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Abstract
This paper presents a new approach for the Radial Basis Function (RBF) interpolation of a vector field. Standard
approaches for interpolation randomly select points for interpolation. Our approach uses the knowledge of vector
field topology and selects points for interpolation according to the critical points location. We presents the results
of interpolation errors on a vector field generated from an analytical function.

Categories and Subject Descriptors (according to ACM CCS): G.1.1 [Numerical analysis]: Interpolation—
Interpolation formulas

1. Introduction

Interpolation is probably the most frequent operation used in
computational methods. Several methods have been devel-
oped for data interpolation, but they expect some kind of data
"ordering", e.g. structured mesh, rectangular mesh, unstruc-
tured mesh, etc. However, in many engineering problems,
data are not ordered and they are scattered in d−dimensional
space, in general. Usually, in technical applications, the scat-
tered data are tessellated using triangulation but this ap-
proach is quite prohibitive for the case of d−dimensional
data interpolation because of the computational cost.

Interpolating scattered vector data on a surface becomes
frequent in applied problem solutions. There are applications
for vector field decomposition [EJF09], for vector field de-
sign system for surfaces that allows the user to control the
number of singularities in the vector field and their place-
ment [ZMT06]. [MZT∗14] uses the vector field interpola-
tion for estimating robust point correspondences between
two sets of points.

2. Vector Field

Vector fields on surfaces are important objects, which ap-
pear frequently in scientific simulation in CFD (Computa-
tional Fluid Dynamics) or modeling by FEM (Finite Ele-
ment Method). To be visualized, such vector fields are usu-
ally linearly approximated for the sake of simplicity and per-
formance considerations.

The vector field can be easily analyzed when having an
approximation of the vector field near some location point.

The important places to be analyzed are so called critical
points. Analyzing the vector field behavior near these points
gives us the information about the characteristic of the vector
field.

2.1. Critical Point

Critical points xxx0 of the vector field are points at which the
magnitude of the vector vanishes

dxxx
dt

= vvv(xxx) = 000, (1)

i.e. all components are equal to zero[ dx
dt
dy
dt

]
=

[
0

0

]
. (2)

A critical point is said to be isolated, or simple, if the vec-
tor field is non vanishing in an open neighborhood around
the critical point. Thus for all surrounding points xxxε of the
critical point xxx0 the equation (1) does not apply, i.e.

dxxxε

dt
6= 000, (3)

At critical points, the direction of the field line is indeter-
minate, and they are the only points in the vector field were
field lines can intersect (asymptotically). The terms singular
point, null point, neutral point or equilibrium point are also
frequently used to describe critical points.

These points are important because together with the
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nearby surrounding vectors, they have more information en-
coded in them than any such group in the vector field, re-
garding the total behavior of the field.

2.2. Linearization of Vector Field

Critical points can be characterized according to the behav-
ior of nearby tangent curves. We can use a particular set of
these curves to define a skeleton that characterizes the global
behavior of all other tangent curves in the vector field. An
important feature of differential equations is that it is often
possible to determine the local stability of a critical point
by approximating the system by a linear system. These ap-
proximations are aimed at studying the local behavior of a
system, where the nonlinear effects are expected to be small.
To locally approximate a system, the Taylor series expansion
must be utilized locally to find the relation between vvv and po-
sition xxx, supposing the flow vvv to be sufficiently smooth and
differentiable. In such case, the expansion of vvv around the
critical points xxx0 is

vvv(xxx) = vvv(xxx0)+
∂vvv
∂xxx

(xxx− xxx0). (4)

As vvv(xxx0) is according to (1) equal zero for critical points, we
can rewrite equation (4) using matrix notation[

vx

vy

]
=

 ∂vx
∂x

∂vx
∂y

∂vy
∂x

∂vy
∂y

[x− x0

y− y0

]
(5)

vvv = JJJ · (xxx− xxx0), (6)

where JJJ is called Jacobian matrix and characterizes the vec-
tor field behavior around a critical point xxx0.

2.3. Classification of Critical Points

There exist a finite set of fundamentally different critical
points, defined by the number of inflow and outflow direc-
tions, spiraling structures etc., and combinations of these.
Since the set is finite, each critical point can be classified.
Such a classification defines the field completely in a close
neighborhood around the critical point. By knowing the lo-
cation and classification of critical points in a vector field,
the topology of the field is known in small areas around
these. Assuming a smooth transition between these areas,
one can construct a simplified model of the whole vector
field. Such a simplified representation is useful, for instance,
in compressing vector field data into simpler building blocks
[PS97].

The critical points are classified based on the vector field
around these points. The information derived from the clas-
sification of critical points aids the information selection
process when it comes to visualizing the field. By choosing
seed points for field lines based on the topology of critical
points, field lines encoding important information is ensured.

Figure 1: Classification of 2D first order critical points. R1,
R2 denote the real parts of the eigenvalues of the Jaco-
bian matrix while I1, I2 denote their imaginary parts (from
[HH89]).

A more advanced approach is to connect critical points, and
use the connecting lines and surfaces to separate areas of
different flow topology [HH89], [WTS∗05].

The fact that a linear model can be used to study the be-
havior of a nonlinear system near a critical point is a pow-
erful one [HH89]. We can use the Jacobian matrix to char-
acterize the vector field and the behavior of nearby tangent
curves, for nondegenerate critical point.

The eigenvalues and the eigenvectors of Jacobian matrix
are very important for vector field classification and descrip-
tion, see Figure 1. A real eigenvector of the Jacobian ma-
trix defines a direction such that if we move slightly from
the critical point in that direction, the field is parallel to
the direction we moved. Thus, at the critical point, the real
eigenvectors are tangent to the trajectories that end on the
point. The sign of the corresponding eigenvalue determines
whether the trajectory is outgoing (repelling) or incoming
(attracting) at the critical point. The imaginary part of an
eigenvalue denotes circulation about the point.

3. Radial Basis Functions

The Radial basis functions (RBF) is a technique for scat-
tered data interpolation [PS11] and approximation [Fas07],
[Ska15]. The RBF interpolation and approximation is com-
putationally more expensive, because input data are not or-
dered and there is no known relation between them. Al-
though the RBF has higher computational cost, it can be
used for d-dimensional problem solution in many applica-
tions, e.g. solution of partial differential equations, image re-
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construction, neural networks, fuzzy systems, GIS systems,
optics etc.

The RBF is a function whose value depends only on the
distance from some center point. Due to the use of the dis-
tance functions, the RBFs can be easily implemented to re-
construct the surface using scattered data in 2D, 3D or higher
dimensional spaces. It should be noted that the RBF interpo-
lation is not separable.

Radial function interpolants have a nice property of be-
ing invariant under all Euclidean transformations, i.e. trans-
lations, rotations and reflections. It means that it does not
matter whether we first compute the RBF interpolation func-
tion and then apply a Euclidean transformation, or if we first
transform all the data and then compute the radial function
interpolants. This is result of the fact that Euclidean transfor-
mations are characterized by orthogonal transformation ma-
trices and are therefore 2 norm invariant. Radial basis func-
tions can be divided into two groups according to their influ-
ence. First group are "global" RBF [Sch79], for example:

Thin Plate Spline (TPS) ϕ(r) = r2 logr

Gauss function ϕ(r) = e−(εr)2

Inverse Quadric (IQ) ϕ(r) =
1

1+(εr)2

Inverse Multiquadric (IMQ) ϕ(r) =
1√

1+(εr)2

Multiquadric (MQ) ϕ(r) =
√

1+(εr)2

(7)

where ε is the shape parameter of radial basis function
[FP08].

The "local" RBF were introduced by [Wen06] as Com-
pactly Supported RBF (CSRBF) and satisfy the following
condition

ϕ(r) = (1− r)q
+P(r) =

{
(1− r)qP(r) 0≤ r ≤ 1
0 r > 1

(8)

where P(r) is a polynomial function and q is a parameter.
Typical examples of CSRBF are

ϕ1(r) = (1− εr)+

ϕ2(r) = (1− εr)3
+(3εr+1)

ϕ3(r) = (1− εr)5
+(8(εr)2 +5εr+1)

ϕ4(r) = (1− εr)2
+

ϕ5(r) = (1− εr)3
+(4εr+1)

ϕ6(r) = (1− εr)6
+(35(εr)2 +18εr+3)

ϕ7(r) = (1− εr)8
+(32(εr)3 +25(εr)2 +8εr+1)

ϕ8(r) = (1− εr)3
+

ϕ9(r) = (1− εr)3
+(5εr+1)

ϕ10(r) = (1− εr)7
+(16(εr)2 +7εr+1)

(9)

where ε is the shape parameter of radial basis function, see
Figure 2 for visualization of (9).

Figure 2: Examples of CSRBF (from [US04])

3.1. Radial Basis Function Interpolation

The RBF interpolation was originally introduced by [Har71]
and is based on computing the distance of two points in the
k-dimensional space and is defined by a function

f (xxx) =
M

∑
j=1

λ jϕ(
∥∥xxx− xxx j

∥∥) (10)

where λ j are weights of the RBFs, M is the number of the
radial basis functions, i.e. the number of interpolation points,
and ϕ is the radial basis function. For a given dataset of
points with associated values, i.e. in the case of scalar val-
ues {xxxi,hi}M

1 , the following linear system of equations is ob-
tained

hi = f (xxxi) =
M

∑
j=1

λ jϕ(
∥∥xxxi− xxx j

∥∥)
for ∀i ∈ {1, . . . ,M} (11)

where λ j are weights to be computed, see Figure 3 for visual
interpretation of (10) or (11) for a 2 1

2 D function.

Equation (11) can be rewritten in a matrix form as

AAAλλλ = hhh (12)

where matrix AAA is symmetrical, as
∥∥xxxi− xxx j

∥∥= ∥∥xxx j− xxxi
∥∥.

The RBF interpolation can be done using "global" or "lo-
cal" functions. When using "global" radial basis functions
the matrix AAA will be full, but when using "local" radial basis
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(a) (b)

(c)

Figure 3: Data values {xxxi,hi}M
1 (Figure 3a), the RBF collo-

cation functions (Figure 3b), the resulting interpolant (Fig-
ure 3c). (From [FW09]).

functions the matrix AAA will be sparse, which can be benefi-
cial when solving the system of linear equations AAAλλλ = hhh.

In the case of the vector data, i.e. {xxxi,hhhi}M
1 values hhhi are

actually vectors, the RBF is to be performed for each coor-
dinate of hhhi.

4. Vector Field RBF Approximation

Vector fields are results of numerical simulations or data
measuring process. This kind of vector field data has dis-
crete representation, but an analytical formula describing the
vector filed is much more useful. We will show how to ap-
proximate a vector field using radial basis functions.

A very important future of a vector field are its critical
points. The interpolation must preserve positions and types
of all critical points. Thus, the RBF interpolation should in-
terpolate the vector field at all positions of critical points to
preserve their positions. To preserve their types, we should
include few more points in the neighborhood of each critical
point to the interpolation. The number of points in the neigh-
borhood was experimentally chosen to be 4, as more points
does not improve the interpolation in any significant way.
Points in the neighborhood of a critical point xxx0 = [x0,y0]

T

are chosen using the following formulaP(k)
x

P(k)
y

=

[
x0 + r sin(k π

2 )

y0 + r cos(k π

2 )

]
. (13)

where k ∈ {0,1,2,3} and r is a small number depending on

the distance of critical points, where the distance to the near-
est critical point should be� r.

This set of critical points together with their neighborhood
points can be interpolated using RBF (11), note that each
component of vectors vvv = [vx,vy]

T is interpolated separately.
This interpolation will preserve the location of critical points
together with their types.

To get more accurate interpolation formula of a vector
field at points xxx ∈ [xmin,xmax]× [ymin,ymax] we can include
some more random points from this interval into the interpo-
lation. The improvement of quality depending on the number
of additionally included points will be shown in the follow-
ing chapter.

5. Results

The results will be demonstrated on an analytical vector
field, as we can measure the interpolation errors precisely.
The analytical vector field, that we choose as an example, is
described with the following equation[

vx

vy

]
=

[
x( 1

2 x2 + 1
2 )+ y(−x+( 1

2 y−1)y+ 1
2 )

1
2 x2y+ x(− 1

2 y2 + y− 1
2 )+

1
2 y−1

]
(14)

this vector field (14) has three critical points xxx0

source location: xxx0 = [−1,1]T

source location: xxx0 = [1,1]T

saddle location: xxx0 = [0.543689,1.83929]T .

(15)

The vector field (14) will be interpolated and tested on
interval [−2,2]× [−1,3], as all important features will be
visible. The RBF function used for interpolation is a Gauss
radial basis function and the shape parameter ε was experi-
mentally selected as ε = 1.

Vector field (14) can be interpolated using 3 critical point
positions and 12 more neighborhood points, i.e. 4 neighbor-
hood points for each critical point. The neighborhood points
are computed with (13) and the parameter r = 0.1. The vx
component of the vector field is interpolated with one RBF
and the vy component of the vector field is interpolated with
one RBF as well. The phase portrait of original analytical
vector field (14) is visualized in Figure 4a and the phase por-
trait of RBF interpolated vector field is visualized in Fig-
ure 4b. It can be seen, that both phase portraits look very
similar and have the same vector field topology. Moreover,
the critical points location is identical, as the average length
of displacement error for all critical points is 7.0283 ·10−8,
which is only a numerical error of the critical points location
algorithm.

We computed the interpolation error for vx and vy and
visualized it in Figure 5. It can be seen that the interpo-
lation error is getting higher as the distance from critical
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(a)

(b)

Figure 4: Phase portrait of the vector field (14) (Figure 4a)
and phase portrait of a RBF interpolation using only 15 refer-
ence points (3 critical points plus three times 4 neighborhood
points) (Figure 4b).

points increases. The average error of vector length at in-
terval [−2,2]× [−1,3] is 1.7943 (the vector length varies
from 0 to 12.6194) and the average error of vector angular
displacement is 0.1966 [rad].

The vector field (14) was interpolated using 3 critical
points locations plus three times 4 neighborhood points.
We can include few more randomly distributed points into
the interpolation to reduce the distance error from (14).
We choose to generate additional 85 points from interval
[−2,2]× [−1,3], so the interpolation of vector field will con-
tain 102 points in total. This interpolation of vector field is

(a)

(b)

Figure 5: Interpolation error of RBF interpolation using only
15 reference points (3 critical points plus three times 4
neighborhood points). Interpolation error of vx (Figure 5a)
and interpolation error of vy (Figure 5b).

visualized in a phase portrait, see Figure 6 and Figure 4a for
comparison with original phase portrait.

We computed the interpolation error for vx and vy and vi-
sualized it in Figure 7. It can be seen that the interpolation
error is close to zero except for locations on the border. The
average error of vector length at interval [−2,2]× [−1,3] is
0.0549 (note that the vector length varies from 0 to 12.6194)
and the average error of vector angular displacement is
0.0065 [rad].

The average vector length error and the average vector an-
gular displacement error were measured for different num-
ber of interpolated points. A number of points k is used as
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Figure 6: Phase portrait of a vector field RBF interpolation of
(14) using 100 reference points (3 critical points plus three
times 4 neighborhood points plus 85 randomly distributed
points).

added points for the RBF interpolation, thus the RBF in-
terpolation uses (k + 3 + 3 · 4) points for interpolation of
vector field, i.e. k randomly distributed points from inter-
val [−2,2]× [−1,3] plus 3 critical points plus three times
4 neighborhood points. Number k was tested from 0 to 400
fifty times for each k with step ∆k = 1 and results are visu-
alized in Figure 8.

It can be seen that both errors in Figure 8 decrease with
increasing number k of added points for the interpolation of
vector field. According to the required accuracy of the inter-
polation, the user can select the minimal necessary number
of added points and perform the interpolation according to
the algorithm proposed.

6. Conclusions

We presented a new and easy to implement approach for
the vector field approximation using radial basis functions.
In general, it can be used in any d−dimensional space, al-
though the results were presented only for 2D vector field.
The proposed RBF interpolation proved the ability to ap-
proximate a vector field when preserving the location of crit-
ical points and the vector field topology as well.

The proposed approach offers not only analytical descrip-
tion of the discrete data of vector field, but also a signifi-
cant data compression. This might be a significant feature
for "progressive vector field visualization" approach.

In future, the proposed approach will be deeply explored
for t−varying data sets together with other aspects for very

(a)

(b)

Figure 7: Interpolation error of RBF interpolation using 100
reference points (3 critical points plus three times 4 neigh-
borhood points plus 85 randomly distributed points). Inter-
polation error of vx (Figure 7a) and interpolation error of vy
(Figure 7b).

large vector field data set interpolation. The more sophisti-
cated placement of interpolation points around critical points
will be deeply explored as well.
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Figure 8: Average errors of the RBF interpolation of vector field (14) using k added reference points, i.e. 3 critical points plus
three times 4 neighborhood points plus k randomly distributed points, where k ∈ {0, . . . ,400}. The vector field length error,
note that the vector length varies from 0 to 12.6194 (Figure 8a) and the vector field angular displacement error (Figure 8b).
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