
Total Least Square Error Computation in E2:  
A New Simple, Fast and Robust Algorithm

Vaclav Skala 
Department of Computer Science and Engineering 

University of West Bohemia 
Univerzitni 8, CZ 30614 Plzen, Czech Republic 

http://www.VaclavSkala.eu 

   

ABSTRACT 

Many problems, not only in signal processing, image processing, 

digital imaging, computer vision and visualization, lead to the 

Least Square Error (LSE) problem or Total (Orthogonal) Least 

Square Error (TLSE) problem computation. Mostly the LSE is 

used due to its simplicity for problems leading to         , 

resp.           , i.e. to dependences expressible as an explicit 

function computing “vertical” distances. There are many problems 

for which the LSE is not convenient and the TSLE is to be used. 

Those problems usually lead to       , i.e. to dependences 

expressible as an implicit function computing “orthogonal” 

distances. Unfortunately, the TLSE is computationally much more 

expensive.  

This paper presents a new, simple, robust and fast algorithm 

for the total least square error computation in   . 
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1. INTRODUCTION 
Wide range of applications is based on approximation of acquired 

data in    or    space and mostly the Least Square Error 

minimization is used, known also as a linear or polynomial 

regression. The regression methods have been heavily explored 

especially with statistically oriented problems. They are used 

across many engineering fields dealing with acquired data 

processing. Several studies have been published and they can be 

classified as follows: 

 “standard” Least Square Error (LSE) methods fitting data to 

a function       , where   is an independent variable 

and   is a measured or given value 

 “orthogonal” Total Least Square Error (TLSE) methods 

fitting data to a function       , i.e. fitting data to 

some      -dimensional entity in this  -dimensional 

space, e.g. a line in the     space or a plane in the    space 

[1][6][8][18][19].  

 “orthogonally mapping” Total Least Square Error (MTLSE) 

methods for fitting data to a given entity in a subspace of the 

given space. However, this problem is much more 

complicated. As an example we can consider data given 

in    and we need to find an optimal line in   , i.e. one 

dimensional entity, in this  -dimensional space fitting 

optimally the given data. Typical problem: Find a line in 

the    space which has the minimum orthogonal distance 

from the given points in this     space. This approach can be 

used in optimal parameters estimation, etc. This algorithm is 

quite complex and solution can be found in [16]. 

It should be noted that all methods above do have one significant 

drawback as values are taken in a squared value. This results to an 

artifact that small values do not have relevant influence to the 

final entity as the high values. Some methods are trying to 

overcome this by setting weights to each measured data [3]. It 

should be noted that the TLSE was originally derived by Pearson 

[15](1901). Deep comprehensive analysis can be found in 

[8][12][18]. Differences between the LSE and TLSE methods 

approaches are significant, see Figure 1.  
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Figure1.a LSE method Figure 1.b TLSE method 

In the following we will shortly introduce the Least Square Error 

method which measures distances “horizontally”, than the Total 

Least Square Error method which measures distances 

“orthogonally”. 

2. LEAST SQUARE ERROR 
In the vast majority the Least Square Error (LSE) methods 

measuring vertical distances are used. This approach is acceptable 

in the case of explicit functional dependences         , 

resp.           . However, it should be noted that a user 

should keep in a mind, that smaller differences than    , will have 

significantly smaller weight than higher differences than     as the 

differences are taken in a square resulting to dependences in 

scaling of data approximated, i.e. the result will depend on 
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physical units used, etc. The main advantage of the LSE method is 

that it is simple for fitting polynomial curves and it is easy to 

implement. The standard LSE method leads to over determined 

system of linear equations. This approach is also known as 

polynomial regression.  

Let us consider a data set                  
 , i.e. data set 

containing for     and    measured functional value    and we 

want to find parameters              for optimal fitting 

function, as an example: 

                     

by minimizing the vertical squared distance  , i.e.: 

     
       

                
 

 

   

 

Conditions for an extreme are given as a vector equation: 

  

  
                        

 

   

         

  
   

Rewriting this vector condition, we obtain conditions: 

  

  
                        

 

   

   

  

  
                          

 

   

   

  

  
                          

 

   

   

  

  
                        

 

   

       

Rewriting the first condition above we get a simple condition: 

   

 

   

             

 

   

       

 

   

 

   

   

as       
   . Similarly we obtain other conditions.  

All those simplified conditions can be rewritten in a matrix form 

as     . The selection of bilinear form was used to show the 

LSE method application to a non-linear case, if the case of linear 

function, i.e.                 , the 4th row and column of 

the matrix   is to be removed. 

Several methods for LSE have been derived [4][5][10], 

however those methods are sensitive to the vector   orientation 

and not robust in general as a value of    
   

  
    might be too 

high in comparison with the value   which has an influence to 

robustness of numerical solution. Also the LSE methods are 

sensitive to a rotation as they measure vertical distances. 

Rotational and translation invariances are fundamental 

requirements not only in geometrically oriented applications. 

3. TOTAL LEAST SQUARE ERROR 
The Total (Orthogonal) Least Square (TSLE) method takes 

another approach as measures distances orthogonally and 

approximation by a line or plane is used nearly exclusively. One 

significant property of the TLSE method is its rotational and 

translational invariance [18][19][19]. This approach leads to an 

approximation by an implicit function to          in the    

case, resp.           , in the    case, i.e. to dependences 

expressible as an implicit function.  

There are several approaches how to solve TLSE problem 

and comprehensive analysis is given in [8]. Many algorithms are 

based on Singular Value Decomposition (SVD) or on a “simple” 

solution” based on the explicit line representation [11] in the form 

      . This formulation leads to a simple formula for 

calculation of the     coefficients. However, it is not robust and it 

is sensitive to a rotation. Also when a line is close to a vertical 

one, there is a high numerical imprecision and an overflow can 

appear as well, etc. If TLSE method is to be used many times, it is 

reasonable to consider robust and fast method specialized for the 

   case. In the    case and the linear case a linear 

function                is used, the orthogonal 

distance   of the given   point and the line   is determined as: 

  
         

      

where:          is the given point and a line   is given 

as          . The computational problem is determination 

coefficients       of a line     . 

In image processing, signal processing, digital imaging and 

computer graphics specialized algorithms should be used in the    

case. Such a solution for the    case was published in [2] which is 

based on a line representation in the polar coordinates. Some 

specialized algorithms for a circle, resp. ellipse fitting were 

developed recently as well.The algorithm fully described in [2] is 

based on polar representation and leads to a formula which is 

stable. The derivation of the algorithm is not simple and uses 

goniometric functions, i.e.        and       . A special case for 

perfectly circular data is to be solved. The algorithm [2] is not 

extensible to the     case. In the following a new approach to 

TLSE computation will be described with experimental 

verification of the proposed method.  

4. PROPOSED ALGORITHM 
Fundamental requirement for any algorithm is its robustness. It 

should be fast and simple to implement as well. The proposed the 

TLSE algorithm is based on a squared orthogonal distance 

computation. As the TSLE method has to be translationally and 

rotationally invariant, the centroid of the given point set is to 

be     , this was shown also in [2]. As it is not a general case, 

the first step is a data set transformation: 

             
 

 
   

 

   

 

where:   is a number of the given points,           
  are the 

given points,        . This step has two consequences, the 

line   passes the origin of the coordinate system and therefore 

the   coefficient of the line   is set     by definition, now. 

There is a seemingly a simple formulation of the TLSE problem 

using optimization and Lagrange multipliers, i.e. 

   
     

            
     

          
                     

where:               . Unfortunately, this approach does 

not lead to a simple solution. 

The proposed algorithm is based on direct minimization of a 

distance   given as: 

          
 

 

   

  
         

 

     

 

   

 

For a minimum the following conditions must be fulfilled 
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Now, we can express both conditions analytically as follows 

       

  
  

 
                

                  
     

   
 
   

        
 

Multiplying by            and by     we get 

       

  
                

                  
   

 

   

 

   

 

                
                

  

 

   

   

      
          

            
      

           

 

   

   

Using algebraic operations we get: 

       

  
       

                
      

      
 

 

   

       
               

and by simplifying we obtain: 

       

  
         

    
                

  

 

   

   

We can divide the equation by     and then 

       

  
        

    
         

      

 

   

   

and it can be rewritten as  

      
    

  

 

   

             

 

   

   

The second condition for an extreme is given as: 

       

  
  

 
                

                  
     

   
 
   

        
 

Multiplying by              we get 

       

  
                

                  
   

 

   

 

   

 

                
                

  

 

   

 

           
     

         

 

   

       
      

              

Using algebraic operations we get: 

       

  
               

              
       

 

 

   

      
              

and by simplifying we obtain: 

       

  
                 

    
           

 

   

   

We can divide the equation by     and then 

       

  
        

    
         

      

 

   

   

and it can be rewritten as: 

      
    

  

 

   

             

 

   

   

Now, we have got two equations from those two conditions for an 

extreme: 

       

  
       

    
  

 

   

             

 

   

   

       

  
       

    
  

 

   

             

 

   

   

It can be seen that both equations above are equivalent and 

actually we have got just one equation: 

      
    

  

 

   

             

 

   

   

which can be rewritten using substitutions as:  

      
    

  

 

   

        

 

   

                

Now, we need to determine values    . As we keep the 

normalization condition for coefficients     during the extreme 

conditions, if    
     

  
   

 
    we can select the value  , 

e.g.    , and solve the equation for   or vice versa. This leads 

to a quadratic equation: 

             i.e.            

and therefore 

   
         

  
    

         

  
 

The minimum distance is given by the    value and 

         

and the     values are of general values.  

Now, the computed line          , which is represented 

by the vector           , passes the origin of the coordinated 

system is to be “moved” back to the original coordinate system of 

the original data set using the standard geometric transformation 

represented by a matrix   [17], i.e.: 

 
  

  

  
   

   
   

       
  

 
 
 
        

Now, the line    represents the line which optimally fits data in 

the sense of the TLSE method. 

The formula is simple, easy and robust. However, it should be 

noted, that the proposed method above is not directly extensible to 

the    case. 
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5. EXPERIMENTAL VERIFICATION 
The proposed TLSE algorithm for the    case was tested on 

datasets with known properties in order to verify the correctness 

and robustness, also for randomly generated data using MATLAB 

system. The experiments proved expected properties and the 

correctness of the proposed algorithm and its expected properties, 

Figure 2. 

 

 

 

 

Figure 2 Examples of the proposed TLSE application 
 

In the case of large data sets, it is recommended for the sake of 

precision to compute the expression        in a double 

precision than the rest of the formula, according to standard 

numerical mathematics recommendations. 

6. CONCLUSION 
In this paper a new simple, fast and robust method for 

approximation using Total Least Square Error method in    has 

been presented. The method was experimentally verified using the 

MATLAB system. However, it should be noted, that the presented 

method is limited to the    case, only. The proposed TLSE 

method is significantly simpler than the “standard” Least Square 

Error method.  

In the     case, the TLSE problem is more complicated and no 

simple analogous formula has been derived, yet.  
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