
Big Geo Data Surface Approximation using Radial Basis Functions: A Comparative Study

Zuzana Majdisovaa,∗, Vaclav Skalaa

aDepartment of Computer Science and Engineering, Faculty of Applied Sciences, University of West Bohemia, Univerzitnı́ 8, CZ 30614 Plzeň, Czech Republic

Abstract

Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF) approximation
is appropriate for big scattered datasets in n−dimensional space. It is a non-separable approximation, as it is based on the distance
between two points. This method leads to the solution of an overdetermined linear system of equations.

In this paper the RBF approximation methods are briefly described, a new approach to the RBF approximation of big datasets
is presented, and a comparison for different Compactly Supported RBFs (CS-RBFs) is made with respect to the accuracy of the
computation. The proposed approach uses symmetry of a matrix, partitioning the matrix into blocks and data structures for storage
of the sparse matrix. The experiments are performed for synthetic and real datasets.
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1. Introduction

Interpolation and approximation are the most frequent op-
erations used in computational techniques. Several techniques
have been developed for data interpolation or approximation,
but they usually require an ordered dataset, e.g. rectangu-
lar mesh, structured mesh, unstructured mesh, etc. However,
in many engineering problems, data are not ordered and they
are scattered in n−dimensional space, in general. Usually, in
technical applications the conversion of a scattered dataset to
a semi-regular grid is performed using some tessellation tech-
niques. However, this approach is quite prohibitive for the case
of n−dimensional data due to the computational cost.

Interesting techniques are based on the Radial Basis Func-
tion (RBF) method, which was originally introduced by Hardy
(1971), Hardy (1990). A good introduction to RBFs is given
by Buhmann (2003). RBF techniques are widely used across
many fields solving technical and non-technical problems, e.g.
surface reconstruction (Carr et al. (2001), Turk and O’Brien
(2002)), data visualization (Pepper et al. (2014)) and pattern
recognition. It is an effective tool for solving partial differential
equations (Hon et al. (2015), Li et al. (2013)). The RBF tech-
niques are really meshless and are based on collocation in a set
of scattered nodes. These methods are independent with respect
to the dimension of the space. The computational cost of the
RBF approximation increases nonlinearly (almost cubic) with
the number of points in the given dataset and linearly with the
dimensionality of the data. Of course, there are other meshless
techniques such as discrete smooth interpolation (DSI) (Mal-
let (1989)), kriging (Royer and Vieira (1984), Ma et al. (2014),
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Cressie (2015)), which is based on statistical models that in-
clude autocorrelation, etc.

The radial basis functions are divided into two main groups
of basis functions: global RBFs and Compactly Supported
RBFs (CS−RBFs) (Wendland (2006)). In this paper, we
will mainly focus on CS-RBFs. Fitting scattered data with
CS−RBFs leads to a simpler and faster computation, because
the system of linear equations has a sparse matrix. However,
an approximation using CS−RBFs is sensitive to the density of
the approximated scattered data and to the choice of a shape
parameter. Global RBFs are useful in repairing incomplete
datasets and they are insensitive to the density of scattered
data. However, global RBFs lead to a linear system of equa-
tions with a dense matrix and therefore they have high com-
putational and memory costs. Typical global RBFs are Gauss
φ(r) = e−(αr)2

, inverse quadratic (1 + (αr)2)−1 and inverse mul-
tiquadric (1 + (αr)2)−1/2, where α is shape parameter which
defines behavior of function. These RBFs are monotonically
decreased with increasing radius r, strictly positive definite, in-
finitely differentiable and convergent to zero. Other global RBF
is multiquadric

√
1 + (αr)2 which is monotonically increased

with increasing radius r, infinitely differentiable and divergent
as radius increases. The last popular global RBF is thin plate
spline (TPS) r2 log(r) which is shape parameter free and diver-
gent as radius increases. TPS has a singularity at the origin
which is removable for the function and its first derivative but
this singularity is not removable for the second derivative of
TPS.

For the processing of scattered data we can use the RBF in-
terpolation or the RBF approximation. The unknown function
sampled at given points {xi}

N
1 by values {hi}

N
1 can be determined

using the RBF interpolation, e.g. presented by Skala (2015), as:
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f (x) =

N∑
j=1

c jφ(r j) =

N∑
j=1

c jφ(‖x − x j‖), (1)

where the interpolating function f (x) is represented as a sum of
N RBFs, each centered at a different data point x j and weighted
by an appropriate weight c j which has to be determined. This
leads to a solution of linear system of equations:

Ac = h, (2)

where the matrix A = {Ai j} = {φ(‖xi − x j‖)} is N × N symmet-
ric square matrix, the vector c = (c1, . . . , cN)T is the vector of
unknown weights and h = (h1, . . . , hN)T is a vector of values
in the given points. The disadvantage of RBF interpolation is
the large and usually ill-conditioned matrix of the linear system
of equations. Note that the one of the possible solution of ill-
condition problems based on modified orthogonal least squares
is described in Chen and Li (2012). Moreover, in the case of
an oversampled dataset or intended reduction, we want to re-
duce the given problem, i.e. reduce the number of weights and
used basis functions, and preserve good precision of the approx-
imated solution. The approach which includes such a reduction
is called the RBF approximation. In the following section, the
approach recently introduced in Skala (2013) will be described
in detail. This approach requires less memory and offers higher
speed of computation than the method using Lagrange multi-
pliers (Fasshauer (2007)). Further, a new approach to RBF ap-
proximation of large datasets is presented in Section 5. This
approach uses symmetry of a matrix, partitioning the matrix
into blocks and data structures for storage of the sparse matrix
(see Section 4).

2. RBF Approximation

For simplicity, we assume that we have an unordered dataset
{xi}

N
1 ∈ E2. However, this approach is generally applicable for

n-dimensional space. Further, each point xi from the dataset is
associated with a vector hi ∈ Ep of the given values, where p is
the dimension of the vector, or a scalar value, i.e. hi ∈ E1. For
an explanation of the RBF approximation, let us consider the
case when each point xi is associated with a scalar value hi, e.g.
a 21/2D surface. Let us introduce a set of new reference points
(knots of RBF) {ξ j}

M
1 , see Figure 1.

These reference points may not necessarily be in a uniform
grid. A good placement of the reference points improves the
approximation of the underlying data. For example, when a ter-
rain is approximated, placement along features such as break
lines leads to better approximation results. The number of ref-
erence points ξ j is M, where M � N. The RBF approximation
is based on the distance computation between the given point
xi and the reference point ξ j.

The approximated value is determined as (see Skala (2013)):

f (x) =

M∑
j=1

c jφ(r j) =

M∑
j=1

c jφ(‖x − ξ j‖), (3)

Given points x
New reference points ξ

Figure 1: The RBF approximation and reduction of points. Note that the refer-
ence points (knots) can be distributed arbitrarily.

where φ(r j) is an RBF centered at point ξ j and the approximat-
ing function f (x) is represented as a sum of these RBFs, each
associated with a different reference point ξ j, and weighted by
a coefficient c j which has to be determined.

When inserting all data points xi, with i = 1, . . . ,N, into (3),
we get an overdetermined linear system of equations.

hi = f (xi) =

M∑
j=1

c jφ(‖xi − ξ j‖) =

M∑
j=1

c jφi, j i = 1, . . . ,N (4)

The linear system of equations (4) can be represented in a ma-
trix form as:

Ac = h, (5)

where Ai j = φ(‖xi − ξ j‖) is the entry of the matrix in the i-th
row and j-th column, the number of rows is N � M, M is the
number of unknown weights c = (c1, . . . , cM)T , i.e. a number
of reference points, and h = (h1, . . . , hN)T is a vector of values
in the given points. The presented system is overdetermined,
i.e. the number of equations N is higher than the number of
variables M. This linear system of equations can be solved by
the least squares method (LSE) as AT Ac = AT h.

3. RBF Approximation with Polynomial Reproduction

The method which was described in Section 2 can have prob-
lems with stability and solvability. Therefore, the RBF approx-
imant (3) is usually extended by a polynomial function Pk(x) of
the degree k. This approach was introduced in Majdisova and
Skala (2016).

The approximated value f (x) is determined as:

f (x) =

M∑
j=1

c jφ(‖x − ξ j‖) + Pk(x), (6)

where ξ j are reference points specified by a user. The approxi-
mating function f (x) is represented as a sum of M RBFs, each
associated with a different reference point ξ j, and weighted by
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an appropriate coefficient c j, and Pk(x) is a polynomial func-
tion of degree k. It should be noted that the polynomial func-
tion affects only global behavior of the approximated dataset.
In practice, a linear polynomial P1(x):

P1(x) = aT x + a0 (7)

is used (e.g. P1(x) = a1x + a2y + a0 for x ∈ E2). Geometri-
cally, the coefficient a0 determines the “vertical” placement of
the hyperplane and the expression aT x represents the inclina-
tion of the hyperplane.

Thus, the following overdetermined linear system of equa-
tions is obtained:

hi = f (xi) =

M∑
j=1

c jφ(‖xi − ξ j‖) + aT x + a0

=

M∑
j=1

c jφi, j + aT x + a0 i = 1, . . . ,N.

(8)

The linear system of equations (8) can be represented in a
matrix form as:

Ac + Pk = h, (9)

where Ai j = φ(‖xi − ξ j‖) is the entry of the matrix in the i-th
row and j-th column, c = (c1, . . . , cM)T is the vector of un-
known weights, Pi = (xT

i , 1) is the vector of basis functions of
linear polynomial at point xi, k = (aT , a0)T is the vector of the
coefficient for the linear polynomial and h = (h1, . . . , hN)T is
the vector of values in the given points. The presented linear
system of equations can be solved by the minimization of the
square of error, which leads to a system of linear equations:(

AT A AT P
PT A PT P

) (
c
k

)
=

(
AT h
PT h

)
. (10)

Finally, it should be noted that the polynomial of degree
k > 1 can be used in general. However, in this case, it is nec-
essary be careful because the polynomial of higher degree in
combination with a large range of data might cause numerical
problems. This is due to the fact that the elements of sub-matrix
PT P in relation (10) contain much larger values than elements
of sub-matrix AT A in the same relation.

4. Data Structures for Storage of the Sparse Matrix

If the CS-RBFs are used, the matrix of the linear system
of equations is sparse. Therefore, the most important part of
each approximation using CS-RBFs is a data structure used to
store the approximation matrix. There are a number of existing
sparse matrix representations, e.g. Bell and Garland (2009),
Šimecek (2009), each with different computational character-
istics, storage requirements and methods of accessing and ma-
nipulating entries of the matrix. The main difference among
existing storage formats is the sparsity pattern, or the structure
of the nonzero elements, for which they are best suited. For
our purpose, the coordinate format is used, which is briefly de-
scribed in the following.

The coordinate (COO) format is the simplest storage scheme.
The sparse matrix is represented by three arrays: data, where
the NNZ nonzero values are stored, row, where the row index
of each nonzero element is kept, and col, where the column
indices of the nonzero values are stored.

Example of the COO format for matrix Q:

Q =


1 0 6 0 0
9 2 0 7 0
0 1 3 0 8
4 0 2 4 0
0 5 0 0 0


row = [ 0 0 1 1 1 2 2 2 3 3 3 4 ]

col = [ 0 2 0 1 3 1 2 4 0 2 3 1 ]

data = [ 1 6 9 2 7 1 3 8 4 2 4 5 ]

So, if the COO format is used for representation of matrix Q
(in form as described above) and the equation y = Qx, where
x is vector of the given values, has been solved, the following
pseudocode is used for calculation:
∀i = 0, . . . ,N : y[i] = 0
for i = 0, . . . ,NNZ − 1 do

yrow[i] = yrow[i] + data[i] · xcol[i]

Note that vector of given values has form x = [x0, x1, . . . , xM],
where M is number of columns of matrix Q, and the resulting
vector is y = [y0, y1, . . . , yN], where N is number of rows of
matrix Q.

The benefit of the COO format is its generality, i.e. an arbi-
trary sparse matrix can be represented by the COO format and
the required storage is always proportional to the number of
nonzero values.

The disadvantage of the COO format is that both row and col-
umn indices are stored explicitly, which reduces the efficiency
of memory transactions (e.g. read operations).

5. RBF Approximation for Large Data

In practice, real datasets contain a large number of points,
which results in high memory requirements for storing the ma-
trix A of the overdetermined linear system of equations (5).
Unfortunately, we do not have an unlimited capacity of RAM
memory; therefore, calculation of unknown weights c j for RBF
approximation would be prohibitively computationally expen-
sive due to memory swapping, etc. In this section, a proposed
solution to this problem is described.

In Section 2, it was mentioned that an overdetermined system
of equations can be solved by the least squares method. For this
method the square M × M matrix:

B = AT A (11)

is to be determined. Advantages for computation of the matrix
B are that it is a symmetric matrix and, moreover, only two
vectors of length N are needed for determination of one entry,
i.e.:

bi j =

N∑
k=1

φki · φk j, (12)
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where bi j is the entry of the matrix B in the i−th row and j−th
column.

To save memory requirements and to prevent data bus (PCI)
overloading, block operations with matrices are used. Based on
the above properties of the matrix B, only the upper triangle of
this matrix is computed. Moreover, the matrix B is partitioned
into MB × MB blocks, see Figure 2, and the calculation is per-
formed sequentially for each block:

Bkl = (A∗,k)T (A∗,l)

k = 1, . . . ,
⌈

M
MB

⌉
, l = k, . . . ,

⌈
M
MB

⌉
,

(13)

where Bkl is a sub-matrix in the k−th row and l−th column, the
index ∗ denotes that the sub-matrix A∗,k contains all values in
the appropriate block of columns (given by the index k) of the
original matrix A, i.e. A∗,k is defined as:

A∗,k =



φ1,(k−1)·MB+1 · · · φ1,min{k·MB,M}
...

. . .
...

φi,(k−1)·MB+1 · · · φi,min{k·MB,M}
...

. . .
...

φN,(k−1)·MB+1 · · · φN,min{k·MB,M}


, (14)

where the size of this matrix is N × MB except of the last block
and the index k denotes the k−th block of columns. This en-
ables the computation of big datasets on hardware systems with
limited main memory.

Figure 2: M × M square matrix which is partitioned into MB × MB blocks.
The color red is used to denote the main diagonal of the matrix and illustrates
the symmetry of the matrix. The color green is used to denote the blocks which
must be computed.

The size of block MB is chosen so that swapping of memory
(RAM) does not occur during the computation, i.e.:

(M2 + 2 · MB · N) · prec < size of RAM [B], (15)

where prec is the size of the data type in bytes. Note that this
relation is valid when the matrix A of the overdetermined linear
system of equations is dense. If CS-RBFs are used for RBF
approximation and the matrix A of the overdetermined linear
system of the equation is stored using special data structures,
see Section 4, then the optimal size of block MB is much larger
than given in relation (15). For this case, the optimal size of
block MB should satisfy:

(M2 + 2 · NNZ) · prec < size of RAM [B], (16)

where NNZ is the maximum number of non-zero elements in
sub-matrices A∗,k, k = 1, . . . ,

⌈
M
MB

⌉
. Naturally, it is obvious that

the size of the block should be selected as the largest possible
value satisfying (16).

Moreover, note that the elements in sub-matrices A∗,k are
zero for far away points, when CS-RBFs are used. Therefore,
we do not want to compute the elements for all pairs of points,
so the kd-tree (A.2 in Fasshauer (2007)) is used for comput-
ing the sub-matrices A∗,k. Algorithm for determination of the
sparse sub-matrix A∗,k is described in Algorithm 1.

Algorithm 1 Determination of the sub-matrix A∗,k when CS-
RBFs are used. Note that the order of the elements in the triplet
(row 5) is {row index, col index, value}

Input: given points {xi}
N
1 , reference points {ξi}

min{k·MB,M}
(k−1)·MB

,
shape parameter α, CS-RBF φ

Output: sub-matrix A∗,k in COO format, i.e. return three ar-
rays row, col, data

1: Build a kd-tree for the given points {xi}
N
1

2: for each reference point ξ j do
3: Query the kd-tree for points {xq} such that ‖xq−ξ j‖ <

1
α

4: for each point in a support radius xq do
5: Add triplet

{
q, j, φ(‖xq − ξ j‖)

}
to COO format

In general, the mentioned approach could be used in combi-
nation with massive parallel computing on GPU, but the calcu-
lation would have to be done in single precision to exploit the
full potential of GPU. However, in this case, problems with nu-
merical stability and solvability of the RBF approximation can
be expected.

Finally, note that it is possible to modify this approach easily
for the RBF approximation with a polynomial reproduction, see
Section 3.

6. Experimental Results

The presented RBF approximation method was tested on
synthetic and real data. The implementation was performed in
Matlab. Experimental results for one synthetic and two real
datasets follow.

The synthetic dataset has a Halton distribution (A.1 in
Fasshauer (2007)) of points and each point is associated with
a value from Franke’s function (Franke (1979)):

f (x) = f1(x) + f2(x) + f3(x) − f4(x),

f1(x) = 0.75 · exp
(
−

(9x1 − 2)2

4
−

(9x2 − 2)2

4

)
,

f2(x) = 0.75 · exp
(
−

(9x1 + 1)2

49
−

(9x2 + 1)2

10

)
,

f3(x) = 0.50 · exp
(
−

(9x1 − 7)2

4
−

(9x2 − 3)2

4

)
,

f4(x) = 0.20 · exp
(
−(9x1 − 4)2 − (9x2 − 7)2

)
,

(17)

where x = (x1, x2) is a point for which the associated value has
been computed. This function is shown in Figure 3.
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Figure 3: Franke’s function defined as (17).

The first real dataset was obtained from LiDAR data of
Mount Saint Helens in Skamania County, Washington1, see
Figure 4 (left). The second real dataset is LiDAR data of the
Serpent Mound in Adams County, Ohio1, see Figure 4 (right).
Each point of these datasets is associated with its elevation.

Figure 4: Original datasets: Mount Saint Helens (left); Serpent Mound (right).

Moreover, as a first step, the real datasets are translated so that
their estimated center of gravity corresponds to the origin of
the coordinate system. This step is used due to the limitation
of the influence of dataset placement in space. The set of ref-
erence points is a subset of the given dataset, for which we de-
termine the RBF approximation. In addition, reference points
are uniformly distributed within a given area. Table 1 gives an
overview of the used datasets.

Because the global RBFs affect the entire domain of given
datasets, which is usually undesirable behavior, the CS-RBFs
have been used for the presented experiments. All CS-RBFs
from the catalog of RBFs in Fasshauer (2007) (see D.2.7) have
been used for the experiments. Depending on the quality, the
obtained results are divided into three groups. The results are
presented for a representative of each group, see Table 2. Note
that the notation (1 − αr)q

+ means:

(1 − αr)q
+ =

(1 − αr)q if 0 ≤ αr ≤ 1
0 if αr > 1

, (18)

where r is the variable which denotes the distance of the given
point from the appropriate reference point and α is a shape pa-
rameter. The shape parameters α for the used CS-RBFs were

1http://www.liblas.org/samples/

Table 1: Overview information for the tested datasets. The Axis-Aligned
Bounding Boxes (AABBs) of the tested datasets have a size width × length ×
relief, i.e. xrange × yrange × zrange. Note that one foot [ft] corresponds to 0.3048
meter [m].

Synth.
Serpent
Mound

St. Helens

number of pts. 1089 3, 265, 110 6, 743, 176
number of ref. pts. 81 10, 000 10, 000

relief [ft] 1.238 48.70 5138.69
width [ft] 1.000 1, 085.12 26, 232.37
length [ft] 1.000 2, 698.96 35, 992.69

Table 2: Used Wendland’s CS-RBFs φd,s. Wendland’s functions are univariate
polynomial of degree bd/2c + 3s + 1, they are always positive definite up to a
maximal space dimension d and their smoothness is C2s. For more details see
Chapter 11.2 in Fasshauer (2007).

CS-RBF φ(r)

φ3,0 (1 − αr)2
+

φ3,1 (1 − αr)4
+(4αr + 1)

φ3,3 (1 − αr)8
+(32(αr)3 + 25(αr)2 + 8αr + 1)

determined experimentally with regard to the quality of approx-
imation and they are presented in Table 3. Some papers have
also been published on choosing the optimal shape parameter α,
e.g. Franke (1982), Rippa (1999), Fasshauer and Zhang (2007),
Scheuerer (2011). Note that the value of the shape parameter
α is inversely proportional to the width, length, and number of
points of the datasets.

Table 3: Experimentally determined shape parameters α for the used CS-RBFs

CS-RBF
shape parameter

Synthetic
Serpent
Mound

St. Helens

Wendland’s φ3,0 α = 0.707 α = 0.01 α = 0.0005
Wendland’s φ3,1 α = 0.500 α = 0.01 α = 0.0007
Wendland’s φ3,3 α = 0.250 α = 0.01 α = 0.0005

Figure 5 presents the approximations of the synthetic dataset
without polynomial reproduction for all CS−RBFs. In this fig-
ure, the surfaces are false-colored by the magnitude of the error.
The error is defined as the absolute value of the difference be-
tween Franke’s function (17) and approximated function. It can
be seen that for the synthetic dataset, the RBF approximation
with Wendland’s φ3,3 basis function returns the best result in
terms of the error. On the contrary, the worst result is obtained
for the RBF approximation with Wendland’s φ3,0 basis function.
Table 4 shows three different error measures of the datasets de-
pending on the chosen basis functions: mean absolute error,
deviation and mean relative error. These error measures are
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Figure 5: Results for synthetic dataset false-colored by magnitude of absolute error: Wendland’s RBF φ3,0, α = 0.707 (left); Wendland’s RBF φ3,1, α = 0.500
(center) and Wendland’s RBF φ3,3, α = 0.250 (right).

performed for approximation without polynomial reproduction
and for approximation with linear polynomial reproduction. It
can be seen that the RBF approximation with linear polynomial
reproduction produces slightly better results than the RBF ap-
proximation without reproduction in terms of the error, but this
improvement seems to be insignificant.

The RBF approximation for the real datasets was solved us-
ing “block-wise” approach described above. Approximations
of Mount Saint Helens dataset without polynomial reproduc-
tion for all CS-RBFs are shown in Figure 6a. It illustrates the
magnitude of error at each point of the original point cloud.

Moreover, the detail of a crater is shown for each approxima-
tion. It can be seen that the RBF approximation with Wend-
land’s φ3,3 basis function returns the best results in terms of the
error. On the contrary, the worst result is obtained for the RBF
approximation with Wendland’s φ3,0 basis function again. For
this approximation, sharp peaks are formed. It is most evident
around the rim of a crater. Also for the Mount Saint Helens
dataset, the three error measures of the computed elevation for
all used CS-RBFs and for both types of RBF approximation
(i.e. approximation without polynomial reproduction and ap-
proximation with linear polynomial reproduction) are presented

Table 4: The RBF approximation error and density of least square matrix for the tested datasets and different radial basis functions. Note that density of least square
matrix expresses percentage of non-zero elements in matrix and that one foot [ft] corresponds to 0.3048 meter [m].

Phenomenon
without polynomial with linear polynomial

Wendland’s Wendland’s
φ3,0 φ3,1 φ3,3 φ3,0 φ3,1 φ3,3

Synthetic data
mean absolute error [ft] 0.0041 0.0021 0.0019 0.0040 0.0019 0.0019

deviation of error [ft] 1.92E-5 6.06E-6 5.25E-6 1.90E-5 5.45E-6 5.12E-6

mean relative error [%] 0.0151 0.0076 0.0072 0.0150 0.0070 0.0072

Serpent Mound
mean absolute error [ft] 0.173 0.141 0.130 0.164 0.139 0.129

deviation of error [ft] 0.072 0.047 0.037 0.068 0.047 0.037

mean relative error [%] 0.015 0.012 0.011 0.014 0.012 0.011

density of LSE matrix [%] 8.413 8.413 8.413 8.468 8.468 8.468

Mount St. Helens
mean absolute error [ft] 12.568 11.589 9.881 12.129 10.935 9.773

deviation of error [ft] 188.595 165.574 100.738 159.139 122.659 98.993

mean relative error [%] 0.013 0.012 0.010 0.012 0.011 0.010

density of LSE matrix [%] 6.470 3.452 6.470 6.536 3.510 6.536
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(a) Mount Saint Helens dataset: Wendland’s RBF φ3,0, α = 0.0005 (left), Wendland’s RBF φ3,1, α = 0.0007 (center) and Wendland’s RBF φ3,3, α = 0.0005 (right)

(b) Serpent Mound dataset: Wendland’s RBF φ3,0, α = 0.01 (left), Wendland’s RBF φ3,1, α = 0.01 (center) and Wendland’s RBF φ3,3, α = 0.01 (right)

Figure 6: Results for the tested real datasets false-colored by magnitude of absolute error.

in Table 4. These results confirm the statements above. Further,
it can be seen that the RBF approximation with linear reproduc-
tion again produces better results than the RBF approximation
without reproduction, especially in terms of deviation of error.

The last presented experimental results are for the RBF ap-
proximation of Serpent Mound without polynomial reproduc-
tion and are shown in Figure 6b. It illustrates the magnitude
of error at each point of the original point cloud. Moreover,
the detail of Serpent Mound is shown for each approximation.
It can be seen that the RBF approximation with Wendland’s

φ3,3 basis function returns a slightly better result than RBF ap-
proximation with Wendland’s φ3,1 basis function in terms of the
error for the Serpent Mound dataset. The RBF approximation
with Wendland’s φ3,0 basis function returns the worst results.
These facts are mainly evident in the details. Further, we can
see that the highest errors occur on the boundary of the ter-
rain for all cases. The three error measures of the elevation
for all used CS−RBFs and for both types of RBF approxima-
tion (i.e. approximation without polynomial reproduction and
approximation with linear polynomial reproduction) are pre-
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sented in Table 4. These results again confirm the statements
above. Further, it can be seen that the RBF approximation with
linear polynomial reproduction produces slightly better results
than the RBF approximation without reproduction in terms of
the error, but this improvement is not significant. The mutual
comparison of both real datasets in terms of the deviation of
error (Table 4) indicates that RBF approximation with linear
reproduction returns considerably better results than RBF ap-
proximation without polynomial reproduction if the range of
associated values is large. Moreover, it should be noted that the
degree of smoothness for the tested type of real datasets is lower
than degree of smoothness for Wendland’s φ3,1 and Wendland’s
φ3,3 basis functions and, therefore, the comparison of RBF ap-
proximation with Wendland’s φ3,1 basis function and RBF ap-
proximation with Wendland’s φ3,3 basis function returns less
significant results. The situation is different for comparison of
RBF approximation with Wendland’s φ3,0 basis function and
RBF approximation with Wendland’s φ3,1 basis function where
the difference is significant. The signed errors for the Serpent
Mound dataset and Wendland’s φ3,1 basis function are shown
in Figure 7. We can see that the signs are different at various
locations. Similar results are obtained for the rest of the exper-
iments.

Figure 7: The signed errors for the Serpent Mound dataset and Wendland’s RBF
φ3,1 with α = 0.01: the positive error is colored white and the negative error is
colored black.

The implementation of the RBF approximation was per-
formed in MATLAB and tested on a PC with the following
configuration:

• CPU: Intel® Core™ i7-4770 (4 × 3.40GHz + hyper-
threading),
• memory: 32 GB RAM,
• operation system: Microsoft Windows 7 64 bits.

For the approximation of the Serpent Mound dataset with
10, 000 local Wendland’s φ3,1 basis functions with shape pa-

rameter α = 0.01, the running times for different sizes of blocks
were measured. These computational times are presented in
Figure 8b. We can see that the the time performance is large for
the approximation matrix which is partitioned into small blocks
(i.e. smaller than 500 × 500 blocks). This is caused by over-
head costs and, moreover, each entry in the matrix A of the
overdetermined linear system has to be calculated more times
than for larger sizes of block. On the other hand, the running
time begins to rise above the permissible limit due to memory
swapping for the approximation matrix which is partitioned into
larger blocks (i.e. larger than 2500 × 2500 blocks).
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(a) The time needed for calculation of all sub-matrices of the matrix A
(blue color) and for determination of least square matrix AT A (orange
color) for the Serpent Mound depending on block size. Note that 100%
corresponds to total time of computation.
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Figure 8: Time performance for approximation of the Serpent Mound depend-
ing on the block size.

The running time for determination of RBF approximation
with the mentioned parameters was divided into two steps. The
running time needed for calculation of all sub-matrices formed
from the matrix A of the original overdetermined linear sys-
tem of equations by the block-wise approach is determined in
the first step. The running time needed for calculation of the
least square matrix AT A and for calculation of the vector of un-
known weights is measured in the second step. The comparison
of the perceptual time performance of these two steps can be
seen in Figure 8a. It can be seen that the most time-consuming
part is the first step, in which all needed sub-matrices are calcu-
lated (lower part in the graph).
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7. Conclusion

In this paper two different RBF approximation methods
are experimentally verified using one synthetic and two real
datasets. The first method is an RBF approximation without
polynomial reproduction and the second method is an RBF ap-
proximation with linear reproduction. Moreover, a new ap-
proach to the RBF approximation of large datasets is presented.
The proposed approach uses symmetry of the matrix, partition-
ing the matrix into blocks and block-wise solving which en-
ables the computation on systems with limited main memory.
Because CS-RBFs are used for approximation, data structures
for storage of the sparse matrix can be employed; thereby a
larger size of blocks can be chosen and the computational costs
decrease. The experiments proved that the proposed approach
is fully applicable for the RBF approximation for large datasets.

The experiments also showed that, depending on the quality
of the results, it is possible to divide the CS-RBFs from the cata-
log of RBFs (D.2.7 in Fasshauer (2007)) into three groups. The
results of the experiments proved that RBF approximation with
linear reproduction returns better result than RBF approxima-
tion without polynomial reproduction, particularly if the range
of associated values is large. The experiments also proved that
the RBF methods have problems with the accuracy of calcula-
tion on the boundary of an object, which is a well-known prop-
erty. The presented approach is directly applicable in GIS and
geoscience fields.

Future work will be aimed at improving the accuracy at the
boundaries, on the computational performance without loss of
approximation accuracy and computation of optimal shape pa-
rameters. Also, the “moving window” technique will be ex-
plored to increase speed of computation.
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Foundation GAČR project GA17-05534S and partially sup-
ported by SGS 2016-013 project.

References

Bell, N., Garland, M., 2009. Implementing sparse matrix-vector multiplica-
tion on throughput-oriented processors. In: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. ACM,
p. 18.

Buhmann, M. D., 2003. Radial Basis Functions: Theory and Implementations.
Vol. 12. Cambridge university press.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., Mc-
Callum, B. C., Evans, T. R., 2001. Reconstruction and representation of
3d objects with radial basis functions. In: Proceedings of the 28th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
2001, Los Angeles, California, USA, August 12-17, 2001. pp. 67–76.

Chen, C., Li, Y., 2012. A robust method of thin plate spline and its application
to DEM construction. Computers & Geosciences 48, 9–16.

Cressie, N., 2015. Statistics for spatial data. John Wiley & Sons.
Fasshauer, G. E., 2007. Meshfree Approximation Methods with MATLAB.

Vol. 6. World Scientific Publishing Co., Inc., River Edge, NJ, USA.

Fasshauer, G. E., Zhang, J. G., 2007. On choosing ”optimal” shape parameters
for RBF approximation. Numerical Algorithms 45 (1-4), 345–368.

Franke, R., 1979. A critical comparison of some methods for interpolation
of scattered data. Tech. Rep. NPS53-79-003, NAVAL POSTGRADUATE
SCHOOL MONTEREY CA.

Franke, R., 1982. Scattered data interpolation: Tests of some methods. Mathe-
matics of computation 38 (157), 181–200.

Hardy, R. L., 1971. Multiquadratic Equations of Topography and Other Irregu-
lar Surfaces. Journal of Geophysical Research 76, 1905–1915.

Hardy, R. L., 1990. Theory and applications of the multiquadric-biharmonic
method 20 years of discovery 19681988. Computers & Mathematics with
Applications 19 (8), 163–208.
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