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Abstract. Many problems, not only in computer vision and visualization, lead to a system of 

linear equations      or      and fast and robust solution is required. A vast majority of 
computational problems in computer vision, visualization and computer graphics are three 

dimensional in principle. This paper presents equivalence of the cross–product operation and 

solution of a system of linear equations      or      using projective space representation 
and homogeneous coordinates. This leads to a conclusion that division operation for a solution of 

a system of linear equations is not required, if projective representation and homogeneous 
coordinates are used. An efficient solution on CPU and GPU based architectures is presented with 

an application to barycentric coordinates computation as well. 
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1 Introduction 

Many applications, not only in computer vision, require a solution of a homogeneous 

system of linear equations      or a non-homogeneous system of linear 

equations     . There are several numerical methods used implemented in standard 

numerical libraries. However, the numerical solution actually does not allow further 

symbolic manipulation. Even more, solutions of equations      and      are 

considered as different problems and especially      is not usually solved quite 

correctly as users tend to use some additional condition for   unknown (usually setting 

     or so). 

In the following, we show the equivalence of the extended cross-product (outer 

product or progressive product) with a solution of both types of linear systems of 

equations, i.e.      and     . 

Many problems in computer vision, computer graphics and visualization are  -

dimensional. Therefore specific numerical approaches can be applied to speed up the 

solution. In the following extended cross-product, also called outer product or 

progressive product, is introduced in the “classical” notation using    symbol. 

2 Extended cross product 

Let us consider the standard cross-product of two vectors               and 

             
 . Then the cross-product is defined as: 

         
   
      

      

  (1) 

where:           ,                      .  

Skala,V.: “Extended Cross-product” and Solution of a Linear System of Equations, 
ICCSA 2016, LNCS 9786, Vol.I, pp.18-35, Springer, 

ISBN 978-3-319-42084-4, DOI:10.1007/978-3-319-42085-1_2 , China, 2016



If a matrix form is needed, then we can write: 

      

      

      

      
  

  

  

  

  (2) 

In some applications the matrix form is more convenient. 

Let us introduce the extended cross-product of three vectors             , 

              and             ,     as: 

           

    
        

        

        

  (3) 

where:             ,             ,             ,             .  

It can be shown that there exists a matrix form for the extended cross-product 

representation: 

               

            

           

            

           

  

  

  

  

  

  (4) 

where:    . In this case and     are sub-determinants with columns     of the matrix 

  defined as: 

    
        

        
  (5) 

e.g. sub-determinant         
    

    
  etc. 

The extended cross-product for  -dimensions is defined as: 

            

 
 
 
 
 

     
          

          

          

           
 
 
 
 

 (6) 

where:               ,               ,               ,               , 

                . 

It can be shown that there exists a matrix form as well: 

 

       

        

 
 
 
 
 

                   

                   

                   

                   

                    
 
 
 
 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 
(7) 

where    . In this case and      are sub-determinants with columns       of the 

matrix   defined as: 

    

          

          

          

  (8) 

e.g. sub-determinant      is defined as: 
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(9) 

In spite of the “complicated” description above, this approach leads to a faster 

computation in the case of lower dimensions, see Section 7. 

3 Projective representation and duality principle 

Projective representation and its application for computation are considered to be 

mysterious or too complex. Nevertheless we are using it naturally very frequently in 

the form of fractions, e.g.    . We also know that fractions help us to express values, 

which cannot be expressed precisely due to limited length of a mantissa, e.g. 

                        .  

In the following we will explore projective representation, actually rational 

fractions, and its applicability. 

3.1. Projective representation 

Projective extension of the Euclidean space is used commonly in computer graphics 

and computer vision mostly for geometric transformations. However, in computational 

sciences, the projective representation is not used, in general. This chapter shortly 

introduces basic properties and mutual conversions. More detailed description of 

projective representation and applications can be found in ]12][15][20].  

The given point         in the Euclidean space    is represented in 

homogeneous coordinates as           ,    . It can be seen that   is actually a 

line in the projective space    with the origin excluded. Mutual conversions are 

defined as: 

 
 

  
 

 
   

 

 
 (10) 

where:     is the homogeneous coordinate. Note that the homogeneous coordinate 

  is actually a scaling factor with no physical meaning, while     are values with 

physical units in general.  

The projective representation enables us nearly double precision as the mantissa 

of  , resp.   and   are used for a value representation. However we have to distinguish 

two different data types, i.e. 

 Projective representation of a  -dimensional value            , 

represented by one dimensional array                , e.g. coordinates of 

a point, that is fixed to the origin of the coordinate system.  

 Projective representation of a  -dimensional vector (in the mathematical 

meaning)            , represented by one dimensional array 

                . In this case the homogeneous coordinate    is actually 

just a scaling factor. Any vector is not fixed to the origin of the coordinate 

system and it is “movable”.  

Therefore a user should take an attention to the correctness of operations. Another 

interesting application of the projective representation is the rational trigonometry [19]. 
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3.2. Principle of duality 

The projective representation offers also one very important property – principle of 

duality. The principle of duality in     states that any theorem remains true when we 

interchange the words “point” and “line”, “lie on” and “pass through”, “join” and 

“intersection”, “collinear” and “concurrent” and so on. Once the theorem has been 

established, the dual theorem is obtained as described above [1][5] [14]. In other 

words, the principle of duality says that in all theorems it is possible to substitute the 

term “point” by the term “line” and the term “line” by the term “point” etc. in     and 

the given theorem stays valid. Similar duality is valid for     as well, i.e. the terms 

“point” and “plane” are dual etc. it can be shown that operations “join” a “meet” are 

dual as well. 

This helps a lot to solve some geometrical problems. In the following we will 

demonstrate that on very simple geometrical problems like intersection of two lines, 

resp. three planes and computation of a line given by two points, resp. of a plane given 

by three points. 

4 Solution of      

Solution of non-homogeneous system of equation      is used in many 

computational tasks.  

For simplicity of explanation, let us consider a simple example of intersection 

computation of two lines    a    in    given as: 

 
 

                                (11) 

An intersection point of two those lines is given as a solution of a linear system of 

equations:     : 

  
    

    
  

 
 

   
   

   
  (12) 

Generally, for the given system of   liner equations with   unknowns in the 

form      the solution is given: 

    
       

      
         

 

(13) 

where:   is a regular matrix     having non-zero determinant, the matrix    is the 

matrix   with replaced     column by the vector   and              is a vector of 

unknown values. 

In a low dimensional case using general methods for solution of linear equations, 

e.g. Gauss-Seidel elimination etc., is computational expensive. Also division operation 

is computationally expensive and decreasing precision of a solution.  

Usually, a condition if            then EXIT is taken for solving “close to 

singular cases”. Of course, nobody knows, what a value of     is appropriate. 

5 Solution of      

There is another very simple geometrical problem; determination of a line   given by 

two points            and            in   . This seems to be a quite simple 

problem as we can write: 

                         
 

(14) 

i.e. it leads to a solution of homogeneous systems of equations     , i.e.: 
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    (15) 

In this case, we obtain one parametric set of solutions as the Eq.(15) can be multiplied 

by any value     and the line is the same.  

There is a problem – we know that lines and points are dual in the    case, so the 

question is why the solutions are not dual. However if the projective representation is 

used the duality principle will be valid, as follows. 

6 Solution      and      

Let us consider again intersection of two lines              
  a                

leading to a solution of non-homogeneous linear system     , which is given as: 

 
 

                                (16) 

If the equations are multiplied by     we obtain: 

 
               
              

               
              

 

(17) 

where:   means „projectively equaivalent to“ as      and     . 

Now we can rewrite the equations to the matrix form as     : 

  
       

       
  

 
 
 

   
 
 
  (18) 

where            is the intersection point in the homogeneous coordinates. 

In the case of computation of a line given by two points given in homogeneous 

coordinates, i.e.                and               , the Eq.(14) is multiplied 

by     .Then, we get a solution in the matrix form as     , i.e. 

  
      

      
  

 
 
 
    (19) 

Now, we can see that the formulation is leading in the both cases to the same numerical 

problem: to a solution of a homogeneous linear system of equations. 

However, a solution of homogeneous linear system of equations is not quite 

straightforward as there is a one parametric set of solutions and all of them are 

projectively equivalent. It can be seen that the solution of Eq. (18), i.e. intersection of 

two lines in   , is equivalent to: 

         (20) 

and due to the principle of duality we can write for a line given by two points: 

         
(

21) 

In the three dimensional case we can use extended cross-product [12][15][16].  

A plane                given by three points                  , 

                  and                   is determined in the projective 

representation as: 

                       (22) 

and the intersection point   of three planes points                  ,  

                  and                   is determined in the projective 

representation as: 

                       (23) 
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due to the duality principle. 

It can be seen that there is no division operation needed, if the result can be left in the 

projective representation. The approach presented above has another one great 

advantage as it allows symbolic manipulation as we have avoided numerical solution 

and also precision is nearly doubled. 

7 Barycentric coordinates computation 

Barycentric coordinates are often used in many engineering applications, not only in 

geometry. The barycentric coordinates computation leads to a solution of a system of 

linear equations. However it was shown, that a solution of a linear system equations is 

equivalent to the extended cross product [12][14]. Therefore it is possible to compute 

barycentric coordinates using cross product which is convenient for application of SSE 

instructions or for GPU oriented computations. Let us demonstrate the proposed 

approach on a simple example again. 

Given a triangle in    defined by points              ,        , the barycentric 

coordinates of the point              can be computed as follows:  

 

                  

                  

           

(24) 

For simplicity, we set     ,        . It means that we have to solve a system of 

linear equations     : 

  
      

      

   
  

  

  

  

   
  

  

 
  (25) 

if the points are given in the projective space with homogeneous coordinates 

              
 ,         and               . It can be easily proved, due to 

the multilinearity, we need to solve a linear system     : 

  

      

      

      

  

  

  

  

   

  

  

  

  (26) 

Let us define new vectors containing a row of the matrix   and vector   as: 

                                                    
 

(27) 

The projective barycentric coordinates                  are given as: 

     
  

  

         
  

  

        
  

  

 (28) 

i.e. 

     
  

  

         
 

(29) 

Using the extended cross product, the projective barycentric coordinates are given as: 

             

    
        

        

        

                 (30) 

 

where             ,             ,             ,             .  
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Similarly in the    case, given a tetrahedron in    defined by points 

                 
 ,        , and the point                  : 

 
                  

                      

                                        
 

(31) 

Then projective barycentric coordinates are given as:  

                             (32) 

The Euclidean barycentric coordinates are given as: 

     
  

  

         
  

  

        
  

  

        
  

  

 (33) 

i.e. 

     
  

  

         
 

(34) 

 

How simple and elegant solution! 

The presented computation of barycentric coordinates is simple and convenient for 

GPU use or SSE instructions. Even more, as we have assumed from the very 

beginning, there is no need to convert projective values to the Euclidean notation. As a 

direct consequence of that is, that we are saving a lot of computational time also 

increasing robustness of the computation, especially due to division operation 

elimination. As a result is represented as a rational fraction, the precision is nearly 

equivalent to double mantissa precision and exponent range. 

Let us again present advantages of the projective representation on simple 

examples. 

 
Fig.1: A line as the intersection of two planes 

8 Intersection of two planes 

Intersection of two planes    and    in    is seemingly a simple problem, but 

surprisingly computationally expensive, Fig.1. Let us consider the “standard” solution 

in the Euclidean space and a solution using the projective approach.  
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Given two planes    and    in   : 

                      
     

                       
     

  
 

(35) 

where:    and    are normal vectors of those planes.  

 

Then the directional vector   of a parametric line            is given by a cross 

product: 

                   
  (36) 

and point       of the line is given as: 

 
   

   
    

    
     

    

    
 

   
    

   
    

    
     

    

    
 

   
 

   
   

    

    
     

    

    
 

   
 

     

      

      

      

  

 

(37) 

 

It can be seen that the formula above is quite difficult to remember and its derivation is 

not simple. It should be noted that there is again a severe problem with stability and 

robustness if a condition like           is used. Also the formula is not convenient 

for GPU or SSE applications. There is another equivalent solution based on Plücker 

coordinates and duality application, see [12] [16]. 

Let us explore a solution based on the projective representation explained above.  

Given two planes    and   . Then the directional vector   of their intersection is given 

as: 

         (38) 

We want to determine the point    of the line given as an intersection of those two 

planes. Let us consider a plane    passing the origin of the coordinate system with the 

normal vector    equivalent to  , Fig.1. This plane    is represented as: 

                          (39) 

Then the point    is simply determined as an intersection of three planes          as: 

                            (40) 

It can be seen that the proposed algorithm is simple, easy to understand, elegant and 

convenient for SEE and GPU applications as it uses vector-vector operations. 
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9 Closest point on the line given as an intersection of two planes 

Another example of advantages of the projective notation is finding the closest point on 

a line given as an intersection of two planes    and    to the given point     , Fig.2. 

 
Fig.2: The closest point to the given point on an intersection of two planes 

 

A solution in the Euclidean space, proposed in [8], is based on a solution of a system of 

linear equations using Lagrange multipliers, leading to a matrix of      : 

 

 

 
 
 
 
 

         

         

         

           

            
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 
 
 
 

 

 
 
 
 
 

   

   

   

    

     
 
 
 
 

 (41) 

where:   , resp.    are points on planes   , resp.   , with a normal vector   , resp.   . 

Coordinates of the closest point            on the intersection of two planes to the 

point             are given as a solution of this system of linear equations. Note that 

the point   is given in the Euclidean space. 

 

Let us consider a solution based on the projective representation. The proposed 

approach is based on basic geometric transformations with the following steps: 

1. Translation of planes   ,     and point                
 

 so that the point   is in 

the origin of the coordinate system, i.e. using transformation matrix   for the point 

translation and matrix            for translation of planes [11][14][16]. 

2. Intersection computation of those two translated planes; the result is a line with the 

directional vector   and point    

3. Translation of the point    by inverse translation using the matrix     

 

The translation matrices are defined as: 
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(42) 

If the point   is given in the projective space, i.e.                 
 
,          , 

then the matrix   is given as   .  

It can be seen that the computation is more simple, robust and convenient for SSE 

or GPU oriented applications. It should be noted that the formula is more general as the 

point   can be given in the projective space and no division operations are needed. 

10 Symbolic manipulations 

Symbolic manipulations are very important and help to find or simplify computational 

formulas, avoid singularities etc. As the extended cross-product is an associative and 

anti-commutative as the cross-product in    similar rules are valid, i.e. in   : 

 
                

         
(43) 

In the case of the extended cross-product, i.e. in the projective notation    we actually 

formally have operations in   : 

 
                      

             
(44) 

This can be easily proved by applications of rules for operations with determinants. 

 

However, for general understanding more general theory is to be used – Geometric 

Algebra [2][3][4][6][7][10][18], in which the extended cross-product is called outer 

product and the above identities are rewritten as: 

 
                      

             
(45) 

where:    is an operator of the outer product, which is equivalent to the cross-product 

in   . There is also an operator     for the inner product which is equivalent to the 

dot product in   .  

In geometric algebra geometric product is defined as: 

            (46) 

i.e. in the case of    we can write: 

            (47) 

and getting some “strange”, as a scalar and a vector (actually a bivector) are summed 

together. But it is a valid result and    is called geometric product [18].  

However, if the projective representation is used, we need to be a little bit careful 

with equivalent operations to the standard operations in the Euclidean space. 
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11 Example of application 

Let us consider a simple example in  -dimensional space. Assume, that       is a 

system of linear equations, i.e.: 

 

 

         

         

         

  

  

  

  

   

  

  

  

  

(48) 

and we want to explore      , where             
 .  

In the “standard” approach a system of linear equations has to be solved 

numerically or symbolic manipulation has to be used. We can rewrite the Eq.(48) using 

the projective representation as: 

 

 

            

            

            

  

   
   
   
   

   
 
 
 
          

   
   

   

(49) 

The conversion to the Euclidean space is given as: 

    
   
   

         
 

(50) 

Then using equivalence of the extended cross-product and solution of a linear system 

of equations we can write: 

                (51) 

where:                      ,                      
 ,        . It should be 

noted that the result is actually in the  -dimensional projective space.  

In many cases, the result of computation is not necessarily to be converted to the 

Euclidean space. If left in the projective representation, we save division operations, 

increase precision of computation as the mantissa is actually nearly doubled (mantissa 

of     and    ). Also robustness is increased as well as we haven’t made any specific 

assumptions about collinearity of planes. Let a scalar value      is given as: 

       (52) 

The scalar value   can be expressed as a homogeneous vector    in the projective 

notation as: 

           
             

    (53) 

Generally, the value in the Euclidean space is given as   
  

   
. Extension to the  -

dimensional case is straightforward. 

As an example let us consider a test if the given point       
    

    
    

  
 
 lies on a 

plane given by three points            using projective notation. A plane   is given: 

                       (54) 

and the given point has to fulfill condition        
     

     
      

   .  

We know that: 

           

    
        

        

        

    

            

           

            

           

  

  

  

  

  

  (55) 

where:             ,             ,             ,             . Then, the test 

      is actually: 
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    (56) 

It means that we are getting a bilinear form: 

           (57) 

where:   is an antisymmetric matrix with a null diagonal. So we can analyze such 

conditions more deeply in an analytical form. It means that we can explore the formula 

on a symbolic level. It is also possible to derive some additional information for the   

value, resp.    value, if the projective notation is used. This approach can be directly 

extended do the  -dimensional space using geometry algebra [18]. 

12 Efficiency of computation and GPU Code 

Let us consider reliability and the cost of computation of the “standard” approach using 

Cramer’s rule using determinants. For the given system of   liner equations with   

unknowns in the form      the solution is given as: 

    
       

      
         

 

(58) 

In the projective notation using homogeneous coordinates we can actually write 

               , where:          and           ,         

The projective representation not only enables to postpone division operations, but 

also offers some additional advantages as follows. Computing of determinants is quite 

computationally expensive task. However for 2-4 dimensional cases there are some 

advantages using the extended cross-product as explained below. 

Tab. 1: Cost of determinant computation 

Operation                             

  1 6 24 120 

  2 12 48 240 

 

Generally the computational expenses are given as: 

                                   (59) 

Total cost of computation if Cramer’s rule for generalized is used: 

Table 2: Cost of cross-product computation 

Operation                   

“   ” 3 27 159 

“   ” 6 52 173 

 

Computational expenses for the generalized cross-product matrix based formulation, if 

partial intermediate computations are used. 

Table 3: Cost of cross-product computation with subdeterminants 

                   

  3 14 60 

  6 24 77 
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It means, that for the 2-dimensional and 4-dimensional cases, the expected speed up   

is: 

   
             

                 
   (60) 

In real implementations on CPU the SSE instructions can be used which are more 

convenient for vector-vector operations and some steps can be made in parallel. 

Additional speed up can be achieved by GPU use for computation. 

In the case of higher dimension modified standard algorithms can be used including 

iterative methods [17]. Also as the projective representation nearly doubles precision of 

computation, if a single precision on GPU is used (only few processors compute in a 

double precision), the result after conversion to the Euclidean representation is 

equivalent to the double precision. 

13 GPU Code 

Many today’s computational systems can use GPU support, which allows fast and 

parallel processing. The above presented approach offers significant speed up as the 

“standard” cross-product is implemented in hardware as an instruction and the 

extended cross-product for 4D can be implemented as: 
float4 cross_4D(float4 x1, float4 x2, float4 x3) 

{float4 a; 

a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw)); 

a.y = -dot(x1.xzw, cross(x2.xzw, x3.xzw)); 

a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw)); 

a.w = -dot(x1.xyz, cross(x2.xyz, x3.xyz));  

return a} 

In general, it can be seen that a solution of linear systems of equations on GPU for a 

small dimension   is simple, fast and can be performed in parallel.  

14 Conclusion 

Projective representation is not widely used for general computation as it is mostly 

considered for as applicable to computer graphics and computer vision field only. In 

this paper the equivalence of cross-product and solution of linear system of equations 

has been presented. The presented approach is especially convenient for  -dimensional 

and   dimensional cases applicable in many engineering and statistical computations, 

in which significant speed up can be obtained using SSE instructions or GPU use. Also, 

the presented approach enables symbolic manipulation as the solution of a system of 

linear equations is transformed to extended cross-product using a matrix form which 

enables symbolic manipulations.  

Direct application of the presented approach has also been demonstrated on the 

barycentric coordinates computation and simple geometric problems.  

The presented approach enables avoiding division operations as a denominator is 

actually stored in the homogeneous coordinate  . It which leads to significant 

computational savings, increase of precision and robustness as the division operation is 

the longest one and the most decreasing precision of computation. 

The presented approach also enables derivation of new and more computationally 

efficient formula in other computational fields. 
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