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Abstract. This contribution describes a new approach for solving linear system 

of algebraic equations and differential equations using Laplace transform by the 

extended-cross product. It will be shown that a solution of a linear system of 

equations Ax=0 or Ax=b is equivalent to the extended cross-product if the pro-

jective extension of the Euclidean system and the principle of duality are used. 

Using the Laplace transform differential equations are transformed to a system 

of linear algebraic equations, which can be solved using the extended cross-prod-

uct (outer product). The presented approach enables to avoid division operation 

and extents numerical precision as well. It also offers applications of matrix-vec-

tor and vector-vector operations in symbolic manipulation, which can leads to 

new algorithms and/or new formula. The proposed approach can be applied also 

for stability evaluation of dynamical systems. In the case of numerical computa-

tion, it supports vector operation and SSE instructions or GPU can be used effi-

ciently. 
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1 Introduction 

Solving system of linear algebraic equations is often used in many applications. 

However, methods for solution differ if the linear system of equations is homogeneous, 

i.e.  𝑨𝒙 = 𝟎, or non-homogeneous 𝑨𝒙 = 𝒃. If the projective extension of the Euclidean 

space is used and principle of duality applied, the both cases can be solved using ex-

tended cross-product as 𝜶1 × 𝜶2 × …× 𝜶𝑛 or as  𝜶1 ∧ 𝜶2 ∧ … ∧ 𝜶𝑛 if outer product is 

used, where 𝜶𝑖 is the 𝑖 −th row of the matrix 𝑨, resp. [𝑨| − 𝒃] [10]-[18]. 

In the case of differential equations, the Laplace transform transforms differential 

system to an algebraic system of equations. It can be seen that the extended cross-prod-

uct does not use any division operation as would be expected in solution of a linear 
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system of equations. In addition, it means that standard vector and/or matrix operations 

can be applied in further processing and solution of the system of equations can be 

avoided in principle. Symbolic manipulations using vector notation might lead to better 

understanding and possibly to derive new formulas. 

In the following the Laplace transform, duality and solution of algebraic linear sys-

tem using extended cross-product will be shortly introduced. 

2 Laplace Transformation 

Pierre-Simon Laplace discovered the Laplace transform in 1785. It is an integral 

transform applied on a real function 𝑓(𝑡) with a real positive argument  𝑡 ≥ 0 and con-

verts the function it to a complex function 𝐹(𝑠) with a complex argument 𝑠 = 𝛿 + 𝑖𝜔. 

The Laplace transform is defined as: 

ℒ{𝑓(𝑡)} = 𝐹(𝑠) 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0

 
 

(1) 

 
Fig.1.Taken from https://en.wikibooks.org [24] 

The Laplace transform, see Fig.1, is often used for transformation of differential 

system of equations to algebraic equations and convolution to multiplication [3],[4]. 

 

TABLE I.  TYPICAL LAPLACE TRANSFORM PATTERNS 

Time domain 𝑠 domain 

𝑓(𝑡) 𝐹(𝑠) 

𝑎𝑓(𝑡) + 𝑏𝑔(𝑡) 𝑎𝐹(𝑠) + 𝑏𝐺(𝑠) 

𝑓′(𝑡) 𝑠𝐹(𝑠) − 𝑓(0) 

𝑓′′(𝑡) 𝑠2𝐹(𝑠) − 𝑠𝑓(0) − 𝑓′(0) 

𝑡 1
𝑠2⁄  

𝑓(0) 
lim
𝑠→∞

𝑠𝐹(𝑠) 

lim
𝑡→∞

𝑓(𝑡) lim
𝑠→0

𝑠𝐹(𝑠) 

𝑓(𝑡) ∗ 𝑔(𝑡) (convolution) 𝐹(𝑠)𝐺(𝑠) 
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It means, that a system of differential equations is transformed to a system of linear 

equations, which is to be solved and then this solution is transformed back to the time 

domain using inverse Laplace transform; in many cases the result is decomposed to 

some “patterns” for which the inverse transform is known.  

The solution is then transformed back to the time domain using the inverse Laplace 

transform. 

𝑓(𝑡) = ℒ−1{𝐹(𝑠)} =
1

2𝜋𝑖
lim
𝑇→∞

∫ 𝐹(𝑠)𝑒𝑠𝑡𝑑𝑡

𝛼+𝑖𝑇

𝛼−𝑖𝑇

 (2) 

where 𝛼 is taken so that all singularities of  𝐹(𝑠)  are on the left of 𝑅𝑒(𝑠). In many cases 

the result is decomposed to some “patterns” for which the inverse transform is known.  

Let us consider a simple example of a system of differential equations [22]: 

𝑥′ = 3𝑥 − 3𝑦 + 2 𝑦′ = −6𝑥 − 𝑡 
 

(3) 

with initial conditions 𝑥(0) = 1, 𝑦(0) = −1. Applying the Laplace transform, we ob-

tain a system of linear algebraic equations with respect to 𝑥, 𝑦 as: 

𝑠𝑋(𝑠) − 𝑥(0) = 3𝑋(𝑠) − 3𝑌(𝑠) +
2

𝑠
 

𝑠𝑌(𝑠) − 𝑦(0) = −6𝑋(𝑠) −
1

𝑠2
 

(4) 

Using algebraic manipulations: 

(𝑠 − 3)𝑋(𝑠) + 3𝑌(𝑠) = 𝑥(0) +
2

𝑠
 

6𝑋(𝑠) + 𝑠𝑌(𝑠) = 𝑦(0) −
1

𝑠2
 

(5) 

If initial conditions are included, i.e. 𝑥(0) = 1 and  𝑦(0) = −1, it leads to a system of 

linear equations: 

(𝑠 − 3)𝑋(𝑠) + 3𝑌(𝑠) = 1 +
2

𝑠
 

6𝑋(𝑠) + 𝑠𝑌(𝑠) = −1 −
1

𝑠2
 

(6) 

In the matrix form: 

 [
𝑠 − 3 3

6 𝑠
] [

𝑋(𝑠)
𝑌(𝑠)

] = [

𝑠 + 2

𝑠

−
𝑠2 + 1

𝑠2

] (7) 

Now, this system of linear equations is to be solved in order to obtain functions 𝑋(𝑠) 

and 𝑌(𝑠) which are then transformed back to the time domain by the inverse Laplace 

transformation. 

In the following, we introduce basic information geometric algebra, projective rep-

resentation and principal of duality. 
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3 Geometric Algebra 

The inner product is the most often algebraic construction in the 𝑛-dimensional Eu-

clidean space. The Geometric Algebra (GA) is an inner product extension. The GA is 

not commutative and member of GA are called multivectors. The geometric product of 

two vectors in 𝐸𝑛 is connected to the algebraic construction  

𝒖𝒗 = 𝒖 ∙ 𝒗 + 𝒖 ∧ 𝒗 (8) 

where 𝒖𝒗 is the geometric product, 𝒖 ∙ 𝒗 is the inner product and 𝒖 ∧ 𝒗 is the outer 

product (in 𝐸3 equivalent to the cross product, i.e. 𝒖 × 𝒗). If 𝒆𝑖 are orthonormal basis 

vectors, then 

1 0-vector (scalar) 

𝒆1, 𝒆2, 𝒆3 1-vectors (vectors) 

𝒆1𝒆2, 𝒆2𝒆3, 𝒆3𝒆1 2-vectors (bivectors) 

𝑰 = 𝒆1𝒆2𝒆3 3-vector (pseudoscalar) 
 

(9) 

It can be easily proved that the inner product is  

𝒖 ∙ 𝒗 =
1

2
(𝒖𝒗 + 𝒗𝒖) (10) 

There is something “strange” in the case of 𝐸3 as the geometric product 𝒖𝒗 = 𝒖 ∙

𝒗 + 𝒖 ∧ 𝒗 actually “accumulate” scalar value and result of the outer product, i.e. the 

cross product 𝐸3, which is a bivector, actually not a vector. The size of it is an area of 

a rhomboid determined by the 𝒖, 𝒗 vectors the 𝑛-dimensional space in general. Due to 

the non-commutativity 

𝒖 ∧ 𝒗 = −𝒗 ∧ 𝒖 𝒖𝒖 = 𝒖 ∙ 𝒖 = |𝒖|2 
 

(11) 

for all 𝒖 ∈ 𝑅𝑛. It means, that there is an inverse defined as 

𝒖−1 = 𝒖
|𝒖|2⁄  (12) 

There is another “object” called a blade. A 𝑘-blade 𝑩 is a subspace given by orthogonal 

vectors 𝒆𝑖1 , … , 𝒆𝑖𝑘
, where 𝒆𝑖 ≠ 𝒆𝑗.  Similar operations with vectors, operations with 𝑘-

blades are introduced [5][6][19]. 

4 Euclidean and Projective Spaces 

The Euclidean space is used nearly exclusively in computational sciences. In some 

applications, like computer vision, computer graphics etc., the projective extension of 

the Euclidean space is used [2][9][20]. The projective extension in 𝐸2 is defined as 

 𝑋 =
𝑥

𝑤
 𝑌 =

𝑦

𝑤
 𝑤 ≠ 0 

 

(13) 

where 𝑥, 𝑦, 𝑤 are homogeneous coordinates, i.e. 𝒙 = [𝑥, 𝑦:𝑤]𝑇 ∈ 𝑃2, 𝑿 = (𝑋, 𝑌) ∈ 𝐸2 

are coordinates in the Euclidean space. This concept is valid generally for the 𝑛-dimen-

sional space. In general, a value in the projective space is represented as: 

 𝒙 = [𝑥1, … , 𝑥𝑛: 𝑤]𝑇 ∈ 𝑃𝑛 (14) 
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or as: 

 𝒙 = [𝑥0: 𝑥1, … , 𝑥𝑛]𝑇 ∈ 𝑃𝑛 (15) 

where: 𝑥0 stands for 𝑤; this notation is mostly used in mathematical resources. The 

symbol “:” means that the homogenous coordinate 𝑤 is just a “scaling factor” and has 

no physical unit, while 𝑥1, … , 𝑥𝑛 do have. 

Let us introduce the extended cross product and its use with the projective space 

representation with simple geometrical examples for simplicity of explanation.  

5 Extended Cross-product  

The cross-product of two vectors 𝒂, 𝒃 in 𝐸3 is defined: 

 𝒒 = 𝒂 × 𝒃 = det [

𝒊 𝒋 𝒌
𝑎𝑥 𝑎𝑦 𝑎𝑧

𝑏𝑥 𝑏𝑦 𝑏𝑧

] (16) 

where:  𝒊 = [1,0,0]𝑇 , 𝒋 = [0,1,0]𝑇 , 𝒌 = [0,0,1]𝑇  are unit vectors. The result of the 

cross-product 𝒒 is a “bivector” which is an oriented area of a rhomboid in 𝐸3 given by 

the vectors 𝒂, 𝒃. It should not be handled as a “movable vector” in general [17][18]. 

The oriented area of the rhomboid given by three points in  𝐸2 is determined as: 

 𝑎𝑟𝑒𝑎 = det [

𝑋1 𝑌1 1
𝑋2 𝑌2 1
𝑋3 𝑌3 1

] (17) 

due to the linearity the rows can be multiplied as follows: 

𝑎𝑟𝑒𝑎 =
1

𝑤1𝑤2𝑤3

det [

𝑤1𝑋1 𝑤1𝑌1 𝑤1

𝑤2𝑋2 𝑤2𝑌2 𝑤2

𝑤3𝑋3 𝑤3𝑌3 𝑤3

] =
1

𝑤1𝑤2𝑤3

det [

𝑥1 𝑦1 𝑤1

𝑥2 𝑦2 𝑤2

𝑥3 𝑦3 𝑤3

] (18) 

It means that in some well-known formulas we do use projective representation. As 

another simple example, let us consider computation of the intersection point 

𝑿 = (𝑋, 𝑌) of two given lines 𝑝1 and 𝑝2 in 𝐸2: 

𝑝1: 𝑎1𝑋 + 𝑏1𝑌 + 𝑐1 = 0 𝑝2: 𝑎2𝑋 + 𝑏2𝑌 + 𝑐2 = 0 
 

(19) 

It leads to a system of linear equations 𝑨𝒙 = 𝒃: 

 [
𝑎1 𝑏1

𝑎2 𝑏2
] [

𝑋
𝑌
] = [

−𝑐1

−𝑐2
] (20) 

and numerical solution, e.g. as: 

 𝑋 =
𝐷𝐸𝑇𝑋

𝐷𝐸𝑇
 𝑌 =

𝐷𝐸𝑇𝑌

𝐷𝐸𝑇
 

 

(21) 

and 

𝐷𝐸𝑇𝑋 = [
−𝑐1 𝑏1

−𝑐2 𝑏2
] 𝐷𝐸𝑇𝑌 = [

𝑎1 −𝑐1

𝑎2 −𝑐2
] 𝐷𝐸𝑇 = [

𝑎1 𝑏1

𝑎2 𝑏2
] 

 

(22) 
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However, there is always a problem if 𝐷𝐸𝑇 → 0. The usual programmer’s incorrect 

solution is: 

IF |𝐷𝐸𝑇| < 𝑒𝑝𝑠 THEN “singular case”; EXIT 

Let us consider the equations above again and multiplying those equations by 𝑤 ≠ 0 

we get: 

𝑎1𝑤𝑋 + 𝑏1𝑤𝑌 + 𝑐1𝑤 = 0 𝑎2𝑤𝑋 + 𝑏2𝑤𝑌 + 𝑐2𝑤 = 0 
 

(23) 

Now, the projective representation can be used and as  𝑥 = 𝑤𝑋 and 𝑦 = 𝑤𝑌, i.e.: 

𝑎1𝑤𝑋 + 𝑏1𝑤𝑌 + 𝑐1𝑤 = 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑤 = 0 

𝑎2𝑤𝑋 + 𝑏2𝑤𝑌 + 𝑐2𝑤 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑤 = 0 
(24) 

in the vector notation then: 

 𝒑1
𝑇𝒙 = 0 𝒑2

𝑇𝒙 = 0 
 

(25) 

where 𝒙 = [𝑥, 𝑦:𝑤]𝑇 is the intersection point in the homogeneous coordinates of two 

lines 𝒑1 = [𝑎1, 𝑏1: 𝑐1]
𝑇 and 𝒑2 = [𝑎1, 𝑏1: 𝑐1]

𝑇. 

It is easy to show that the intersection point 𝒙 expressed in the projective space can 

be computed as [11][13]: 

 𝒙 = 𝒑𝟏 × 𝒑𝟐 = det [

𝒊 𝒋 𝒌
𝑎1 𝑏1 𝑐1

𝑎2 𝑏2 𝑐2

] = [𝑥, 𝑦: 𝑤]𝑇 (26) 

where  𝒊 = [1,0: 0]𝑇 , 𝒋 = [0,1: 0]𝑇 , 𝒌 = [0,0: 1]𝑇  are unit vectors in the projective 

space.  

It is simple to prove that the above formula is correct. If two planes are parallel, then 

the coordinate 𝑤 = 0, i.e. the intersection is in infinity. 

The extended cross-product for  𝐸4 has a form [17][18]: 

 𝒒 = 𝒂 × 𝒃 × 𝒄 = det [

𝒊 𝒋 𝒌 𝒍
𝑎1 𝑎2 𝑎3 𝑎4

𝑏1 𝑏2 𝑏3 𝑏4

𝑐1 𝑐2 𝑐3 𝑐4

] (27) 

where: 𝒊 = [1,0,0,0]𝑇, 𝒋 = [0,1,0,0]𝑇, 𝒌 = [0,0,1,0]𝑇, 𝒍 = [0,0,0,1]𝑇 .  

Now, due to the linearity it is possible to compute intersection of three 

planes 𝝆1, … , 𝝆3 in  𝑃3 as: 

 𝒙 = 𝝆1 × 𝝆2 × 𝝆3 = det [

𝒊 𝒋 𝒌 𝒍
𝑎1 𝑏1 𝑐1 𝑑1

𝑎2 𝑏2 𝑐2 𝑑2

𝑎3 𝑏3 𝑐3 𝑑3

] (28) 

where  𝝆𝑖 = [𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖: 𝑑𝑖]
𝑇 , i.e. 𝑎𝑖𝑋 + 𝑏𝑖𝑌 + 𝑐𝑖𝑍 + 𝑑𝑖 = 0  and 𝒙 = [𝑥, 𝑦, 𝑧: 𝑤]𝑇 . It 

means that we can solve 𝑨𝒙 = 𝒃 using the extended cross-product. Now, we use the 

principle of duality for solving 𝑨𝒙 = 𝟎 case. 

ISSN 2194-5357, Springer, 2017 Vol.1,pp.62-75

Cybernetics Approaches in Intelligent Systems, Computational Methods in System and Software 2017 (CoMeSySo)



6 Duality 

The projective representation offers also one very important property – principle of 

duality. The principle of duality in 𝐸2 states that any theorem remains true when we 

interchange the words “point” and “line”, “lie on” and “pass through”, “join” and “in-

tersection”, “collinear” and “concurrent” and so on. Once the theorem has been estab-

lished, the dual theorem is obtained as described above [1][5][7]. In other words, the 

principle of duality says that in all theorems it is possible to substitute the term “point” 

by the term “line” and the term “line” by the term “point” etc. in and the given theorem 

stays valid. Similar duality is valid for 𝐸3 as well, i.e. the terms “point” and “plane” are 

dual etc. it can be shown that operations “join” and “meet” are dual as well. 

7 Solution of Linear Systems 

Let us consider two points in 𝐸2 and a line passing those two points, i.e. the follow-

ing linear system is to be solved: 

𝑎𝑋1 + 𝑏𝑌1 + 𝑐 = 0 𝑎𝑋2 + 𝑏𝑌2 + 𝑐 = 0 
 

(29) 

i.e. homogeneous linear system 𝑨𝒙 = 𝟎 is to be solved: 

 [
𝑋1 𝑌1 1
𝑋2 𝑌2 1

] [
𝑎
𝑏
𝑐
] = [

0
0
] (30) 

It is actually one parametric set of solutions. If the equations are multiplied 

by 𝑤1, 𝑤2 ≠ 0 and projective representation is used we can write: 

 [
𝑥1 𝑦1 𝑤1

𝑥2 𝑦2 𝑤2
] [

𝑎
𝑏
𝑐
] = [

0
0
] (31) 

and solve it. It usually causes some problems in real implantation as programmers tend 

to set incorrectly some variable, e.g. 𝑎 = 1 etc. 

However, if we apply the principle of duality, i.e. lines dual to points and vice versa, 

then we can write: 

 𝒑 = 𝒙𝟏 × 𝒙𝟐 = det [
𝒊 𝒋 𝒌
𝑥1 𝑦1 𝑤1

𝑥2 𝑦2 𝑤2

] = [𝑎, 𝑏: 𝑐]𝑇 (32) 

Similarly for the plane given by three points in 𝐸3: 

𝝆 = 𝒙1 × 𝒙2 × 𝒙3 = det [

𝒊 𝒋 𝒌 𝒍
𝑥1 𝑦1 𝑧1 𝑤1

𝑥2 𝑦2 𝑧2 𝑤2

𝑥3 𝑦3 𝑧3 𝑤3

] = [𝑎, 𝑏, 𝑐: 𝑑]𝑇  (33) 

It means that a solution of a system of linear equations is projectively equivalent to the 

extended cross-product (outer product) application [17].  
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Generally, the system 𝑨𝒙 = 𝒃 can be rewritten as: 

[𝑨| − 𝒃] [
𝒙
𝑤

] = [
𝑎11 ⋯ 𝑎1𝑛 −𝑏1

⋮ ⋱ ⋮ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛 −𝑏𝑛

] [

𝑥1

⋮
𝑥𝑛

𝑤

] = [
𝟎
0
] (34) 

and solution is given using the extended cross-product as: 

 𝜶1 × 𝜶2 × …× 𝜶𝑛 = [𝑥1, … , 𝑥𝑛: 𝑤]𝑇 (35) 

where 𝜶𝑖 = [𝑎𝑖1, … , 𝑎𝑖𝑛: 𝑏𝑖], 𝑖 = 1,… , 𝑛. 

It should be noted, that the presented approach offers an unique approach to a solu-

tion of both types of the linear systems of equations, i.e. 𝑨𝒙 = 𝟎 and 𝑨𝒙 = 𝒃. It also 

offers possibility of further symbolic manipulations using standard vector operations, 

including dot product and cross-product. 

Now, it is possible to apply the above presented concept with the Laplace transform 

to a solution of the linear system of differential equations.  

8 Laplace Transform with Simple Examples 

Let us consider again a simple system at Chap.2. of differential equations: 

𝑥′ = 3𝑥 − 3𝑦 + 2 𝑦′ = −6𝑥 − 𝑡 
 

(36) 

with initial conditions 𝑥(0) = 1, 𝑦(0) = −1. Applying the Laplace transform, we ob-

tain a system of linear algebraic equations with respect to 𝑥, 𝑦 as: 

𝑠𝑋(𝑠) − 𝑥(0) = 3𝑋(𝑠) − 3𝑌(𝑠) +
2

𝑠
 

𝑠𝑌(𝑠) − 𝑦(0) = −6𝑋(𝑠) −
1

𝑠2
 

(37) 

Including initial conditions this yield to: 

(𝑠 − 3)𝑋(𝑠) + 3𝑌(𝑠) = 1 +
2

𝑠
 

6𝑋(𝑠) + 𝑠𝑌(𝑠) = −1 −
1

𝑠2
 

(38) 

It means that the system described by equations: 

 [
𝑠 − 3 3

6 𝑠
] [

𝑋(𝑠)
𝑌(𝑠)

] = [

𝑠 + 2

𝑠

−
𝑠2 + 1

𝑠2

] (39) 

In the projective representation, it is represented as: 

 𝒙(𝑠) = 𝝃1 × 𝝃2 = det

[
 
 
 
 

𝒊 𝒋 𝒌

𝑠 − 3 3 −
𝑠 + 2

𝑠

6 𝑠
𝑠2 + 1

𝑠2 ]
 
 
 
 

= [�̅�(𝑠), �̅�(𝑠): �̅�(𝑠)]T (40) 
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where: 

𝝃1 = [𝑠 − 3, 3: −
𝑠 + 2

𝑠
]
𝑇

 𝝃2 = [6, 𝑠: 
𝑠2 + 1

𝑠2
]

𝑇

 
 

(41) 

Applying the extended cross-product, a solution is obtained: 

𝒙(𝑠) = [�̅�(𝑠), �̅�(𝑠): �̅�(𝑠)]T =

[
 
 
 
 3

𝑠2 + 1

𝑠2
+

𝑠 + 2

𝑠
𝑠

−6
𝑠 + 2

𝑠
− (𝑠 − 3)

𝑠2 + 1

𝑠2

𝑠(𝑠 − 3) − 18 ]
 
 
 
 

 (42) 

i.e. 

�̅�(𝑠) = 3
𝑠2 + 1

𝑠2
+ 𝑠 + 2 

�̅�(𝑠) = −6
𝑠 + 2

𝑠
− (𝑠 − 3)

𝑠2 + 1

𝑠2
 

�̅�(𝑠) = 𝑠(𝑠 − 3) − 18 

(43) 

If the conversion to the Euclidean space representation is needed, then: 

𝑋(𝑠) =
�̅�(𝑠)

�̅�(𝑠)
=

3
𝑠2 + 1

𝑠2 + 𝑠 + 2

𝑠(𝑠 − 3) − 18
=

𝑠2(𝑠 + 2) + 3𝑠2 + 3

𝑠2(𝑠2 − 3𝑠 − 18)

=
𝑠3 + 5𝑠2 + 3

𝑠2(𝑠2 − 3𝑠 − 18)
 

(44) 

and 

𝑌(𝑠) =
�̅�(𝑠)

�̅�(𝑠)
= −

(𝑠 − 3)
𝑠2 + 1

𝑠2 + 6
𝑠 + 2

𝑠
𝑠(𝑠 − 3) − 18

= −
𝑠3 + 3𝑠2 + 13𝑠 − 3

𝑠2(𝑠2 − 3𝑠 − 18)
 (45) 

Of course, the above presented approach can be applied with including general (un-

specified) initial conditions.  

Let us consider another example with unspecified initial conditions (problem formu-

lation taken from [22]): 

𝑥′(𝑡) = 𝑦(𝑡) 𝑦′(𝑡) = −4𝑥(𝑡) + sin (𝜔𝑡) 
 

(46) 

Using the Laplace transform and projective representation we obtain: 

𝑠𝑋(𝑠) − 𝑥(0) = 𝑌(𝑠) 𝑠𝑌(𝑠) − 𝑦(0) = −4𝑋(𝑠) +
𝜔

𝑠2 + 𝜔2
 

 

(47) 

and in the matrix form: 

[
𝑠 −1 −𝑥(0)

4 𝑠 −𝑦(0) −
𝜔

𝑠2 + 𝜔2

] [
�̅�
�̅�
�̅�

] = [
0
0
] (48) 
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The solution is then given as: 

𝒙(𝑠) = 𝝃1 × 𝝃2 = det [

𝒊 𝒋 𝒌

𝑠 −1 −𝑥(0)

4 𝑠 −𝑦(0) −
𝜔

𝑠2 + 𝜔2

] (49) 

𝝃1 = [𝑠, −1:−𝑥(0)]𝑇 𝝃2 = [4, 𝑠: −𝑦(0) −
𝜔

𝑠2 + 𝜔2
]
𝑇

 
 

(50) 

Therefore 

𝒙(𝑠) = [�̅�(𝑠), �̅�(𝑠): �̅�(𝑠)]T =

[
 
 
 
 

𝜔

𝑠2 + 𝜔2
+ 𝑦(0) + 𝑠𝑥(0)

𝑠 (𝑦(0) +
𝜔

𝑠2 + 𝜔2
) + 4𝑥(0)

𝑠2 + 4 ]
 
 
 
 

 (51) 

i.e 

�̅�(𝑠) =
𝜔

𝑠2 + 𝜔2
+ 𝑦(0) + 𝑠𝑥(0) 

�̅�(𝑠) = 𝑠 (𝑦(0) +
𝜔

𝑠2 + 𝜔2
) − 4𝑥(0) 

�̅�(𝑠) = 𝑠2 + 4 

(52) 

If the conversion to the Euclidean space representation is needed, then: 

 

𝑋(𝑠) =
�̅�(𝑠)

�̅�(𝑠)
=

𝜔
𝑠2 + 𝜔2 + 𝑦(0) + 𝑠𝑥(0)

𝑠2 + 4
 

𝑌(𝑠) =
�̅�(𝑠)

�̅�(𝑠)
= −

𝑠 (𝑦(0) +
𝜔

𝑠2 + 𝜔2) + 4𝑥(0)

𝑠2 + 4
 

(53) 

Now, the inverse Laplace transform is to be used or splitting to partial fractions using 

known patterns to obtain solution in the space-time domain [25]. 

The presented approach demonstrates an equivalence of system of linear equations 

and the extended cross product, a more general approach can be found in [6][8][19][23]. 

9 Symbolic Manipulations and Transformations 

Let us consider simple examples in 𝐸2, resp. 𝑃2, for simplicity of explanation. Let 𝑴 

is a regular transformation matrix 𝑛 × 𝑛, where 𝑛 = 2, applied to vectors 𝝃1, 𝝃2: 

 𝒙(𝑠) = [�̅�(𝑠), �̅�(𝑠): �̅�(𝑠)]T = 𝝃1 × 𝝃2 (54) 

We want to know, what will be the result after that transformation, i.e. 

 𝒙1(𝑠) = [�̅�1(𝑠), �̅�1(𝑠): �̅�1(𝑠)]
T = (𝑴𝝃1) × (𝑴𝝃2) (55) 

It can be shown, that in the case of the 𝐸3 case, the following identity is valid: 

 (𝑴𝒂) × (𝑴𝒃) = det(𝑴)𝑴−𝑇(𝒂 × 𝒃) (56) 
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However, as the representation of 𝒙(𝑠) is in the projective space 𝑃2, we can write: 

 (𝑴𝝃1) × (𝑴𝝃2) = det(𝑴)𝑴−𝑇(𝝃1 × 𝝃2) ≜ 𝑴−𝑇(𝝃1 × 𝝃2) (57) 

where: ≜ means “projectively” equivalent. 

It means that: 

 𝒙1(𝑠) = [�̅�1(𝑠), �̅�1(𝑠): �̅�1(𝑠)]
T = (𝑴𝝃1) × (𝑴𝝃2) ≜ 𝑴−𝑇𝒙(𝑠) (58) 

It should be noted that similarly for the 𝑘-dimensional case can be written: 

 (𝑴𝒂1) × …× (𝑴𝒂𝑘) = [det(𝑴)]𝑘−1𝑴−𝑇(𝒂1 × … × 𝒂𝑘) (59) 

and therefore also 

𝒙1(𝑠) = [�̅�1(𝑠), �̅�1(𝑠): �̅�1(𝑠)]
T = (𝑴𝝃1) × … × (𝑴𝝃2) ≜ 𝑴−𝑇𝒙(𝑠) (60) 

as 𝒙(𝑠) is represented by homogeneous coordinates in the projective space. 

This is a very important findings as it says that if the original vector 𝒙(𝑠) in the 𝑛-

dimensional space is transformed by a transformation 𝑴, then the result can be easily 

determined. The transformation 𝑴 =  𝑴(𝑠), in general 

10 Conclusion 

A new approach to solution of a system of differential equations is shortly described 

in this contribution. It was shown that a solution of linear system of equations is equiv-

alent to the extended cross-product using projective space representation. There are the 

following significant results: 

 division operation is not needed if the final result can remain in the projec-

tive representation 

 precision of numerical computation significantly higher as both mantissa 

length of 𝑥, 𝑤 and both exponents ranges are used 

 as the result is represented as extended cross-product vector-vector sym-

bolic operations can be applied instead of numerical solution  

 the result of the Laplace transformation is represented as generalized cross-

product and can be used for symbolic manipulation using vector-vector or 

matrix-vector operation as well 

The presented approach is applicable to 𝑛-dimensional system of algebraic linear 

equations. It is expected, that the presented approach will be applicable also in other 

engineering fields and research areas as well. It should be noted that the presented ap-

proach is directly applicable to multi-dimensional dynamical systems. 
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