𝑨

] [𝑰 𝑨−1𝑩
𝟎 𝑰

] 

𝑴 𝑨⁄ ≝ 𝑫 − 𝑪𝑨−1𝑩 

(37) 

In this case, for the RBF approximation we obtain: 

𝑴 = [𝑨
𝑇𝑨 𝑨𝑇𝑷

𝑷𝑇𝑨 𝑷𝑇𝑷
]

= [
𝑰 𝟎

(𝑷𝑇𝑨)(𝑨𝑇𝑨)−1 𝑰
] [

𝑨𝑇𝑨 𝟎

𝟎
𝑴

(𝑨𝑇𝑨)
] 

[𝑰
(𝑨𝑇𝑨)−1(𝑨𝑇𝑷)

𝟎 𝑰
] 

(38) 

Then the matrix 𝑴−1 using the Schur’s complement: 

𝑴−1 = [𝑰 −(𝑨𝑇𝑨)−1(𝑨𝑇𝑷)
𝟎 𝑰

] 

[

(𝑨𝑇𝑨)−1 𝟎

𝟎 (
𝑴

(𝑨𝑇𝑨)
)

−𝟏] [
𝑰 𝟎

−(𝑷𝑇𝑨−1)(𝑨𝑇𝑨)−1 𝑰
] 

(39) 

where: 

𝑴 (𝑨𝑇𝑨)⁄ = 𝑷𝑇𝑷 − (𝑷𝑇𝑨)(𝑨𝑇𝑨)−1(𝑨𝑇𝑷) (40) 

In the RBF approximation case, the matrix 𝑫 is non-zero 

matrix 𝑷𝑇𝑷. It can be seen, that if the matrix 𝑨𝑇𝑨 → 𝑰, then 

the Schur’s complement 

𝑴 (𝑨𝑇𝑨)⁄ → (𝑷𝑇𝑷 − (𝑷𝑇𝑨)(𝑨𝑇𝑷)) 

= 𝑷𝑇𝑷 − (𝑨𝑇𝑷)𝑇(𝑨𝑇𝑷). 

It means, that the whole matrix 𝑴 tends to be singular. It can 

be seen that the det(𝑷𝑇𝑷) contains elements ∑ 𝑥𝑖
4𝑀

𝑖=1 , 

∑ 𝑦𝑖
2𝑀

𝑖=1 ,…, ∑ 1𝑀
𝑖=1  in multiplicative, too. This has a 

significant influence to the robustness of computation if small 

and high values of 𝑥𝑖  and 𝑦𝑖  occur in the data sets, or if they 

are from an interval with a large span.  

If the values (𝑥𝑖 , 𝑦𝑖) ∈ 〈−105, 105〉 × 〈−105, 105〉, the 

value of det(𝑷𝑇𝑷) > ∑ 𝑥𝑖
2 ∑ 𝑦𝑖

2𝑀
𝑖=1

𝑀
𝑖=1 > 1020 and the value 

of  1 det(𝑷𝑇𝑷)⁄ < 10−20, in the case of the linear polynomial 

reproduction. It results into a situation when the matrix 𝑴−1 

will be very “close” to singular.  

In the case of quadratic polynomial 𝑃2(𝒙), the situation gets 

even worst as det(𝑷𝑇𝑷) contains elements ∑𝑥𝑖
4 and ∑𝑦𝑖

4 in 

multiplicative, i.e.  det(𝑷𝑇𝑷) > ∑ 𝑥𝑖
4 ∑ 𝑦𝑖

4𝑀
𝑖=1

𝑀
𝑖=1 > 1040. 

This should be considered as a significant disadvantage of 

the RBF approximation used for large data spans. 

However, it is recommended to use 𝑃0(𝒙) as it “moves 

vertically” the data and improves the stability. Also, if 𝑃𝑘(𝒙) 

represents” a global data behavior, its usage can be 

recommended, as the functions 𝜑𝑖,𝑗(𝑟) actually make 

“additional off-set modulation”. 

VI. EXPERIMENTAL RESULTS 

The influence of polynomial reproduction was studied on 

synthetic and real data sets. The influence of a nonlinear 

polynomial was significant even for data with a smaller data 

span. As real data sets were used. Fig.3 presents a difference 

between original data and RBF approximation.  

The experiments also proved that vertical “shift” of center 

of gravity of data increases the numerical stability as 

expected.  
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Figure 3. Difference of original data and RBF Least Square 

Error approximation of the St.Helens volcano 

10 000 points used instead of 6 743 176 original points 

 

VII. CONCLUSION 

The RBF interpolation using compactly supported RBF 

(CSRBF) have several significant advantages over methods 

based on smooth interpolation made on triangulated space 

area. In this contribution some properties of the CSRBF 

interpolation and approximation methods have been 

presented from the “engineering” point of view and selected 

features related to robustness and stability of computation 

have been presented.  

The presented founding are fundamental especially in the 

case of engineering and GIS related applications. 

Deeper CSRBF analysis of sparse data structures used, 

space subdivision and speed up of computation will be 

explored in future. 
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