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Abstract. Finding an exact maximum distance of two points in the given set is 

a fundamental computational problem which is solved in many applications. 

This paper presents a fast, simple to implement and robust algorithm for finding 

this maximum distance of two points in E2. This algorithm is based on a polar 

subdivision followed by division of remaining points into uniform grid. The 

main idea of the algorithm is to eliminate as many input points as possible 

before finding the maximum distance. The proposed algorithm gives the 

significant speed up compared to the standard algorithm. 
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1 Introduction 

Finding a maximum distance of two points in the given data set is a fundamental 

computational problem. The solution of this problem is needed in many applications. 

A standard brute force (BF) algorithm with ����� complexity is usually used, where 

� is a number of points in the input dataset. If large sets of points have to be 

processed, then the BF algorithm leads to very bad time performance. Typical size of 

datasets in computer graphics is usually 10� and more points. Therefore the 

processing time of the BF algorithm for such sets is unacceptable. 

However, our main goal is to find the maximum distance, not all the pairs of two 

points having a maximum distance. Therefore the complexity of this algorithm should 

be lower. 

Various approaches, how to solve finding the maximum distance, are described in 

[9]. Other algorithms for finding the maximum distance of two points are in [1], [7]. 

1.1 Brute Force Algorithm 

The standard BF algorithm for finding a maximum distance in set of points uses two 

nested loops. We can find such type of algorithms in many books dealing with 

fundamental algorithms and data structures, e.g. [4], [6]. In general, the BF algorithm 

can be described by Algorithm 1. 
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//Square of the distance 

FUNCTION distance(A,B: point) 

 distance := (A.x  - B.x)^2 + (A.y - B.y)^2; 

END FUNCTION 

 

dist := 0; 

FOR i := 1 to N-1 do 

 FOR j := i + 1 to N do 

  dij := distance(Xi, Xj); 

  IF dist < dij THEN  

   dist := dij; 

  END IF 

 END FOR 

END FOR 

dist := SQRT(dist); 

Algorithm 1. Brute force algorithm 

 

Complexity of Algorithm 1 is clearly ����� and thus run time significantly 

increases with size of the input dataset. 

In practice, we can expect that points in input set are not organized in a very 

specific manner and points are more or less uniformly distributed. In this case, we can 

use “output sensitive” algorithms which lead to efficient solutions. We propose such 

algorithm in Section 2.  

2 Proposed Algorithm 

In this section, we introduce a new algorithm for finding a maximum distance of two 

points in the given dataset in E2. The main idea of this algorithm is to eliminate as 

many input points as possible using an algorithm with ���� complexity using space 

subdivision and determines the maximum distance for the remaining points with 

��	�� complexity, where 	 ≪ �. We use polar space subdivision for this elimination 

of points.  

This section is organized as follows. In Section 2.1, we present the first step of the 

algorithm which is an axis aligned bounding box (AABB) and an initial convex 

polygon construction followed by the location of points inside the initial convex 

polygon. Section 2.2 describes how to divide the points into non-overlapping 2� 

triangular shape sectors. Section 2.3 presents reduction of the points [2] which have 

absolutely no influence on the value of maximum distance. In Section 2.4, we 

describe the division of remaining points into uniform 2� grid. Finally, the finding of 

the maximum distance of two points is made in Section 2.5. 
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2.1 Location of Points inside Initial Polygon 

An important property is that two points with maximal distance are lying on the 

convex hull of a given set of points [10]. This fact is apparent if we consider a case in 

which two points with the largest distance are part of the convex hull. It is then 

obvious that there are another two points with larger distance. We also know that the 

most extreme point on any axis is part of the convex hull. These properties are used to 

significantly speedup the proposed algorithm for finding the exact maximal distance. 

At the beginning of our proposed algorithm, we need to find the exact extremal 

points in both axes, i.e. axis aligned bounding box (AABB) of a given dataset. The 

time complexity of this step is ����. So we generally get four distinct extremal 

points or less. 

Now, we can create a convex polygon using these extremal points, see Fig. 1. One 

important property of this polygon is that any point lying inside has no influence on 

the value of maximal distance. Due to this fact, we can perform a fast and simple 

initial test for a point inside/outside the initial polygon and discard a lot of points. 

  

a) 
 

b) 
 

c) 

Fig. 1. Location of AABB and initial testing polygon for 10
 points: a) uniform points in ellipse, 
b) uniform points in rectangle, c) Gauss points. 

 

The location test of a point inside a polygon can be performed as follows. Each 

edge of the polygon is an oriented line and so we can calculate outer product [10]: 

����� � �� ∧ �� � ��� � � ��� ���� � �� � � ���	, (1)

where � is the point and edge with index � is determined by point �� and direction 

vector �� � ���� , ����. If the polygon has an anticlockwise orientation and outer 

product ����� � 0 for at least one � ∈ !0,1,2,3#, then point � does not lie inside the 

polygon and has to be further processed. Otherwise, point � can be discarded as it is 

inside. 

2.2 Division of Points into Polar Sectors 

Only the points which lie outside or on the boundary of the initial convex polygon 

will be further processed. Firstly, we perform the division of AABB into eight 
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non-overlapping 2� triangular shape sectors, i.e. polar subdivision. This division of 

AABB is using a center point and angular division, see Fig. 2. The center point $ is 

determined as the average of all corners of the AABB. 

When we do the division of points into non-overlapping sectors, we also determine 

angle between the �-axis and the vector % � � � $ for each point �. This can be 

performed using two different calculations. One way is to use an exact angle 

from 0 to 2&. For this approach, we have to calculate the angle using the following 

formula: 

'( � arctg2.��, ��/	. (2)

However, calculation of function arctg2 takes a lot of computing time. Therefore, we 

use a simplified calculation of approximated angle. When the angle is determined, we 

have to locate the exact sectors (half of the quadrant for square AABB), where the 

point is located, and then calculate the intersection with the given edge. Calculation of 

the intersection with the given edge of AABB is easy. The distribution of simplified 

angle can be seen in Fig. 2. Calculation of simplified angle is faster than the formula 

(2). 

 

Fig. 2. Non-overlapping sectors for division and uniform distribution of simplified angle on AABB. Angle 

' ∈ 10,8� instead of 10,2&�. 
 

Now we have the procedure how to calculate the simplified angle and therefore we 

are able to divide the points into sectors to which the given points belong. 

For each sector with index �, one minimal point 3�4�5 is determined. This point has 

the minimum (from all points in a sector) distance from the nearest corner of AABB. 

(Note that the nearest corner of AABB lies in the same quadrant as the point.) The 

initial points 3�4�5 are lying on the edges of the initial polygon, see Fig. 3. These 

points can be calculated as an intersection point of the middle axis of a sector and the 

edge of the initial polygon. 

 

Fig. 3. Visualization of initial 6�4�5 points (red dots on the edges of the initial polygon). 
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All minimum points 3�4�5 are connected into a polygon with vertices 

374�5, …, 384�5. 

For each new point we have to check whether the distance from this point to the 

nearest corner of AABB is smaller than the distance from 3�4�5 to the same corner of 

AABB. If this is true, then we have to replace point 3�4�5 with a processed point, add 

this point into the sector with index � and recalculate the test lines 9: and 9;, see     

Fig. 4. Otherwise we continue with the next step. 

In the next step, we check whether the processed point lies over or under the test 

line segments 9: and 9;. We can compare the angle of the point with the angle of 

point 3�4�5. If the angle is smaller, then we have to use the line 9:, otherwise we have 

to use the line 9;. If the point lies under the test line, it can be eliminated, because 

such a point has no influence on the value of maximum distance. Otherwise we add 

this point into the sector with index �. 

 

Fig. 4. Visualization of test lines 9: and 9;. 

2.3 Reduction of Points for Testing 

All points, which can have an influence on the value of maximum distance, are 

already divided into polar sectors. We gave points 3�4�5 some initial values before 

starting to divide the points into non-overlapping sectors and we used them to check 

whether to add or eliminate a point. Values of points 3�4�5 have changed during the 

division process; hence we recheck all remaining points using the final values of 

points 3�4�5. Moreover, we perform union of the vertices of initial polygon and 

minimum points 3�4�5 before new testing and connect them into a polygon, see       

Fig. 5a). 

In this step, we check whether the processed point lies over or under the line 

segments 9::, 9:, 9; and 9;;, see Fig. 5b). We select the concrete test line according 

to the angle again.  
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a) 
 

b) 

Fig. 5. Visualization of test lines for rechecking all remaining points 

 

We minimize the number of points, which have an influence on the largest 

distance, using this step. Final sets of remaining points for input datasets with 

different distributions of points are shown in Fig. 6. 

a) 
 

b) 
 

c) 

Fig. 6. Remaining points (red dots) which have influence on the maximum distance (10
 input points): 
a) uniform points in ellipse, b) uniform points in rectangle, c) Gauss points. 

2.4 Division of Remaining Points into Uniform Grid  

We have a set of suspicious points, i.e. points which can have an influence on the 

final maximum distance. In this step, these suspicious points will be further 

processed. Firstly, we define the uniform grid of AABB. This uniform grid contains 

	 < 	 cells. Thus, each cell has index � � =>? ∙ 	 A B>9, width C� and height C� 

where: 

	C� � 	DDEEF�GHI	 , C� � 	DDEEI(�JIH	 . (3)
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Now, we can perform the division of suspicious points into a defined uniform grid. 

We are able to calculate the exact index of a cell to which the given point � belongs 

using following formulae: 

=>? � 	 K� � �4�5
C� L , B>9 � 	 M� � �4�5

C� N, (4)

where �4�5 and �4�5 are the coordinates of bottom left corner of AABB, see Fig. 7. 

After performing previous step, we determined all possible pairs of nonempty 

cells. Moreover, for each pair of nonempty cells, the shortest distance C�OP(QQ , i.e. the 

distance of the nearest corners of cells, and the largest distance ��OP(QQ , i.e. the distance 

of the farthest corners of cells, are determined, see Fig. 7. 

 

Fig. 7. Uniform grid of AABB. Value �P(QQ presents the largest distance of two cells and CP(QQ presents the 
shortest distance of two cells. 

2.5 Find Maximal Distance of Two Points 

Now a maximum distance of two points in the given dataset can be found by 

following steps. We determine the maximum value C4R�P(QQ  from the shortest distances 

C�OP(QQ  which were calculated for all pairs of nonempty cells. When this value is known, 

we can eliminate all pairs of nonempty cells for which the largest distance ��OP(QQ  is 

smaller than C4R�P(QQ .  

For remaining pairs of nonempty cells, we perform the following. For each pair of 

nonempty cells, the maximum distance ��O  between points in these cells is 

determined, i.e. we calculate all distances from points in one cell to points in second 

cell and determine their maximum. Finally, we find the maximum value of these 

maximum distances ��O .  
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3 Experimental Results 

The proposed algorithm has been implemented in C# using .Net Framework 4.5 and 

tested on datasets using a PC with the following configuration:  

• CPU: Intel® Core™ i7-2600 (4 × 3.40 GHz) 

• memory: 16 GB RAM  

• operating system Microsoft Windows 7 64bits 

3.1 Distribution of Points 

The proposed algorithm for finding the maximum distance of two points has been 

tested using different datasets. These datasets have different types of distributions of 

points. For our experiments, we used well-known distributions such as randomly 

distributed uniform points in an ellipse, uniform points in a rectangle or points with a 

Gaussian distribution. Other distributions used were Halton points and Gauss ring 

points. Both of these distributions are described in the following text. 

Halton Points. Construction of a Halton sequence is based on a deterministic method. 

This sequence generates well-spaced “draws” points from the interval 1S, T]. The 

sequence uses a prime number as its base and is constructed based on finer and finer 

prime-based divisions of sub-intervals of the unit interval. The Halton sequence [3] 

can be described by the following recurrence formula: 

VW9X>Y�Z�[ � ∑ 7
]^_` aM

[
]^N 	mod	Ze

fghij [k
�lm , (5)

where Z is the prime number and 	 is the index of the calculated element. 

For the 2� space, subsequent prime numbers are used as a base. In our test, we 

used !2,3# for the Halton sequence and we got a following sequence of points in a 

rectangle: 

VW9X>Y�2,3,5� � op12 W,
1
3 qr , p

1
4 W,

2
3 qr , p

3
4 W,

1
9 qr , p

1
8 W,

4
9 qr , p

5
8 W,

7
9 qr ,

p38 W,
2
9 qr , p

7
8 W,

5
9 qr , p

1
16 W,

8
9 qr , p

9
16 W,

1
27 qr , … x 

(6)

where W is a width of the rectangle and q is a height of the rectangle. 

Visualization of the dataset with 103 points of the Halton sequence from (6) can be 

seen in Fig. 8. We can see that the Halton sequence in 2� space covers this space 

more evenly than randomly distributed uniform points in the same rectangle. 

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274, 
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015



      

Fig. 8. 2� Halton points generated by VW9X>Y�2,3� (left) and 2� random points in a rectangle with 

uniform distribution (right). Number of points is 10y in both cases. 

Gauss Ring Points. It is a special distribution of points in z{. Each point is 

determined as follows:  

| � }W ∙ ~ ∙ cos.=WYC�0,2&�/ , q ∙ ~ ∙ sin.=WYC�0,2&�/	� 
~ � 0.5 A 0.5	 ∙ ���Y ∙ =WYC�R��� 

(7)

where W is a length of semi-major axis, q is a length of semi-minor axis, ���Y is a 

randomly generated number from set !�1,1#, =WYC�R��� is a randomly generated 

number with Gauss distribution from interval 10,∞� and =WYC�0,2&� is a random 

number with uniform distribution from 0 to 2&. 

Visualization of the dataset with 10y Gauss ring points can be seen in Fig. 9. We 

can see that this dataset consists of a large set of points, which are close to the ellipse, 

and a small set of points, which are far from this ellipse. 

 

Fig. 9. 2� Gauss ring points. Number of points is 10y. 

3.2 Optimal Size of Grid 

In the proposed approach, the remaining points are divided into uniform grid 	 < 	 

after their elimination by polar division. The size of the grid has significantly 

influence on the number of pairs of points for which their mutual distance is 

determined. Simultaneously the time complexity is increasing with growing size of 

the grid. Therefore, we need know an estimation of the optimal size of the grid, 
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which should be dependent on the distribution of points and on the number of points. 

Therefore, we have to measure it for each type of input points separately. 

We measured the time performance of our proposed algorithm for different 

distributions of points, different numbers of points and different sizes of grid. 

Measurement for 10� points is presented in Fig. 10. For all tested distributions of 

input points, we can see that the time performance decreases with the increasing size 

of grid until the optimal size of the grid is achieved. After that time, the complexity 

increases with the increasing number of divisions. Moreover, for all tested 

distributions of input points, except uniform points in the ellipse, it can be seen that 

the time complexity is practically independent on size of the grid. This is due to the 

fact that size of set of suspicious points is very small and the number of nonempty 

cells is small too, see Fig. 6 b)- Fig. 6 c). Thus the time complexity of division into 

uniform grid and consequent calculation is almost insignificant. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Fig. 10. The time performance of algorithm for finding maximum distance of two points for different points 

distributions and different size of grid. The size of grid denotes the number of cells in one axis. The number 

of input points is 10�. Distribution of points are: a) uniform points in ellipse, b) uniform points in rectangle, 
c) Halton points, d) Gauss points, e) Gauss ring points. 
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Fig. 11 presents the optimal size of grid for different distributions of points and 

different numbers of points. It can be seen that the optimal size of grid increases with 

the increasing number of points. Moreover, we can see that for uniform distribution of 

points in the ellipse is needed larger size of the grid than for other tested distributions. 

This is due to the fact that for this distribution of points is the number of suspicious 

points substantially larger. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Fig. 11. Optimal number of grid size for algorithm for finding maximum distance of two points for different 
points distributions and different number of points. The size of grid denotes the number of cells in one axis. 

Distribution of points are: a) uniform points in ellipse, b) uniform points in rectangle, c) Halton points, 

d) Gauss points, e) Gauss ring points. 

Evaluating experimental results for different distributions of points and different 

numbers of input points, i.e. 10�, √10 ∙ 10�, 10�, √10 ∙ 10� and 108, including 

results from Fig. 10 and Fig. 11, we came to the following conclusion. 

The optimal size of the grid is dependent on the number of input points, more 

precisely the size of the grid is dependent on number of suspicious point. Size of the 

grid has to increase with the increasing number of points.  
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3.3 Time Performance 

In some applications, the time performance is one of an important criterion. 

Therefore, running times were measured for different number of input points with 

different distributions of points. Measurements were performed many times and 

average running times, calculated from the measured results, are in Table 1. 

Moreover, we can see these running times in Fig. 12. 

Table 1. The time performance of convex hull for different number of input points and different 
distributions of points. 

 Time [ms] 

Number of points Uniform ○ Uniform □ Halton Gauss GaussRing 

1E+5  32.9     11.5     11.0     9.0     8.8    

√10E+5  137.6     37.4     36.3     30.6     29.8    

1E+6  466.2     119.1     113.5     93.3     93.4    

√10E+6  1 745.5     367.8     355.8     315.0     296.0    

1E+7  5 631.3     1 203.9     1 158.0     1 009.2     954.9    

√10E+7  17 976.5     3 596.6     3 579.0     3 221.5     3 057.9    

1E+8  56 769.0     11 154.0     11 505.0     12 004.0     9 680.0    
 

 

It can be seen that the best time performance is for the Gauss ring points. The time 

performance for Halton points and for uniform distribution of points inside a 

rectangle is similar. Overall, we can say that for all tested distributions of input points, 

except uniform points in an ellipse, is the running time practically similar. This is 

expected behavior because most of the points are eliminated during the phase of polar 

division. Therefore, there are only a few points and nonempty cells of uniform grid 

for finding the maximum distance. The worst time performance was obtained for 

uniform points in an ellipse. 

 

Fig. 12. The time performance of algorithm for finding maximum distance two points for different number 
of input points and different distribution of this points. 
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3.4 Comparison with Other Algorithms 

We compared our proposed algorithm for finding exact maximum distance of two 

points in the given dataset with the BF algorithm, whose time complexity is �����, 
and with the algorithm proposed in [8], which has expected time complexity ����, 
where � is the number of input points. It should be noted that the results for the 

algorithm in [8] are based on the use of the ratio of the BF algorithm to this algorithm. 

Running times were measured for different numbers of input points with uniformly 

distributed points. The resultant speed-up of our proposed algorithm with respect to 

the BF algorithm and algorithm in [8] can be seen in Fig. 13 and Fig. 14. 

 

Fig. 13. The speed-up of our proposed algorithm for uniformly distributed points with respect to BF 

algorithm for the same datasets. 

 
Fig. 14. The speed-up of our proposed algorithm for uniformly distributed points with respect to 
algorithm in [8] for the same datasets. 

 

It can be seen that the speed-up of the proposed algorithm is significant with 

respect to BF algorithm and grows with the number of points processed. Moreover, 

our algorithm is in average 1.5 times faster than the algorithm in [8]. 
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4 Conclusion 

A new fast algorithm for finding an exact maximum distance of two points in �� with 

������������ complexity has been presented. This algorithm uses a space division 

technique. It is robust and can process a large number of points. The advantages of 

our proposed algorithm are simple implementation and robustness. Moreover, our 

algorithm can be easily extended to E3 by a simple modification. 

For future work, the algorithm for finding exact maximum distance of two points, 

can be easily parallelized, as most of the steps are independent. The second thing is to 

extend this algorithm to E3. 
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