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ABSTRACT 

Interpolation and approximation methods are used across many fields. Standard interpolation and approximation methods rely on 

“ordering” that actually means tessellation in  -dimensional space in general, like sorting, triangulation, generating of tetrahedral 

meshes etc. Tessellation algorithms are quite complex in  -dimensional case. On the other hand, interpolation and approximation 

can be made using meshfree (meshless) techniques using Radial Basis Function (RBF). The RBF interpolation and approximation 
methods lead generally to a solution of linear system of equations. However, a similar approach can be taken for a reconstruction 

of a surface of scanned objects, etc. In this case this leads to a linear system of homogeneous equations, when a different approach 
has to be taken. 

In this paper we describe novel approaches based on RBFs for data interpolation and approximation generally in d-dimensional 

space. We will show properties and differences of “global” and “Compactly Supported RBF (CSRBF)”, run-time and memory 
complexities. As the RBF interpolation and approximation naturally offer smoothness, we will analyze such properties as well as 

approaches how to decrease computational expenses. The proposed meshless interpolation and approximation will be demonstrated 

on different problems, e.g. inpainting removal, restoration of corrupted images with high percentage of corrupted pixels, digital 
terrain interpolation and approximation for GIS applications and methods for decreasing computational complexity. 
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1. INTRODUCTION 

Objects in computer graphics are usually defined as a surface model using a surface description, e.g. polygonal 

meshes, parametric patches or as a volumetric model using computer solid geometry, etc. Available hardware is 

optimized for triangular meshes processing. Recently a surface of time varying objects was represented by a 

triangular mesh with a constant connectivity. It enables to make effective data representation, compression, 

transmission, decompression and rendering of such models. In the discrete case, volumetric models are mostly 

considered, like CT and MRI images, standard techniques like marching cubes or tetrahedra are used and data 

are represented in regular structured meshes. 

This paper describes representations, manipulation, compression and reduction of meshless (meshfree) 

representation. As the meshless techniques are easily scalable to higher dimensions and can handle spatial 

scattered data and spatial-temporal data as well, they can be used in many engineering and economical 

computations, etc. Polygonal representations (tessellated domains) are used in computer graphics and 

visualization as a surface representation and for surface rendering. In time varying objects a surface is 

represented as a triangular mesh with constant connectivity. This approach led to new algorithms for 

simplification and compression of dynamic meshes with constant connectivity [22] - [24]. The compression is 

actually based on the algorithm for surface extraction of implicitly defined objects [5]- [7]. The presumption 

that a surface is given as a polygonal mesh (actually as a triangular mesh) with constant connectivity has lead to 

quite effective algorithms for dynamic mesh compression [25]. 

On the other hand all polygonal based techniques, in the case of scattered data, require tessellations, e.g. 

Delaunay triangulation with               computational complexity (the worst case) for   points in 

  -dimensional space or another tessellation method. The complexity of implementation grows significantly 

with dimensionality and problems with robustness might be expected as well.  
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In the case of data visualization smooth interpolation or approximation on unstructured meshes is required, e.g. 

on triangular or tetrahedral meshes, when physical phenomena is associated with points, in general. This is quite 

a difficult task especially if smoothness of interpolation is needed. That is a natural requirement in physically 

based problems. 

Interpolations methods used are usually separable, i.e. interpolation can be made along selected axis followed 

by another along the second axis etc. In the following meshless (meshfree) interpolation and approximation 

methods will be described, but they are not separable.  

2. MESHLESS INTERPOLATION 

 

Meshless (meshfree) methods are based on the idea of Radial Basis Function (RBF) interpolation [2], [27], [28], 

which is not separable, but they are easily extensible for  -dimensional case. RBF based techniques are easily 

scalable to  -dimensional space and do not require tessellation of the geometric domain and offers smooth 

interpolation naturally. In general, meshless techniques lead to a solution of a linear system equations (LSE) [7], 

[8] with a full or sparse matrix. 

Generally, meshless methods for scattered data can be split into two main groups in computer graphics and 

visualization: 

 “implicit” – surface reconstruction results to an implicit function representation, i.e.       , e.g. 

           in the case of a surface representation in E
3
 – this problem is actually originated from 

the implicit function modeling [16] approach 

 “explicit” – interpolation or approximation results to a functional representation, i.e.       , e.g. a 

height map in E
2 

– 2 1/2D, i.e. .         . However, there is a severe problem – an iso-curve, resp. 

iso-surface extraction  

where:   is a point representated generally in  -dimensional space and   is a scalar value or a vector value. 

The RBF interpolation is based on computing of the distance of two points in the  -dimensional space and it is 

defined by a function: 

                  

 

   

          

 

   

           

It means that for the given data set            
 , where    are associated values to be interpolated and    are 

domain coordinates, we obtain a linear system of equations: 

                       

 

   

               

where:     are weights to be computed. Due to some stability issues, usually a polynomial       of a degree k is 

added to the formula: 

                       

 

   

                 

For a practical use, the polynomial of the 1
st
 degree is used, i.e. linear polynomial             , in many 

applications. So the interpolation function has the form:  

                    

 

   

                 

 

   

          

                            
and additional conditions are applied: 

     

 

   

                   

 

   

    

It can be seen that for  -dimensional case a system of         LSE has to be solved, where M is a number 

of points in the dataset and   is the dimensionality of data.  

For     vectors    and   are in the form           
  and          

 
, we can write : 
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For the two-dimensional case and M points given a system of       linear equations has to be solved. If 

“global” functions, e.g. TPS (            ), are used the matrix   is “full”, if “local” functions (Compactly 

supported RBF – CSRBF) are used, the matrix   can be sparse. 

The radial basis functions interpolation was originally introduced in [8] by introduction of multiquadric method 

in 1971, which was called Radial Basis Function (RBF) method. Since then many different RFB interpolation 

schemes have been developed with some specific properties, e.g. [7] uses            , which is called Thin-

Plate Spline (TPS), a function            
 
 was proposed in [27] and Compactly Supported RBFs (CSRBF) 

were introduced as: 

      
                     

                        
   , 

where:      is a polynomial function and   is a parameter. Theoretical problems with stability and solvability 

were solved in [7]. Generally, there are two main groups of the RBFs: 

 “global” – a typical example is TPS function 

 “local” –  Compactly supported RBF (CSRBF)  

If the “global” functions are taken, the matrix   of the LSE is full and for large  . The LSE is becoming ill 

conditioned and problems with convergence can be expected. On the other hand if the CSRBFs are taken, the 

matrix   is becoming relatively sparse, i.e. computation of the LSE will be faster, but we need to carefully 

select the scaling factor   and the final function might tend to be “blobby” shaped. 

 

Table 1. Typical example of “global” functions 

“Global“ functions      

Thin-Plate Spline (TPS)       Inverse Quadric (IQ)  
      
  

Gauss function     
 
 Multiquadric (MQ)        

 

 
Figure 1. Geometrical properties of CSRBF 

 

Tab.2 presents typical examples of CSRBFs and Fig.1 presents functions behavior geometrically.   
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Table 2. Typical examples of “local” functions - CSRBF 

ID Function ID Function 

1        6       
              

2       
        7       

                  

3       
            8       

  

4       
  9       

        

5       
        10       

             
 

The compactly supported RBFs are defined for the interval           , but for the practical use a scaling is 

used, i.e. the value   is multiplied by a scaling factor  , where    . 

In the case of surface reconstruction from scattered spatial data results is an implicit function       . This 

situation is a little bit more complicated, as the matrix   is generally symmetric, semi-definite or positively 

definite and the equation      would have only a trivial solution    , in general. In this case a surface is 

considered as an oriented one and additional off-set points are added expecting that a distance in those points 

is  . Usually, additional points are given in the normal vector direction, i.e.    and –  and matrix size is 

increased by factor 9, i.e.      , where   is a number of the given points [3], [14]. Also as number of points 

might be very high subdivision techniques are used [11]. 

Meshless techniques are primarily based on approaches mentioned above. The resulting matrix   tends to be 

large and ill-conditioned. Therefore some specific numerical methods have to be taken to increase robustness of 

a solution, like preconditioning methods or parallel computing on GPU [12] etc. Also subdivision or 

hierarchical methods are used to decrease sizes of computations and increase robustness [15], [21]. Meshless 

interpolation and approximation techniques are also used in engineering problem solutions, nowadays, e.g. 

partial differential equations [9], surface modeling [11], surface reconstruction of scanned objects [3], [19], 

reconstruction of corrupted images [28], etc. More generally, meshless object representation is based on specific 

interpolation or approximation techniques [1], [2], [9], [17], [19] and [27]. 

Spatio-temporal data are usually considered as “framed” or “synchronized” in time. The first difficulty is 

distance computing as distance of two points                  and                  is usually taken as 

          
         

         
           

  

where    . It is incorrect as we are adding values in [m] and [s]. Therefore   must be of [m/s], etc.  

As the scattered spatio-temporal data are naturally scattered in time as well, i.e. they are not “framed”, meshless 

methods enable to solve spatio-temporal not “framed” interpolation, i.e. scattered in time,, manipulation and 

representation in a more consistent way. 

Meshless computational methods are the most progressively developing methods in many fields ranging from 

computational sciences and visualization to computer graphics and manipulation with geometrical models. This 

progress is given by technological progress as growing computational power enables to solve large problems, 

which seems to be hard to manage using tessellations, interpolation polygonal meshes of large data sets with 

higher dimensionality. 

However, the computational complexity in the meshless methods actually covers complexity of tessellation 

itself and interpolation and approximation techniques. This results into problems with large data set processing, 

i.e. numerical stability and memory requirements.etc.  

If global RBF functions are considered, the RBF matrix is full and in the case of     of points, the RBF matrix 

is of the size approx.         ! On the other hand if CSRBF used, the matrix is sparse and computationally 

and memory requirements can be decreased significantly and special data structures must be developed to 

obtain efficient computation.  

On the other hand in the case of visualization of physical phenomena, data received by simulation, computation 

or obtained by experiments usually are oversampled in some areas and also numerically more or less precise. It 

seems possible to apply approximation methods to decrease computational complexity significantly by adding 

virtual points in the place of interest and use analogy of least square method modified for the RBF 

representation case. According to experiments made, this approach is quite promising and offers a significant 

speed up.  

Due to CSRBF representation the space of data can be subdivided, interpolation, resp. approximation can be 

split to independent parts and computed more or less independently. This process can be also parallelized and if 

appropriate architecture is use, e.g. GPU etc., it will lead to fast computation as well. This approach was 

experimentally verified for scalar and vector data used in visualization of physical phenomena.  
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3. MESHLESS APPROXIMATION 

 

The RBF interpolation relies on solution of a LSE      of the size M × M in principle, where M is a number 

of the data processed. If the “global” functions are used, the matrix   is full, while if the “local” functions are 

used (CSRBF), the matrix   is sparse. 

However, in visualization applications it is necessary to compute the final function      many many times and 

even for already computed    values, the computation of      is too expensive. Therefore it is reasonable to 

significantly “reduce” the dimensionality of the LSE     . Of course, we are now changing the interpolation 

property of the RBF to approximation, i.e. the values computed do not pass the given values exactly. 

Probably the best way is to formulate the problem using the Least Square Error approximation. Let us consider 

the formulation of the RBF interpolation again.  

                    

 

   

  

                           

where:    are not given points, but points in a pre-defined “virtual mesh” as only coordinates are needed (there 

is no tessellation needed). This “virtual mesh” can be irregular, orthogonal, regular, adaptive etc. For simplicity, 

let us consider the two-dimensional squared (orthogonal) mesh in the following example. Then the    

coordinates are the corners of this mesh. It means that the given scattered data will be actually “re-sampled”, 

e.g. to the squared mesh. 

New reference points  ξ

Given points  x

 
Figure 2. RBF approximation and points’ reduction 

In many applications the given data sets are heavily over sampled, or for the fast previews, e.g. for the WEB 

applications, we can afford to “down sample” the given data set. Therefore the question is how to reduce the 

resulting size of LSE.  

Let us consider that for the visualization purposes we want to represent the final potential field in 

N-dimensional space by   values instead of   and    . The reason is very simple as if we need to compute 

the function      in many points, the formula above needs to be evaluated many times. We can expect that the 

number of evaluation   can be easily requested at       of points (new points) used for visualization.  

If we consider that           and          then  

the speed up factor in evaluation can be easily about     ! 
This formulation leads to a solution of a linear system of equations      where number of rows    , 

number of unknown            
 . As the application of RBF is targeted to high dimensional visualization, it 

should be noted that the polynomial is not requested for all kernels of the RBF interpolation. But it is needed for 

            kernel function (TPS). This reduces the size of the linear system of equations      

significantly and can be solved by the Least Square Method (LSM) as           or the Singular Value 

Decomposition (SVD) method can be used. 

 
 
 
 
 
         

   
          

   
          

 
 
 
 

 
  
 
  

  

 
 
 
 
 
  
 
 
 
   

 
 
 
 

             

The high dimensional data can be approximated for visualization by RBF efficiently with a high flexibility as it 

is possible to add additional points in the area of interest to the mesh. It means that a user can add some points 

to already given mesh and represent easily some details if requested. It should be noted that the use of LSM 

increases instability of the LSE in general. 
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4. MORE GENERAL APPROACH 

Let us consider more general approach based on extreme finding with constrains given. Let us assume again  

                    

 

   

               

where    . We want to determine            
  minimizing a quadratic form  

 

 
     

with a linear constrains        , where   is positive and symmetric matrix. This can be solved using 

Lagrange multipliers            
 , i.e. minimizing 

 

 
              

i.e     and     
So we are getting as the matrix   is positive 

 

  
 
 

 
                        

 

  
 
 

 
                       

In more compact matrix form we can write 

     

  
  
 
 
   

 
 
  

As   is positive definite, block in matrix operations can be applied and we get: 

                                 

If      and invertible, computation can be further simplified.  

This approach is more robust, however also more computationally expensive. 

It should be noted, that if the Least Square Method (LSM) is used directly, i.e.           is to be solved 

directly, the     matrix is ill conditioned and for large   the system of linear equations is hard to solve.   

4. EXPERIMENTAL RESULTS 

 

The presented approach has been taken in the following experiments: 

 Reconstructions of images, where corrupted pixels are known. Application of RBF enabled to 

reconstruct image with more that 60% of corrupted pixels, see Fig.3 

 Image inpainting removal, which is applicable e.g. in cultural heritage applications for restoration of 

old wall paintings corrupted, see Fig.4 

 Reconstruction of nearly flat 3D objects using 2D scanner, see Fig.5 

 Surface representation for GIS (Geographical Information Systems) applications using approximation 

instead of interpolation, see Fig.6 

The meshless approximation approach can be especially used in data visualization applications, like 

visualization of potential or vector fields, as in visualization we need to obtain global information of the 

physical phenomena behavior with acceptable precision. 

 

  
Original - 60% corrupted pixels Reconstructed image 

Figure 3. Corrupted image reconstruction 
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Original image courtesy of Bertalmio, 2000 Inpainting removed 

Figure 4. Inpainting removal 

 

 

 

Figure 5. Coin scanned and 3D print of the reconstructed coin Figure 6. Approximation of  

2&1/2D data 

The above presented experimental results prove wide applicability of meshless interpolation and approximation 

methods.  

6. SUMMARY AND FUTURE WORK 

 

Interpolation and approximation methods using meshfree (meshless) representation have been described which 

are convenient for interpolation and approximation of scattered spatio-temporal data in  -dimensional space in 

general. There is no need to tessellate the data domain and meshless methods offer smoothness of the 

interpolated or approximated data naturally. Due to those properties the meshless methods are applicable in 

many areas, e.g. economical, geometrical, in engineering applications including solution of partial differential 

equations. 

However there are many open problems related, especially issues related to robustness of numerical 

computations in the large data processing case. Problems related to large scattered spatio-temporal data will be 

explored in future. 

Current and future research activities can be found at http://mesfree.zcu.cz  
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