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Abstract — There are many practical applications based on the 

Least Square Error (LSE) approximation. It is based on a square 

error minimization “on a vertical” axis. The LSE method is simple 

and easy also for analytical purposes. However, if data span is 

large over several magnitudes or non-linear LSE is used, severe 

numerical instability can be expected. 

The presented contribution describes a simple method for 

large span of data LSE computation. It is especially convenient if 

large span of data are to be processed, when the “standard” 

pseudoinverse matrix is ill conditioned. It is actually based on a 

LSE solution using orthogonal basis vectors instead of 

orthonormal basis vectors. The presented approach has been used 

for a linear regression as well as for approximation using radial 

basis functions. 

Keywords—Least square error; approximation regression; 

radial basis function; approximation; condition number; linear 
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I.  INTRODUCTION 

Wide range of applications is based on approximation of 
acquired data and the LSE  minimization is used, known also as 
a linear or polynomial regression. The regression methods have 
been heavily explored in signal processing and geometrical 
problems or with statistically oriented problems. They are used 
across many engineering fields dealing with acquired data 
processing. Several studies have been published and they can be 
classified as follows:  

 “standard” Least Square Error (LSE) methods fitting data to 
a function 𝑦 = 𝑓(𝒙) , where 𝒙 is an independent variable 
and 𝑦 is a measured or given value, 

 “orthogonal” Total Least Square Error (TLSE) fitting data to 
a function 𝐹(𝒙) = 0 , i.e. fitting data to some 𝑑 − 1-
dimensional entity in this 𝑑-dimensional space, e.g. a line 
in the 𝐸2 space or a plane in the 𝐸3 space [1][6][8][21][22], 

 “orthogonally Mapping” Total Least Square Error (MTLSE) 
methods for fitting data to a given entity in a subspace of 
the given space. However, this problem is much more 
complicated. As an example, we can consider data given in 

and we need to find an optimal line in 𝐸𝑑, i.e. one 
dimensional entity, in this 𝑑-dimensional space fitting 
optimally the given data. Typical problem: Find a line in 

the  𝐸𝑑space that has the minimum orthogonal distance 

from the given points in this space. This algorithm is quite 
complex and solution can be found in [18].  

It should be noted, that all methods above do have one 
significant drawback as values are taken in a squared value. This 
results to an artifact that small values do not have relevant 
influence to the final entity as the high values. Some methods 
are trying to overcome this by setting weights to each measured 
data [3]. It should be noted that the TLSE was originally derived 
by Pearson [16](1901). Deep comprehensive analysis can be 
found in [8][13][21][22]. Differences between the LSE a TLSE 
methods approaches are significant, see Fig.1. 
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Fig. 1.a: Least Square Error Fig.1.b: Total Least Square Error 

In the vast majority the Least Square Error (LSE) methods 
measuring vertical distances are used. This approach is 
acceptable in the case of explicit functional 
dependences 𝑓(𝑥, 𝑦) = ℎ, resp. 𝑓(𝑥, 𝑦, 𝑧) = ℎ. However, it 
should be noted that a user should keep in a mind, that smaller 
differences than 1.0, will have significantly smaller weight than 
higher differences than 1.0 as the differences are taken in a 
square resulting to dependences in scaling of data approximated, 
i.e. the result will depend on physical units used, etc. The main 
advantage of the LSE method is that it is simple for fitting 
polynomial curves and it is easy to implement. The standard 
LSE method leads to over determined system of linear 
equations. This approach is also known as polynomial 
regression. 

Let us consider a data set Ω = {〈𝑥𝑖 , 𝑦𝑖 , 𝑓𝑖〉}𝑖=1
𝑛 , i.e. data set 

containing for  𝑥𝑖,𝑦𝑖 and measured functional value 𝑓𝑖, and we 
want to find parameters 𝒂 = [𝑎, 𝑏, 𝑐, 𝑑]𝑇 for optimal fitting 
function, as an example: 

 𝑓(𝑥, 𝑦, 𝒂) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 (1) 

Minimizing the vertical squared distance 𝐷, i.e.: 
Research was supported by the and National Science Foundations (GACR) 
project No. 17-05534S. 
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𝐷 = min
𝑎,𝑏,𝑐,𝑑

∑(𝑓𝑖 − 𝑓(𝑥𝑖 , 𝑦𝑖 , 𝒂))
2

=

𝑛

𝑖=1

 

𝑚𝑖𝑛
𝑎,𝑏,𝑐,𝑑

∑(𝑓𝑖 − (𝑎 + 𝑏𝑥𝑖 + 𝑐𝑦𝑖 + 𝑑𝑥𝑖𝑦𝑖))
2

𝑛

𝑖=1

 

(2) 

Conditions for an extreme are given as: 

 
𝜕𝑓(𝑥, 𝑦, 𝒂)

𝜕𝒂
= [1, 𝑥, 𝑦, 𝑥𝑦]𝑇 (3) 

Applying this on the expression of 𝐷 we obtain 

𝜕𝐷

𝜕𝒂
∑(𝑓𝑖 − (𝑎 + 𝑏𝑥𝑖 + 𝑐𝑦𝑖 + 𝑑𝑥𝑖𝑦𝑖))

𝑛

𝑖=1

𝜕𝑓(𝑥, 𝑦, 𝒂)

𝜕𝒂
= 0 (4) 

It leads to conditions for  𝒂 = (𝑎, 𝑏, 𝑐, 𝑑) parameteters in the 

form of a linear system of equations 𝑨𝒙 = 𝒃: 

𝑨 = 

[
 
 
 
 
 
 
 
 𝑛 ∑ 𝑥𝑖

𝑛

𝑖=1
∑ 𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1

∑ 𝑥𝑖

𝑛

𝑖=1
∑ 𝑥𝑖

2
𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑛

𝑖=1

∑ 𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1
∑ 𝑦𝑖

2
𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑛

𝑖=1

∑ 𝑥𝑖𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖

𝑛

𝑖=1
∑ 𝑥𝑖𝑦𝑖

2
𝑛

𝑖=1
∑ 𝑥𝑖

2𝑦𝑖
2

𝑛

𝑖=1 ]
 
 
 
 
 
 
 
 

 

𝒙 = [𝑎, 𝑏, 𝑐 , 𝑑 ]𝑻 

𝒃 = [∑ 𝑓𝑖

𝑛

𝑖=1
,∑ 𝑓𝑖𝑥𝑖

𝑛
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(5) 

The selection of bilinear form was used to show the LSE 
method application to a non-linear case, if the case of a linear 
function, i.e. 𝑓(𝑥, 𝑦, 𝒂) = 𝑎 + 𝑏𝑥 + 𝑐𝑦, the 4th row and column 
are to be removed. Note that the matrix 𝑨 is symmetric and the 
function 𝑓(𝒙) might be more complex, in general. 

Several methods for LSE have been derived [4][5][10], however 
those methods are sensitive to the vector 𝒂 orientation and not 

robust in general as a value of ∑ 𝑥𝑖
2𝑦𝑖

2𝑛
𝑖=1  might be too high in 

comparison with the value 𝑛, which has an influence to 
robustness of a numerical solution. In addition, the LSE methods 
are sensitive to a rotation as they measure vertical distances. It 
should be noted, that rotational and translation invariances are 
fundamental requirements especially in geometrically oriented 
applications. 

The LSE method is usually used for a small size of data and 
span of a domain is relatively small. However, in some 
applications the domain span can easily be over several decades, 
e.g. in the case of Radial Basis Functions (RBF) approximation 
for GIS applications etc. In this case, the overdetermined system 
can be difficult to solve. 

II. NUMERICAL STABILITY 

Let us explore a simple example, when many points 𝒙𝑖 ∈ 𝐸2, 
i.e. 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖) , are given with relevant associated values 
 𝑏𝑖, 𝑖 = 1,… , 𝑛. Expected functional dependency can be 
expressed (for a simplicity) as 𝑦 = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦. The LSE 
leads to an overdetermined system of equations 

 𝑨𝑇𝑨 𝝃 = 𝑨𝑇𝒃 (6) 

where 𝒃 = (𝑏1, … , 𝑏𝑛), 𝝃 = (𝜉1, … , 𝜉𝑚) and 𝑚 is a number of 
parameters, 𝑚 < 𝑛.  

If the values 𝑥𝑖 , 𝑦𝑖 over a large span, e.g. 𝑥𝑖 , 𝑦𝑖 ∈ 〈100, 105〉, 
the matrix 𝑨𝑇𝑨 is extremely ill conditioned. This means that the 
reliability of a solution depends on the distribution of points in 
the domain. Situation gets worst when a non-linear polynomial 
regression is to be used and dimensionality of the domain is 
higher. 

As an example, let us consider a simple case, when points 
form regular orthogonal mesh and values are generated using 𝑅5 
distribution scheme (equidistant in a logarithmic scale) 
as (𝑥𝑖 , 𝑦𝑖) ∈ 〈10, 105〉 × 〈10, 105〉. It can be easily found using 
MATLAB that conditional number 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨) ≅ 1011.  

In the following, we will show how the condition number 
might be decreased significantly using orthogonal basis vectors 
instead of the orthonormal ones. 

III. PROJECTIVE NOTATION AND GEOMETRY ALGEBRA 

The LSE approximation is based on a solution of a linear 
system of equations, i.e. 𝑨𝒙 = 𝒃. Usually the Euclidean 
representation is used. However if the projective space 
representation is used [19] , it is transformed into homogeneous 
linear system of equations, i.e. 𝑩𝜻 = 𝟎. Rewriting the Eq.(6), we 
obtain 

 𝑩𝜻 = 𝟎 (7) 

where  

 
𝑩 = [−𝑨𝑇𝒃|𝑨𝑇𝑨] 

𝜻 = (𝜁0: 𝜁1, … , 𝜁𝑚) 
(8) 

and  𝜉𝑖 =
𝜁𝑖

𝜁0
⁄ , 𝑖 = 1,… ,𝑚; 𝜁0 is the homogeneous coordinate 

in the projective representation, matrix 𝑩 size is 𝑚 × (𝑚 + 1). 
Now, a system of homogeneous linear equations is to me solved.  

It can be shown that a system of homogeneous linear 
equations 𝑨𝒙 = 𝟎 is equivalent to the extended cross-product, 
actually outer-product [19][20]. In general, solutions of the both 
cases 𝑨𝒙 = 𝟎 and 𝑨𝒙 = 𝒃, i.e. homogeneous and non-
homogeneous system of linear equations, is the same and no 
division operation is needed as the extended cross-product (outer 
product) does not require any division operation at all. Applying 
this we get: 

𝜻 = (𝜁0: 𝜁1, … , 𝜁𝑚) = 𝜷1 ∧ 𝜷2 ∧ …∧ 𝜷𝑚−1 ∧ 𝜷𝑚 (9) 

where 

 𝜷𝑖 = [−𝑏𝑖0: 𝑏𝑖1, … , 𝑏𝑖𝑚]𝑇      𝑖 = 1,… ,𝑚   (10) 

The extended cross-product can be rewritten using determinant 
of (𝑚 + 1) × (𝑚 + 1) as 

 𝜻 = det [

𝒆0 𝒆1 𝒆2 ⋯ 𝒆𝑚

−𝑏10 𝑏11 𝑏12 ⋯ 𝑏1𝑚

⋮ ⋮ ⋮ ⋱ ⋮
−𝑏𝑚0 𝑏𝑚1 𝑏𝑚2 ⋯ 𝑏𝑚𝑚

] (11) 

where  𝒆0 are orthonormal basis vectors in the  𝑚-dimensional 
space. As a determinant is a multilinear, we can multiply any 𝑗 
column by a value  𝑞𝑗 ≠ 0 
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𝜻′ = det [

𝒆0
′ 𝒆1

′ 𝒆2
′ ⋯ 𝒆𝑚

′

−𝑏10
′ 𝑏11

′ 𝑏12
′ ⋯ 𝑏1𝑚

′

⋮ ⋮ ⋮ ⋱ ⋮
−𝑏𝑚0

′ −𝑏𝑚1
′ −𝑏𝑚2

′ ⋯ −𝑏𝑚𝑚
′

] (12) 

where 

 𝒆𝑗
′ =

𝒆𝑗

𝑞𝑗
 𝑏∗𝑗

′ =
𝑏∗𝑗

𝑞𝑗
 

 

(13) 

where 𝒆𝑗
′ are orthogonal basis vectors in the  𝑚-dimensional 

space. 

From the geometrical point of view, it is actually a 
“temporary” scaling on each axis including the units. Of course, 
a question remains – how to select the 𝑞𝑗 value. The 𝑞𝑗 is to be 

selected as 

 𝑞𝑗 = max
𝑖=1,…,𝑚

{|𝑏𝑖𝑗|} (14) 

where 𝑗 = 1,… ,𝑚. Note that the matrix 𝑩 is indexed 
as (0, … ,𝑚) × (0,… ,𝑚). 

Applying this approach, we get a modified system 

𝜻′ = (𝜁0
′ : 𝜁1

′ , … , 𝜁𝑚
′ ) = 𝜷1

′ ∧ 𝜷2
′ ∧ …∧ 𝜷𝑚−1

′ ∧ 𝜷𝑚
′  (15) 

where 

 𝜷𝑖
′ = [−𝑏𝑖0

′ : 𝑏𝑖1
′ , … , 𝑏𝑖𝑚

′ ]𝑇 (16) 

where 𝜷𝑖
′ are coefficients of the matrix �̅�´ = [−𝑨𝑇𝒃|𝑨𝑇𝑨̅̅ ̅̅ ̅̅ ], i.e. 

modified matrix 𝑩 as described above, for the orthogonal (not 
orthonormal) vector basis. 

The approximated 𝑓(𝑥, 𝑦) value is computed as  

 𝑓(𝑥, 𝑦) = 𝑎𝑞1 + 𝑏𝑞2𝑥 + 𝑐𝑞3𝑦 (17) 

in the case of 𝑓(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦, or 

 𝑓(𝑥, 𝑦) = 𝑎𝑞1 + 𝑏𝑞2𝑥 + 𝑐𝑞3𝑦 + 𝑑𝑞4𝑥𝑦 (18) 

in the case 𝑓(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 and similarly for the 
general case of a regression function 𝑦 = 𝑓(𝒙, 𝒂). 

The above presented modification is simple. However, what 
is the influence of this operation? 

IV. MATRIX CONDITIONALITY 

Let us consider a recent simple example again, when points 
are generated from (𝑥𝑖 , 𝑦𝑖) ∈ 〈10, 105〉 × 〈10, 105〉. It can be 
found that conditional number 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨) ≅ 6. 1010 using 
MATLAB, Fig.2, if 𝑓(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 is used for the LSE. 

 
Fig.2: Conditionality histogram of the original matrix depending on number of 

data set size, i.e. number of points 

Using the approach presented above, the conditional number 

was decreased significantly to 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨̅̅ ̅̅ ̅̅ ) ≅ 2. 106.  

 
Fig.3: Conditionality of the modified matrix depending on number of data set 

size, i.e. number of points 

Comparing the condition numbers of the original and 
modified matrices, we can see significant improvement of 
matrix conditionality as 

𝜐 = 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨)
𝑐𝑜𝑛𝑑(𝑨𝑇𝑨̅̅ ̅̅ ̅̅ )

⁄ ≅
6.1010

2.106
= 3.104

 (19) 

In the case of a little bit more complex function defined by 
Eq.(1), i.e. 𝑓(𝑥, 𝑦) = 𝑎 + 𝑏𝑥 + 𝑐𝑦 + 𝑑𝑥𝑦 we obtain 

 
Fig.4: Conditionality of the original matrix depending on number of data set 

size, i.e. number of points 

 
Fig.5: Conditionality of the modified matrix depending on number of data set 

size, i.e. number of points 

In this case of the LSE defined by Eq.(1) the conditionality 
improvement is even higher, as 

𝜐 = 𝑐𝑜𝑛𝑑(𝑨𝑇𝑨)
𝑐𝑜𝑛𝑑(𝑨𝑇𝑨̅̅ ̅̅ ̅̅ )

⁄ ≅
6.1020

6.1011
= 109

 (20) 

It means that better numerical stability is obtained by a simple 
operation. All graphs clearly shows also dependency on a 
number of points used for the experiments (horizontal axis). 
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The geometric algebra brings also an interesting view on 

problems with numerical solutions. Let us consider vectors �̂�𝑖 
with coordinates of points, i.e. 

 �̂�𝑖 = [𝑏𝑖1, … , 𝑏𝑖𝑚]𝑇     𝑖 = 1,… ,𝑚 (21) 

Then �̂�𝑖 ∧ �̂�𝑗 = �̂�𝑖𝑗 defines a bivector, which is an oriented 

surface, given by two vectors in 𝑚-dimensional space and ‖�̂�𝑖𝑗‖ 

gives the area represented by the bivector �̂�𝑖𝑗.  

So, the proposed approach of introducing orthogonal basis 
functions instead of the orthonormal ones, enable us to 
“eliminate” influence of “small” bivectors in the original LSE 
computation and increase precision of numerical computation. 

Of course, if the regression is to be applied, the influence of 
the 𝑞𝑗 values must be applied. By the presented approach we 

actually got values 𝜁𝑖
′ using the orthogonal basis vectors instead 

of orthonormal. It means, that the estimated value by a 
regression, using recent simple example, is 

 𝑓(𝑥, 𝑦) = 𝑞1𝑎1 + 𝑞2𝑎2𝑥 + 𝑞3𝑎3𝑦 (22) 

V. LEAST SQUARE METHOD WITH POLYNOMIALS  

In the case of the least square approximation, we want to 
minimize using a polynomial of degree 𝑛. 

 

min
𝑃𝑛(𝑥)

‖𝑓(𝑥) − 𝑃𝑛(𝑥)‖ 

𝑃𝑛(𝑥) = ∑𝑎𝑖𝑥
𝑖

𝑘

𝑖=0

 
(23) 

The 𝐿2 norme of a function 𝑓(𝑥) an an interval 〈𝑎, 𝑏〉 is defined  

 ‖𝑓(𝑥)‖ = √(∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

)

2

 (24) 

Minimizing square of the distance of a function of  𝑘 + 1 
parameters 𝜑(𝒂) = 𝜑(𝑎0, … , 𝑎𝑛)  and using “per-partes” rule, 
we obtain 

 𝜑(𝒂) =  ∫ [𝑓(𝑥) − 𝑃𝑛(𝑥)]2𝑑𝑥
𝑏

𝑎

 

= ∫ [𝑓(𝑥)]2𝑑𝑥
𝑏

𝑎

− 2∑𝑎𝑖

𝑛

𝑖=0

∫ 𝑥𝑖𝑓(𝑥)𝑑𝑥
𝑏

𝑎

+ ∑∑𝑎𝑖𝑎𝑗

𝑛

𝑗=0

𝑛

𝑖=0

∫ 𝑥𝑖+𝑗𝑑𝑥
𝑏

𝑎

 

(25) 

For a minimum a vector condition  

 
𝜕𝜑(𝒂)

𝜕𝒂
= 𝟎 (26) 

must be valid. It leads to conditions 

𝜕𝜑(𝒂)

𝜕𝑎𝑘
= 0 − 2∫ 𝑥𝑘 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

+ ∑𝑎𝑖

𝑛

𝑖=0

∫ 𝑥𝑖+𝑘𝑑𝑥
𝑏

𝑎

+ ∑𝑎𝑗

𝑛

𝑖=0

∫ 𝑥𝑗+𝑘𝑑𝑥
𝑏

𝑎

 

(27) 

and by simple algebraic manipulations we obtain: 

2 [−∫ 𝑥𝑘 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

+ ∑𝑎𝑖

𝑛

𝑖=0

∫ 𝑥𝑖+𝑘𝑑𝑥
𝑏

𝑎

] = 0 (28) 

and therefore 

∑𝑎𝑖

𝑛

𝑖=0

∫ 𝑥𝑖+𝑘𝑑𝑥
𝑏

𝑎

= ∫ 𝑥𝑘 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 (29) 

where 𝑘 = 1,… , 𝑛.  

It means that the LSE problem is the polynomial (what has 
been expected) 

 𝑃𝑛(𝑥) = ∑𝑎𝑖𝑥
𝑖

𝑘

𝑖=0

 (30) 

However, there is a direct connection with well known Hilbert’s 
matrix. It can be shown that elements of the Hilbert’s matrix 
(𝐻𝑛+1(𝑎, 𝑏))𝑖,𝑘 of the size (𝑛 + 1) × (𝑛 + 1) are equivalent to  

(𝐻𝑛+1(𝑎, 𝑏))𝑖,𝑘 = ∫ 𝑥𝑖+𝑘𝑑𝑥
𝑏

𝑎

=
1

1 + 𝑖 + 𝑘
 (31) 

If interval 〈𝑎, 𝑏〉 = 〈0,1〉 is used, standard Hilbert’s 
matrix 𝑯𝑛(0,1) is obtained, which is extremely ill-conditioned. 

VI. HILBERT’S MATRIX CONDITIONALITY 

We should answer a question, how the conditional number 
of the Hilbert’s matrix can be improved if orthogonal basis is 
used instead of orthonormal one as an experimental test. 

A simple experiment can prove that the proposed method 
does not practically change the conditionality of the Hilbert’s 
matrix  𝑯𝑛(0,1).  However, as the LSE approximation is to be 
used for large span of data, it is reasonable to consider a general 
case and explore conditionality of the 𝑯𝑛(𝑎, 𝑏) matrix, 
e.g.  𝑯5(0, 𝑏), for demonstration. 

 
Fig.6: Conditionality of the  𝑯5(0, 𝑏) for different values of 𝑏 using MATLAB 

(numerical problems can be seen for 𝑏 > 650) 

 
Fig.7: Conditionality of the  𝑯5(0, 𝑏) for different values of 𝑏  

using logarithmic scaling for vertical axis 

It can be seen, that 𝑐𝑜𝑛𝑑(𝑯5(0,800)) = 6. 1023. If the 

proposed approach is applied 𝑐𝑜𝑛𝑑(𝑯5(0,800)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) = 2,5. 1014 

for the modified matrix, Fig.8 - Fig.9. 
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Fig.8: Conditionality of the modified 𝑯5(0, 𝑏) 

 
Fig.9: Conditionality of the modified 𝑯5(0, 𝑏) 

using logarithmic scaling for vertical axis 

It means that the conditionality improvement  

𝜐 =
𝑐𝑜𝑛𝑑(𝑯5(0,800))

𝑐𝑜𝑛𝑑(𝑯5(0,800)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
≅

6.1023

2,5.1014
≈ 109

 (32) 

This is a similar ratio as for the simple recent examples. 

A change of the size of bivectors ‖𝜷𝑖 ∧ 𝜷𝑗‖ can be used as a 

practical result using RBF approximation, which changes from 
the interval 〈𝑒𝑝𝑠, 1010〉 to  〈𝑒𝑝𝑠, 8. 102〉, which significantly 
increases robustness of the RBF approximation, Fig.10. 

 

 
Fig.10: Bivector histogram sizes for original LSE matrix and modified one 

The proposed approach has been used for St.Helen’s volcano 
approximation by 10 000 points instead of 6 743 176 original 
points, see Fig.11.  

 

Fig.11: LSE approximation error with RBF approximation of St.Helen’s  
(image generated in MATLAB by Michal Smolik) 

VII. CONCLUSIONS 

The proposed method of application orthogonal vector basis 
instead of the orthonormal one decreases conditional number of 
a matrix used in the least square method. This approach 
increases robustness of a numerical solution especially when 
domain data range is high. It can be used also for solving systems 
of linear equations in general, e.g. if radial basis function 
interpolation or approximation is used.  
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