
 Fast Algorithm for Finding Maximum Distance with

Space Subdivision in E2

Vaclav Skala1, Zuzana Majdisova1

1 Faculty of Applied Sciences, University of West Bohemia,

Univerzitni 8, CZ 30614 Plzen, Czech Republic

Abstract. Finding an exact maximum distance of two points in the given set is

a fundamental computational problem which is solved in many applications.

This paper presents a fast, simple to implement and robust algorithm for finding

this maximum distance of two points in E2. This algorithm is based on a polar

subdivision followed by division of remaining points into uniform grid. The

main idea of the algorithm is to eliminate as many input points as possible

before finding the maximum distance. The proposed algorithm gives the

significant speed up compared to the standard algorithm.

Keywords: maximum distance; polar space subdivision; uniform 2D grid;

points reduction

1 Introduction

Finding a maximum distance of two points in the given data set is a fundamental

computational problem. The solution of this problem is needed in many applications.

A standard brute force (BF) algorithm with ����� complexity is usually used, where

� is a number of points in the input dataset. If large sets of points have to be

processed, then the BF algorithm leads to very bad time performance. Typical size of

datasets in computer graphics is usually 10� and more points. Therefore the

processing time of the BF algorithm for such sets is unacceptable.

However, our main goal is to find the maximum distance, not all the pairs of two

points having a maximum distance. Therefore the complexity of this algorithm should

be lower.

Various approaches, how to solve finding the maximum distance, are described in

[9]. Other algorithms for finding the maximum distance of two points are in [1], [7].

1.1 Brute Force Algorithm

The standard BF algorithm for finding a maximum distance in set of points uses two

nested loops. We can find such type of algorithms in many books dealing with

fundamental algorithms and data structures, e.g. [4], [6]. In general, the BF algorithm

can be described by Algorithm 1.

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

//Square of the distance

FUNCTION distance(A,B: point)

 distance := (A.x - B.x)^2 + (A.y - B.y)^2;

END FUNCTION

dist := 0;

FOR i := 1 to N-1 do

 FOR j := i + 1 to N do

 dij := distance(Xi, Xj);

 IF dist < dij THEN

 dist := dij;

 END IF

 END FOR

END FOR

dist := SQRT(dist);

Algorithm 1. Brute force algorithm

Complexity of Algorithm 1 is clearly ����� and thus run time significantly

increases with size of the input dataset.

In practice, we can expect that points in input set are not organized in a very

specific manner and points are more or less uniformly distributed. In this case, we can

use “output sensitive” algorithms which lead to efficient solutions. We propose such

algorithm in Section 2.

2 Proposed Algorithm

In this section, we introduce a new algorithm for finding a maximum distance of two

points in the given dataset in E2. The main idea of this algorithm is to eliminate as

many input points as possible using an algorithm with ���� complexity using space

subdivision and determines the maximum distance for the remaining points with

��	�� complexity, where 	 ≪ �. We use polar space subdivision for this elimination

of points.

This section is organized as follows. In Section 2.1, we present the first step of the

algorithm which is an axis aligned bounding box (AABB) and an initial convex

polygon construction followed by the location of points inside the initial convex

polygon. Section 2.2 describes how to divide the points into non-overlapping 2�

triangular shape sectors. Section 2.3 presents reduction of the points [2] which have

absolutely no influence on the value of maximum distance. In Section 2.4, we

describe the division of remaining points into uniform 2� grid. Finally, the finding of

the maximum distance of two points is made in Section 2.5.

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

2.1 Location of Points inside Initial Polygon

An important property is that two points with maximal distance are lying on the

convex hull of a given set of points [10]. This fact is apparent if we consider a case in

which two points with the largest distance are part of the convex hull. It is then

obvious that there are another two points with larger distance. We also know that the

most extreme point on any axis is part of the convex hull. These properties are used to

significantly speedup the proposed algorithm for finding the exact maximal distance.

At the beginning of our proposed algorithm, we need to find the exact extremal

points in both axes, i.e. axis aligned bounding box (AABB) of a given dataset. The

time complexity of this step is ����. So we generally get four distinct extremal

points or less.

Now, we can create a convex polygon using these extremal points, see Fig. 1. One

important property of this polygon is that any point lying inside has no influence on

the value of maximal distance. Due to this fact, we can perform a fast and simple

initial test for a point inside/outside the initial polygon and discard a lot of points.

a)

b)

c)

Fig. 1. Location of AABB and initial testing polygon for 10
 points: a) uniform points in ellipse,
b) uniform points in rectangle, c) Gauss points.

The location test of a point inside a polygon can be performed as follows. Each

edge of the polygon is an oriented line and so we can calculate outer product [10]:

����� � �� ∧ �� � ��� � � ��� ���� � �� � � ���	, (1)

where � is the point and edge with index � is determined by point �� and direction

vector �� � ���� , ����. If the polygon has an anticlockwise orientation and outer

product ����� � 0 for at least one � ∈ !0,1,2,3#, then point � does not lie inside the

polygon and has to be further processed. Otherwise, point � can be discarded as it is

inside.

2.2 Division of Points into Polar Sectors

Only the points which lie outside or on the boundary of the initial convex polygon

will be further processed. Firstly, we perform the division of AABB into eight

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

non-overlapping 2� triangular shape sectors, i.e. polar subdivision. This division of

AABB is using a center point and angular division, see Fig. 2. The center point $ is

determined as the average of all corners of the AABB.

When we do the division of points into non-overlapping sectors, we also determine

angle between the �-axis and the vector % � � � $ for each point �. This can be

performed using two different calculations. One way is to use an exact angle

from 0 to 2&. For this approach, we have to calculate the angle using the following

formula:

'(� arctg2.��, ��/	. (2)

However, calculation of function arctg2 takes a lot of computing time. Therefore, we

use a simplified calculation of approximated angle. When the angle is determined, we

have to locate the exact sectors (half of the quadrant for square AABB), where the

point is located, and then calculate the intersection with the given edge. Calculation of

the intersection with the given edge of AABB is easy. The distribution of simplified

angle can be seen in Fig. 2. Calculation of simplified angle is faster than the formula

(2).

Fig. 2. Non-overlapping sectors for division and uniform distribution of simplified angle on AABB. Angle

' ∈ 10,8� instead of 10,2&�.

Now we have the procedure how to calculate the simplified angle and therefore we

are able to divide the points into sectors to which the given points belong.

For each sector with index �, one minimal point 3�4�5 is determined. This point has

the minimum (from all points in a sector) distance from the nearest corner of AABB.

(Note that the nearest corner of AABB lies in the same quadrant as the point.) The

initial points 3�4�5 are lying on the edges of the initial polygon, see Fig. 3. These

points can be calculated as an intersection point of the middle axis of a sector and the

edge of the initial polygon.

Fig. 3. Visualization of initial 6�4�5 points (red dots on the edges of the initial polygon).

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

All minimum points 3�4�5 are connected into a polygon with vertices

374�5, …, 384�5.

For each new point we have to check whether the distance from this point to the

nearest corner of AABB is smaller than the distance from 3�4�5 to the same corner of

AABB. If this is true, then we have to replace point 3�4�5 with a processed point, add

this point into the sector with index � and recalculate the test lines 9: and 9;, see

Fig. 4. Otherwise we continue with the next step.

In the next step, we check whether the processed point lies over or under the test

line segments 9: and 9;. We can compare the angle of the point with the angle of

point 3�4�5. If the angle is smaller, then we have to use the line 9:, otherwise we have

to use the line 9;. If the point lies under the test line, it can be eliminated, because

such a point has no influence on the value of maximum distance. Otherwise we add

this point into the sector with index �.

Fig. 4. Visualization of test lines 9: and 9;.

2.3 Reduction of Points for Testing

All points, which can have an influence on the value of maximum distance, are

already divided into polar sectors. We gave points 3�4�5 some initial values before

starting to divide the points into non-overlapping sectors and we used them to check

whether to add or eliminate a point. Values of points 3�4�5 have changed during the

division process; hence we recheck all remaining points using the final values of

points 3�4�5. Moreover, we perform union of the vertices of initial polygon and

minimum points 3�4�5 before new testing and connect them into a polygon, see

Fig. 5a).

In this step, we check whether the processed point lies over or under the line

segments 9::, 9:, 9; and 9;;, see Fig. 5b). We select the concrete test line according

to the angle again.

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

a)

b)

Fig. 5. Visualization of test lines for rechecking all remaining points

We minimize the number of points, which have an influence on the largest

distance, using this step. Final sets of remaining points for input datasets with

different distributions of points are shown in Fig. 6.

a)

b)

c)

Fig. 6. Remaining points (red dots) which have influence on the maximum distance (10
 input points):
a) uniform points in ellipse, b) uniform points in rectangle, c) Gauss points.

2.4 Division of Remaining Points into Uniform Grid

We have a set of suspicious points, i.e. points which can have an influence on the

final maximum distance. In this step, these suspicious points will be further

processed. Firstly, we define the uniform grid of AABB. This uniform grid contains

	 < 	 cells. Thus, each cell has index � � =>? ∙ 	 A B>9, width C� and height C�

where:

	C� � 	DDEEF�GHI	 , C� � 	DDEEI(�JIH	 . (3)

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

Now, we can perform the division of suspicious points into a defined uniform grid.

We are able to calculate the exact index of a cell to which the given point � belongs

using following formulae:

=>? � 	 K� � �4�5
C� L , B>9 � 	 M� � �4�5

C� N, (4)

where �4�5 and �4�5 are the coordinates of bottom left corner of AABB, see Fig. 7.

After performing previous step, we determined all possible pairs of nonempty

cells. Moreover, for each pair of nonempty cells, the shortest distance C�OP(QQ , i.e. the

distance of the nearest corners of cells, and the largest distance ��OP(QQ , i.e. the distance

of the farthest corners of cells, are determined, see Fig. 7.

Fig. 7. Uniform grid of AABB. Value �P(QQ presents the largest distance of two cells and CP(QQ presents the
shortest distance of two cells.

2.5 Find Maximal Distance of Two Points

Now a maximum distance of two points in the given dataset can be found by

following steps. We determine the maximum value C4R�P(QQ from the shortest distances

C�OP(QQ which were calculated for all pairs of nonempty cells. When this value is known,

we can eliminate all pairs of nonempty cells for which the largest distance ��OP(QQ is

smaller than C4R�P(QQ .

For remaining pairs of nonempty cells, we perform the following. For each pair of

nonempty cells, the maximum distance ��O between points in these cells is

determined, i.e. we calculate all distances from points in one cell to points in second

cell and determine their maximum. Finally, we find the maximum value of these

maximum distances ��O .

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

3 Experimental Results

The proposed algorithm has been implemented in C# using .Net Framework 4.5 and

tested on datasets using a PC with the following configuration:

• CPU: Intel® Core™ i7-2600 (4 × 3.40 GHz)

• memory: 16 GB RAM

• operating system Microsoft Windows 7 64bits

3.1 Distribution of Points

The proposed algorithm for finding the maximum distance of two points has been

tested using different datasets. These datasets have different types of distributions of

points. For our experiments, we used well-known distributions such as randomly

distributed uniform points in an ellipse, uniform points in a rectangle or points with a

Gaussian distribution. Other distributions used were Halton points and Gauss ring

points. Both of these distributions are described in the following text.

Halton Points. Construction of a Halton sequence is based on a deterministic method.

This sequence generates well-spaced “draws” points from the interval 1S, T]. The

sequence uses a prime number as its base and is constructed based on finer and finer

prime-based divisions of sub-intervals of the unit interval. The Halton sequence [3]

can be described by the following recurrence formula:

VW9X>Y�Z�[� ∑ 7
]^_` aM

[
]^N 	mod	Ze

fghij [k
�lm , (5)

where Z is the prime number and 	 is the index of the calculated element.

For the 2� space, subsequent prime numbers are used as a base. In our test, we

used !2,3# for the Halton sequence and we got a following sequence of points in a

rectangle:

VW9X>Y�2,3,5� � op12 W,
1
3 qr , p

1
4 W,

2
3 qr , p

3
4 W,

1
9 qr , p

1
8 W,

4
9 qr , p

5
8 W,

7
9 qr ,

p38 W,
2
9 qr , p

7
8 W,

5
9 qr , p

1
16 W,

8
9 qr , p

9
16 W,

1
27 qr , … x

(6)

where W is a width of the rectangle and q is a height of the rectangle.

Visualization of the dataset with 103 points of the Halton sequence from (6) can be

seen in Fig. 8. We can see that the Halton sequence in 2� space covers this space

more evenly than randomly distributed uniform points in the same rectangle.

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

Fig. 8. 2� Halton points generated by VW9X>Y�2,3� (left) and 2� random points in a rectangle with

uniform distribution (right). Number of points is 10y in both cases.

Gauss Ring Points. It is a special distribution of points in z{. Each point is

determined as follows:

| � }W ∙ ~ ∙ cos.=WYC�0,2&�/ , q ∙ ~ ∙ sin.=WYC�0,2&�/	�
~ � 0.5 A 0.5	 ∙ ���Y ∙ =WYC�R���

(7)

where W is a length of semi-major axis, q is a length of semi-minor axis, ���Y is a

randomly generated number from set !�1,1#, =WYC�R��� is a randomly generated

number with Gauss distribution from interval 10,∞� and =WYC�0,2&� is a random

number with uniform distribution from 0 to 2&.

Visualization of the dataset with 10y Gauss ring points can be seen in Fig. 9. We

can see that this dataset consists of a large set of points, which are close to the ellipse,

and a small set of points, which are far from this ellipse.

Fig. 9. 2� Gauss ring points. Number of points is 10y.

3.2 Optimal Size of Grid

In the proposed approach, the remaining points are divided into uniform grid 	 < 	

after their elimination by polar division. The size of the grid has significantly

influence on the number of pairs of points for which their mutual distance is

determined. Simultaneously the time complexity is increasing with growing size of

the grid. Therefore, we need know an estimation of the optimal size of the grid,

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

which should be dependent on the distribution of points and on the number of points.

Therefore, we have to measure it for each type of input points separately.

We measured the time performance of our proposed algorithm for different

distributions of points, different numbers of points and different sizes of grid.

Measurement for 10� points is presented in Fig. 10. For all tested distributions of

input points, we can see that the time performance decreases with the increasing size

of grid until the optimal size of the grid is achieved. After that time, the complexity

increases with the increasing number of divisions. Moreover, for all tested

distributions of input points, except uniform points in the ellipse, it can be seen that

the time complexity is practically independent on size of the grid. This is due to the

fact that size of set of suspicious points is very small and the number of nonempty

cells is small too, see Fig. 6 b)- Fig. 6 c). Thus the time complexity of division into

uniform grid and consequent calculation is almost insignificant.

a)

b)

c)

d)

e)

Fig. 10. The time performance of algorithm for finding maximum distance of two points for different points

distributions and different size of grid. The size of grid denotes the number of cells in one axis. The number

of input points is 10�. Distribution of points are: a) uniform points in ellipse, b) uniform points in rectangle,
c) Halton points, d) Gauss points, e) Gauss ring points.

 5

 9

 13

 17

 21

 64 128 256 512 1 024

ti
m

e
[s

]

Grid size

1.200

1.205

1.210

1.215

1.220

1.225

1.230

 64 128 256 512

ti
m

e
[s

]

Grid size

1.155

1.160

1.165

1.170

1.175

1.180

 64 128 256 512

ti
m

e
[s

]

Grid size

1.000

1.025

1.050

1.075

1.100

1.125

1.150

 64 128 256 512

ti
m

e
[s

]

Grid size

0.954

0.956

0.958

0.960

0.962

 64 128 256 512

ti
m

e
[s

]

Grid size

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

Fig. 11 presents the optimal size of grid for different distributions of points and

different numbers of points. It can be seen that the optimal size of grid increases with

the increasing number of points. Moreover, we can see that for uniform distribution of

points in the ellipse is needed larger size of the grid than for other tested distributions.

This is due to the fact that for this distribution of points is the number of suspicious

points substantially larger.

a)

b)

c)

d)

e)

Fig. 11. Optimal number of grid size for algorithm for finding maximum distance of two points for different
points distributions and different number of points. The size of grid denotes the number of cells in one axis.

Distribution of points are: a) uniform points in ellipse, b) uniform points in rectangle, c) Halton points,

d) Gauss points, e) Gauss ring points.

Evaluating experimental results for different distributions of points and different

numbers of input points, i.e. 10�, √10 ∙ 10�, 10�, √10 ∙ 10� and 108, including

results from Fig. 10 and Fig. 11, we came to the following conclusion.

The optimal size of the grid is dependent on the number of input points, more

precisely the size of the grid is dependent on number of suspicious point. Size of the

grid has to increase with the increasing number of points.

 32

 64

 128

 256

 512

1E+05 1E+06 1E+07 1E+08

G
ri

d
 s

iz
e

number of points

 16

 32

 64

 128

 256

1E+05 1E+06 1E+07 1E+08
G

ri
d
 s

iz
e

number of points

 16

 32

 64

 128

 256

1E+05 1E+06 1E+07 1E+08

G
ri

d
 s

iz
e

number of points

 16

 32

 64

 128

 256

1E+05 1E+06 1E+07 1E+08

G
ri

d
 s

iz
e

number of points

 16

 32

 64

 128

 256

1E+05 1E+06 1E+07 1E+08

G
ri

d
 s

iz
e

number of points

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

3.3 Time Performance

In some applications, the time performance is one of an important criterion.

Therefore, running times were measured for different number of input points with

different distributions of points. Measurements were performed many times and

average running times, calculated from the measured results, are in Table 1.

Moreover, we can see these running times in Fig. 12.

Table 1. The time performance of convex hull for different number of input points and different
distributions of points.

 Time [ms]

Number of points Uniform ○ Uniform □ Halton Gauss GaussRing

1E+5 32.9 11.5 11.0 9.0 8.8

√10E+5 137.6 37.4 36.3 30.6 29.8

1E+6 466.2 119.1 113.5 93.3 93.4

√10E+6 1 745.5 367.8 355.8 315.0 296.0

1E+7 5 631.3 1 203.9 1 158.0 1 009.2 954.9

√10E+7 17 976.5 3 596.6 3 579.0 3 221.5 3 057.9

1E+8 56 769.0 11 154.0 11 505.0 12 004.0 9 680.0

It can be seen that the best time performance is for the Gauss ring points. The time

performance for Halton points and for uniform distribution of points inside a

rectangle is similar. Overall, we can say that for all tested distributions of input points,

except uniform points in an ellipse, is the running time practically similar. This is

expected behavior because most of the points are eliminated during the phase of polar

division. Therefore, there are only a few points and nonempty cells of uniform grid

for finding the maximum distance. The worst time performance was obtained for

uniform points in an ellipse.

Fig. 12. The time performance of algorithm for finding maximum distance two points for different number
of input points and different distribution of this points.

1E+1

1E+2

1E+3

1E+4

1E+5

1E+5 1E+6 1E+7 1E+8

T
im

e
[m

s]

Points count

Uniform ○

Uniform □

Halton

Gauss

GaussRing

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

3.4 Comparison with Other Algorithms

We compared our proposed algorithm for finding exact maximum distance of two

points in the given dataset with the BF algorithm, whose time complexity is �����,
and with the algorithm proposed in [8], which has expected time complexity ����,
where � is the number of input points. It should be noted that the results for the

algorithm in [8] are based on the use of the ratio of the BF algorithm to this algorithm.

Running times were measured for different numbers of input points with uniformly

distributed points. The resultant speed-up of our proposed algorithm with respect to

the BF algorithm and algorithm in [8] can be seen in Fig. 13 and Fig. 14.

Fig. 13. The speed-up of our proposed algorithm for uniformly distributed points with respect to BF

algorithm for the same datasets.

Fig. 14. The speed-up of our proposed algorithm for uniformly distributed points with respect to
algorithm in [8] for the same datasets.

It can be seen that the speed-up of the proposed algorithm is significant with

respect to BF algorithm and grows with the number of points processed. Moreover,

our algorithm is in average 1.5 times faster than the algorithm in [8].

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1E+5 1E+6 1E+7

ν

Points count

Proposed alg. vs. BF

1.40

1.42

1.44

1.46

1.48

1.50

1.52

1.54

1E+5 1E+6 1E+7

ν

Points count

Proposed alg. vs. Alg. [2]

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

4 Conclusion

A new fast algorithm for finding an exact maximum distance of two points in �� with

������������ complexity has been presented. This algorithm uses a space division

technique. It is robust and can process a large number of points. The advantages of

our proposed algorithm are simple implementation and robustness. Moreover, our

algorithm can be easily extended to E3 by a simple modification.

For future work, the algorithm for finding exact maximum distance of two points,

can be easily parallelized, as most of the steps are independent. The second thing is to

extend this algorithm to E3.

Acknowledgments. The authors would like to thank their colleagues at the University

of West Bohemia, Plzen, for their discussions and suggestions, and anonymous

reviewers for their valuable comments and hints provided. The research was

supported by MSMT CR projects LH12181 and SGS 2013-029.

References

1. Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry,

II. Discrete & Computational Geometry, 1989, Vol.4, No.1, pp.387-421.

2. Dobkin, D. P., Snyder, L.: On a general method for maximizing and minimizing among

certain geometric problems. Proceedings of the 20th Annual Symposium on the

Foundations of Computer Science, 1979, pp. 9-17.

3. Fasshauer, G.E.: Meshfree Approximation Methods with MATLAB. World Scientific

Publishing Co., Inc., 2007.

4. Hilyard, J., Teilhet, S.: C# cookbook. O'Reilly Media, Inc., 2006.

5. Liu, G., Chen, Ch.: A new algorithm for computing the convex hull of a planar point set,

Journal of Zhejiang University SCIENCE A, 2007, Vol.8, No.8, pp.1210-1217.

6. Mehta, D. P., Sahni, S: Handbook of data structures and applications. CRC Press, 2004.

7. O'Rourke, J.: Computational geometry in C. Cambridge university press, 1998.

8. Skala, V.: Fast Oexpected (N) algorithm for finding exact maximum distance in E2 instead of

O (N2) or O (N lgN). AIP Conference Proceedings, 2013, No.1558, pp.2496-2499.

9. Snyder, W.E., Tang, D.A.: Finding the extrema of a region. IEEE Trans. on Pattern

Analysis and Machine Intelligence, 1980, Vol.2, No.3, pp.266-269.

10. Vince, J.: Geometric algebra for computer graphics. Springer Science & Business Media,

2008.

Fast Algorithm for Finding Maximum Distance with Space Subdivision in E2, ICIG 2015 proceedings Part II, LNCS 9218, China, pp.261-274,
ISSN 0302-9743, ISBN 978-3-319-21962-2, Springer, 2015

