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Abstract 

This contribution presents a new analysis of properties of the interpolation using Radial Bases Functions 

(RBF) related to large data sets interpolation. The RBF application is convenient method for scattered 

𝑑-dimensional interpolation. The RBF methods lead to a solution of linear system of equations and 

computational complexity of solution is nearly independent of a dimensionality. However, the RBF 

methods are usually applied for small data sets with a small span geometric coordinates. This 

contribution explores properties of the RBF interpolation for large data sets and large span of geometric 

coordinates of the given data sets with regard to expectable numerical stability of computation. 
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1 Introduction 

Interpolation techniques are used in solution of many engineering problems. However, the 
interpolation of unorganized scattered data is still a severe problem. The standard approaches are based 
on tessellation of the domain in 𝑥, 𝑦 or 𝑥, 𝑦, 𝑧 spaces using e.g. Delaunay triangulation etc. This approach 
is applicable for static data and 𝑡-varying data, if data in the time domain are “framed”, i.e. given for 
specific time samples. However, it leads to increase of dimensionality, i.e. from triangulation in 𝐸2 to 
triangulation in 𝐸3 or from triangulation in 𝐸3 to triangulation in 𝐸4 etc. It results to significant increase 
of triangulation complexity and an algorithm implementation.  

Radial Basis Functions (RBF) offer several significant advantages, e.g. RBF formulation leads to a 
solution of linear system of equations, i.e. 𝑨𝒙 = 𝒃, and it is applicable generally to 𝑑-dimensional 
problems. It does not require tessellation of the definition domain and it is especially convenient for 
scattered data interpolation. The RBF interpolation is smooth by a definition and it can be applied for 
interpolation of scalar and vector fields. If the Compactly Supported RBFs (CSRBF) are used, sparse 
matrix data structures can be used which decreases memory requirements significantly. 

However, there are some weak points of a RBF application in real problems solution, e.g. problems 
with robustness of the RBF due to low conditionality of the matrix 𝑨 and with numerical stability, if the 
interpolation is to be applied over a large span of 𝒙 values. Memory requirements are of  𝑂(𝑁2) 
complexity, where 𝑁 is a number of points in which values are given. Computational complexity of a 
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solution of the LSE, which is 𝑂(𝑁3), resp. 𝑂(𝑘𝑁2), where  𝑘 is a number of iteration if iterative method 
is used. Also severe problems with unexpected behavior at geometrical borders, e.g. in PDE solutions. 

The meshless techniques are easily scalable to higher dimensions and can handle scattered spatial 

and spatial-temporal data. The polygonal based techniques require tessellations, e.g. Delaunay 

triangulation with 𝑂 (𝑁⌊𝑑 2⁄ +1⌋) computational complexity for 𝑁 points in  𝑑-dimensional space or 

another tessellation method. However, the complexity of tessellation algorithms implementation grow 

significantly with dimensionality and severe problems with robustness might be expected as well.  

2 RBF Interpolation 

Meshless (meshfree) methods are based on the idea of Radial Basis Function (RBF) interpolation 

[2], [22], [22], [16], which is not separable, and lead to a solution of a linear system equations (LSE) 

with a full or sparse matrix [4], [5]. The RBF interpolation is based on computing of the distance of two 

points in the 𝑑-dimensional space and is defined by a function: 

𝑓(𝒙) = ∑𝜆𝑗  𝜑(‖𝒙 − 𝒙𝑗‖)

𝑁

𝑗=1

= ∑𝜆𝑗  𝜑(𝑟𝑗)

𝑁

𝑗=1

 

Formally: 𝑟𝑗 = ‖𝒙 − 𝒙𝑗‖2
≝ √(𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2
= √(𝑥 − 𝑥𝑗)

2
+ (𝑦 − 𝑦𝑗)

2
+ (1 − 1)2 

𝒙 = [𝑥, 𝑦: 1]𝑇 is expressed in homogeneous coordinates for 𝑑 = 2 case, 𝜆𝑗   are weights to be computed.  

In the case of the projective space representation 𝑟𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖𝑃
≝ ‖𝑤𝑗𝒙𝑖 − 𝑤𝑖𝒙𝑗‖𝑃

=

√(𝑤𝑗𝑥𝑖 − 𝑤𝑖𝑥𝑗)
2
+ (𝑤𝑗𝑦𝑖 − 𝑤𝑖𝑦𝑗)

2
+ (𝑤𝑖𝑤𝑗 − 𝑤𝑖𝑤𝑗)

2
= √(𝑤𝑗𝑥𝑖 − 𝑤𝑖𝑥𝑗)

2
+ (𝑤𝑗𝑦𝑖 − 𝑤𝑖𝑦𝑗)

2
 

It means that for the given data set  {〈𝒙𝑖 , ℎ𝑖〉}1
𝑁, where ℎ𝑖 are associated values to be interpolated and 𝒙𝑖 

are domain coordinates, we obtain a linear system of equations: 

ℎ𝑖 = 𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑁

𝑗=1

 + 𝑃𝑘(𝒙𝑖) 𝒙 = [𝑥, 𝑦: 1]𝑇 𝑖 = 1,… , 𝑁 

Due to some stability issues, usually a polynomial 𝑃𝑘(𝒙) of a degree k is added. Mostly, a polynomial 

of the 1st degree is used, i.e.  𝑃1(𝒙) = 𝒂𝑇𝒙.  

𝑓(𝒙𝑖) = ∑𝜆𝑗  𝜑(‖𝒙𝑖 − 𝒙𝑗‖)

𝑁

𝑗=1

+ 𝒂𝑇𝒙𝒊 = ∑𝜆𝑗  𝜑𝑖,𝑗

𝑁

𝑗=1

+ 𝒂𝑇𝒙𝒊  ℎ𝑖 = 𝑓(𝒙𝑖) 𝑖 = 1,… , 𝑁 

and additional conditions are to be applied: 

∑ 𝜆𝑖𝒙𝑖 = 𝟎

𝑁

𝑗=1

 i.e. ∑𝜆𝑖𝑥𝑖 = 0

𝑁

𝑗=1

 ∑ 𝜆𝑖𝑦𝑖 = 0

𝑁

𝑗=1

 ∑𝜆𝑖 = 0

𝑁

𝑗=1

 

It leads to s linear system of equations 

[
 
 
 
 
 
𝜑1,1 . . 𝜑1,𝑁 𝑥1 𝑦1 1
: ⋱ : : : :

𝜑𝑁,1 . . 𝜑𝑁,𝑁 𝑥𝑁 𝑦𝑁 1

𝑥1 . . 𝑥𝑁 0 0 0
𝑦1 . . 𝑦𝑁 0 0 0
1 . . 1 0 0 0]

 
 
 
 
 

[
 
 
 
 
 
𝜆1

:
𝜆𝑁

𝑎𝑥

𝑎𝑦

𝑎0]
 
 
 
 
 

=

[
 
 
 
 
 
ℎ1

:
ℎ𝑁

0
0
0 ]

 
 
 
 
 

 

[ 
𝑩 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 

 

𝑨𝒙 = 𝒃 

𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 
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It can be seen that for 𝑑-dimensional case a system of (𝑁 + 𝑑 + 1) LSE has to be solved, where 𝑁 

is a number of points in the dataset and 𝑑 is the dimensionality of data. For N points given and 𝑑 = 2, 

i.e. 𝒂 = [𝑎𝑥 , 𝑎𝑦: 𝑎0]
𝑇
, a system of (𝑁 + 3) linear equations has to be solved. If “global” functions, e.g. 

TPS (𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟, are used, then the matrix 𝑩 is “full”, if “local” functions (Compactly Supported 

RBF – CSRBF) are used, the matrix 𝑩 can be sparse. 

The RBF interpolation was originally introduced by multiquadric method in 1971 [5], which was 

called Radial Basis Function (RBF) method. Since then many different RFB interpolation schemes have 

been developed with some specific properties, e.g. Thin-Plate Spline (TPS uses 𝜑(𝑟) = 𝑟2𝑙𝑔 𝑟) [4], 

a function 𝜑(𝑟) = 𝑒−(𝜖𝑟)2  was proposed in [22] and CSRBFs were introduced in [21] as: 

𝜑(𝑟) = {
(1 − 𝑟)𝑞 𝑃(𝑟),     0 ≤ 𝑟 ≤ 1

 0,                   𝑟 > 1
  , 

where: 𝑃(𝑟) is a polynomial function and 𝑞 is a parameter. Theoretical problems with numerical 

stability were solved in [4]. The CSRBFs are defined for the “normalized” interval 𝑟 ∈ 〈0 ,  1 〉, but for 

the practical use a scaling is used, i.e. the value 𝑟 is multiplied by a scaling factor 𝛼 > 0 (shape 

parameter). 

Meshless techniques are used in engineering problem solutions, e.g. partial differential equations 

(PDE) [6] surface modeling [8], surface reconstruction of scanned objects [3], [18] reconstruction of 

corrupted images [22], etc. More generally, meshless object representation is based on specific 

interpolation techniques [1][2][6][19][22]. In addition, subdivision or hierarchical methods are used to 

decrease sizes of computations and increase robustness [14][20]. If “global” RBF functions are 

considered, the RBF matrix is full and in the case of 106 of points, the RBF matrix is of the size 

approx.106 × 106 ! On the other hand, if CSRBF used, the relevant matrix is sparse and computational 

and memory requirements can be decreased significantly using special data structures.  

3 Decomposition of RBF Interpolation 

The RBF interpolation can be described in the matrix form as  

[ 
𝑨 𝑷
𝑷𝑇 𝟎

] [
𝝀
𝒂
] = [

𝒇
𝟎
] 𝒂𝑇 𝒙𝒊 = 𝑎𝑥  𝑥𝑖 + 𝑎𝑦 𝑦𝑖 + 𝑎0 

where 𝒙 = [𝑥, 𝑦: 1]𝑇, the matrix 𝑨 is symmetrical and semidefinite positive (or strictly positive) definite. 
Let us consider the Schur’s complement (validity of all operation is expected) 

𝑴 = [
𝑨 𝑩
𝑪 𝑫

] = [
𝑰 𝟎

𝑪𝑨−1 𝑰
] [

𝑨 𝟎
𝟎 𝑴/𝑨

] [𝑰 𝑨−1𝑩
𝟎 𝑰

] 𝑴 𝑨⁄ ≝ 𝑫 − 𝑪𝑨−1𝑩 

where 𝑴/𝑨 is the Schur’s complement. Then the inversion matrix 𝑴−1  

𝑴−1 = [𝑰 −𝑨−1𝑩
𝟎 𝑰

] [
𝑨−1 𝟎
𝟎 (𝑴/𝑨)−𝟏] [

𝑰 𝟎
−𝑪𝑨−1 𝑰

] 

Now, the Schur’s complement can be applied to the RBF interpolation. As the matrix 𝑴 is nonsingular, 
inversion of the matrix 𝑴 can be used. Using the Schur’s complement (as the matrix 𝑫 = 𝟎) 

𝑴−1 = [𝑰 −𝑨−1𝑷
𝟎 𝑰

] [
𝑨−1 𝟎
𝟎 (𝑴/𝑨)−𝟏] [

𝑰 𝟎
−𝑷𝑇𝑨−1 𝑰

] 𝑴 𝑨⁄ ≝ 𝑷𝑇𝑨−1𝑷 

Then det(𝑴) ≠ 0, det(𝑨) ≠ 0 and det(𝑴/𝑨) ≠ 0 as the matrices are nonsingular.  

However, if RBF interpolation is used for larger data sets, there is a severe problem with robustness 

and numerical stability, i.e. numerical computability issues. Using the Schur’s complement we obtain  

det(𝑴−1) =
1

det(𝑴)
=

1

det(𝑨)
 

1

det(𝑴 𝑨⁄ )
=

1

det(𝑨)
 

1

det(𝑷𝑇𝑨−1𝑷)
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Properties of the matrix 𝑨 are determined by the RFB function used. The value of det(𝑨) depends also 
on the mutual distribution of points. However, the influence of det(𝑷𝑇𝑨−1𝑷) is also significant as the 
value depends on the points mutual distribution due to the matrix 𝑨 but also to points distribution in 
space, due to the matrix 𝑷. It means that translation of points in space does have significant influence. 
Let us imagine for a simplicity that the matrix 𝑨 = 𝑰 (it can happen if CSRBF is used and only one point 
is within the radius 𝑟 = 1). Then the distance of a point from the origin has actually quadratic influence, 
if a polynomial 𝑃1(𝒙) is used, as the point’s position is in the matrices 𝑷𝑇 and 𝑷. There is a direct 
significant consequence for the RBF interpolation. 

𝑓(𝒙) = ∑𝜆𝑗  𝜑(‖𝑥 − 𝒙𝑗‖)

𝑁

𝑗=1

+ 𝑃𝑘(𝒙) 

when the 𝑃𝑘(𝒙), 𝑘 = 1, 2 is a polynomial 

𝑃1(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 , resp. 𝑃2(𝒙) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑥
2 + 𝑎4𝑥𝑦 + 𝑎5𝑦

2 

In the case of 𝑨 = 𝑰, we get a matrix 𝑷𝑇𝑷 of the size (3 × 3) and det(𝑷𝑇𝑷) in the case of a linear 
polynomial 𝑃1(𝒙) as: 

det(𝑷𝑇𝑷) =

|

|
∑ 𝑥𝑖

2
𝑁

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑁

𝑖=1
∑ 𝑥𝑖

𝑁

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑁

𝑖=1
∑ 𝑦𝑖

2
𝑁

𝑖=1
∑ 𝑦𝑖

𝑁

𝑖=1

∑ 𝑥𝑖

𝑁

𝑖=1
∑ 𝑦𝑖

𝑁

𝑖=1
∑ 1

𝑁

𝑖=1

|

|

= 𝑛 (∑𝑥𝑖
2 ∑𝑦𝑖

2) − ∑ 𝑦𝑖 (… ) + ∑𝑦𝑖 (… ) … 

It means that points distribution in space and their distances from the origin play a significant role as 
the det(𝑷𝑇𝑷) contains elements ∑ 𝑥𝑖

2𝑁
𝑖=1  and ∑ 𝑦𝑖

2𝑁
𝑖=1  in multiplicative etc. in the linear polynomial case.  

If a quadratic polynomial 𝑃2(𝒙) is used, the matrix 𝑷𝑇𝑷 is of the size (6 × 6) and det(𝑷𝑇𝑷) contains 

elements ∑ 𝑥𝑖
4𝑁

𝑖=1 , ∑ 𝑦𝑖
2𝑁

𝑖=1 ,…, ∑ 1𝑁
𝑖=1  in multiplicative, which brings even worst situation as the 

matrix 𝑷𝑇𝑷 contains small and very high values.  

As a direct consequence, eigenvalues will have large span and therefore the linear system of equations 
will become extremely ill-conditioned. 

4 Conclusion 

The RBF interpolation using compactly supported RBF (CSRBF) have several significant advantages 
over methods based on smooth interpolation made on triangulated space area. In this contribution, some 
properties of the CSRBF interpolation methods have been presented from “engineering” point of view 
and selected features related to robustness and stability of computation have been presented. The 
presented founding are fundamental especially in the case of engineering applications. In future, CSRBF 
analysis of sparse data structures used, space subdivision and speed up of computation will be explored 
more deeply especially for RBF based approximations. 
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