
GPU Fast and Robust Computation for Barycentric Coordinates and

Intersection of Planes Using Projective Representation

Vaclav Skala

Department of Computer Science and Engineering

University of West Bohemia

Plzen, Czech Republic

http://www.VaclavSkala.eu

Abstract—This paper describes algorithms for fast and robust

GPU computation of barycentric coordinates and intersection

of two planes. The presented algorithms are based on matrix-

vector operations which make the algorithms convenient for

GPU or SSE based architectures. Also a new formula for

finding the closest point of two planes intersection to the given

point is given.

Keywords-GPU, barycentric coordinates, two planes

intersection, Plücker coordinates, closest point, homogeneous

coordinates, projective space

I. INTRODUCTION

Intersection of two planes is frequently used in

geometric computations, e.g. in set operations with

geometric objects given by triangular meshes. In spite of the

simplicity of the problem, the standard formulas for

computations are not robust in cases when given planes are

almost parallel or parallel. Also barycentric coordinates

computation, which leads to a solution of linear equations,

is very often used to solve geometrical problems.

In this paper standard approaches will be presented

together with a new more robust approach especially

convenient for GPU or SSE application based on projective

representation. In the case of two triangles intersection

computation, the vertices of triangles can be given in

homogeneous coordinates and intersection of triangles can

be computed directly without need to convert vertices

coordinates to the Euclidean coordinates. This saves 18

division operations per one pair of triangles intersection

computation, which leads to significant speed-up.

Similarly, barycentric coordinates can be computed

directly in the projective space if coordinates of vertices are

in homogenous coordinates and the conversion to the

Euclidean space is not needed, i.e. we save division

operations as well.

In the following the notation will be used:

 for coordinates or vectors in

 or homogeneous

coordinates in the projective space

 is the outer (cross) vector product

 for dot (scalar) product

II. PROBLEM FORMULATION

Intersection of two planes is a seemingly simple

problem, see Fig.1.

Figure 1: Intersection of two planes

Let us assume two planes and , Fig.1, given by two

vectors
 and

 as:

(1)

and

(2)

where:
 and

We need to determine a line which is given as an

intersection of those two planes if planes are “not parallel”.

However due to the numerical precision in the floating point

representation, the condition must be weaken to “not close

to parallel”. There is the key problem, i.e. what does

actually this condition mean and how it is defined from the

algorithmic point of view.

It can be seen that the line in the parametric form can

be then determined as:

 (3)

As the computation of the vector is simple and

relatively precise, the “problem” is how to determine the

point complying (1) and (2), reliably from the numerical

GPU Fast and Robust Computation for Barycentric Coordinates and Intersection of Planes Using Projective Representation
IEEE WICT 2014 Conference, pp.34-38, ISBN 978-1-4799-8115-1, Malaysia, 2014

precision point of view. Unfortunately in some applications

it can be found incorrect or non-robust solutions.

III. STANDARD SOLUTION

Standard formula for a line given as an intersection of two

planes in the Euclidean space is given as:

Then the “starting” point is given as

(4)

This formula is quite “horrible” one and for users is too

complex to remember and they do not see from the formula

comes from.

It can be seen that coordinates are computed using

division operation and division by is required. There is

a legitimate question about specification of cases when

division by causes floating point overflow or

underflow. In many cases the programmer uses a sequence:

 ;

if then Error

but it can happen that the expression is

 , e.g. for

the -coordinate, and the expression is actually “well

conditioned”. The formula for computation is not

convenient for GPU, nor SSE application, too.

IV. PROJECTIVE SPACE REPRESENTATION

The projective extension of the Euclidean space is often

used in geometry, sometimes is “hidden” in the known

formulas.

Let us consider a point and its

equivalent in the projective space . The

mutual conversion is then given as [1],[3]:

(5)

It can be seen that it is actually one parametric set, i.e. a

line passing the origin in the coordinate system, but

origin is excluded. The extension to the case is

straightforward.

Homogeneous coordinates and the projective space

representation is widely used in computer graphics to

represent geometric transformations, projection operation

etc.

Geometric transformations with points are described

generally as:

 (6)
where is a matrix in the case, or in the

case.

The advantage of the projective representation is that

fundamental transformations like translation, rotation,

scaling, shearing and projections are represented

by a cumulative transformation matrix multiplied by a

vector containing point’s coordinates.

However, geometric transformations with lines in or

planes in are given as:

(7)
as normal vectors are actually bivectors.

It can be seen that the transformation matrices for lines or

planes are different from the transformation matrix of points

defining the given goe.

V. PRINCIPLE OF DUALITY

The principle of duality in states that any theorem

remains true when we interchange the words “point” and

“line”, “lie on” and “pass through”, “join” and

“intersection”, “collinear” and “concurrent” and so on. In

the case of dual identities are “point” and “plane” etc.

Once the theorem has been established, the dual theorem is

obtained as described above [2], [5].

In other words, the principle of duality says that in all

theorems in it is possible to substitute the term “point”

by the term “line” and the term “line” by the term “point”

and the given theorem stays valid. In the case of dual

terms are “point” and “plane”. This helps a lot to solve some

geometrical problems.

A nice example of projective space representation and

principle of duality application in the case is

computation of a line given by two given points , Eq.(8)

 (8)

and an intersection point of two lines , Eq.(9)

 (9)

It can be shown that computation of an intersection of

two lines in E
2
 is dual to computation of a line given by two

points (it is actually a join operation). It means that there

should be the same programming sequence for solving both

dual cases [7], i.e.

(10)

and

GPU Fast and Robust Computation for Barycentric Coordinates and Intersection of Planes Using Projective Representation
IEEE WICT 2014 Conference, pp.34-38, ISBN 978-1-4799-8115-1, Malaysia, 2014

(11)

In the case of E
3
 a plane given as a join of three points

and dual problem, i.e. an intersection of three planes, can be

computed as [8]:

(12)

and

(13)

There are significant advantages of this approach:

 Natural support for GPU computation leading to

significant speed up.

 There is no division operation used that is needed if an

intersection is computed in the Euclidean space, like

 , which leads to instability in principle.

 There are no special cases which a programmer has to

take care of, i.e. detection of collinearity etc.

 If points are given in homogeneous coordinates,

transformation to the Euclidean coordinates is not

required. It means that 6, resp. 9 division operations are

not needed in the case of , resp. , and higher

precision can be expected as well.

As a direct consequence it can be proved [9] that a solution

of a linear system of equations is equivalent to an extended

cross-product [9]. This is a significant result as instead of

solving a linear system of equations we can use

extended cross-product. It should be noted that replacing

a solution of linear system of equations by the

extended cross-product enables also

further formal manipulation using linear algebra.

As a typical example of this approach is computation of

barycentric coordinates which can be used also for the case,

when points are given in homogeneous

coordinates.

VI. PLÜCKER COORDINATES

The Plücker coordinates are often used in robotics and

geometrical problems solutions, e.g. in a ray-triangle

intersection detection and intersection computation [4].

Let us consider two points in the homogeneous

coordinates:

(14)

definining a line . The Plücker coordinates of the

anti-symmetric matrix are defined as:

(15)

Let us define two vectors and as:

(16)

It means that represents the “directional vector”, while

represents the “positional vector”. It can be seen that for the

Euclidean space () we get:

(17)

where:

 are coordinates of points

in the Euclidean space.

The line given by two points in the homogeneous

coordinates is then given as:

 (18)

where are coordinates of points on the line .

Due to the principle of duality in we can exchange

“point” and “plane” in the Eq.(14). As the panes are given

as:

(19)

Now, the matrix is defined as

 (20)

and the rest is the same.

However, an intersection of two planes is the case also

often solved in computer graphics and vision. Unfortunately

in many cases available solutions are not robust or formulas

used are neither simple, like above, nor convenient for GPU

use. This approach also requires normalization of the

vector and division operations.

In the following a new formulation of two plane

intersection is presented and as the projective space is used

for formulation and the solution is quite simple.

GPU Fast and Robust Computation for Barycentric Coordinates and Intersection of Planes Using Projective Representation
IEEE WICT 2014 Conference, pp.34-38, ISBN 978-1-4799-8115-1, Malaysia, 2014

VII. INTERSECTION OF TWO PLANES

Let us consider again two planes given in implicit form,

i.e.
 , and given points

in homogeneous coordinates, see Fig.1.

(21)

The directional vector of the line given as an

intersection of those two planes is again given as:

(22)

An angle between two planes and is given as:

 (23)

If the “standard” formula is used, the value is to be

used for detection of close to singular cases or:

 (24)

as this eliminates function computation in the vector

normalization as well.

Now, let us assume a plane passing the origin of the

coordinate system having as a normal vector the vector ,

see Fig.1. Therefore the point is an intersection of three

planes , and can be computed as a direct

application of the principle duality in the case as a

straightforward application of the Eq.(8) and Eq.(9):

 (25)

From the Eq.(25) we can write for the point using

homogeneous coordinates
 :

(26)

The point is the closest point on the line to the origin

of the coordinate system. As the computation is made in the

projective space no division operation is needed.

The actual decision on “singularity” of computation is

postponed. As a determinant is multilinear, it is clear that

normalization of plane’s equations to not needed.

and it is not a way how to increase stability of computations.

Even more we are getting a formula, which can be used

for symbolic manipulation and computation as well.

Derivation of this formula is simple, fast and it is well

suited for the GPU or SSE application as the cross product

is an GPU instruction, see Appedix A

VIII. BARYCENTRIC COORDINATES

Barycentric coordinates are often used in many

applications, not only in geometry. Barycentric coordinates

computation leads to a solution of a system of linear

equations. However it can be shown, that a solution of a

linear system equations is equivalent to a cross product [7],

[8], [10]. Therefore it is possible to compute barycentric

coordinates using cross product for GPU oriented

applications.

Let us consider the case, i.e. interpolation between

two points, and vector:

(27)

Then the projective barycentric coordinates are given as:

 (28)

The Euclidean barycentric coordinates are given as:

 (29)

Let us consider the case, i.e. interpolation between three

points of the given triangle, and vectors:

(30)

The projective barycentric coordinates are given as:

 (31)

The Euclidean barycentric coordinates are given as:

 (32)

Let us consider the case, i.e. interpolation between four

points of the given tetrahedron, and vectors:

(33)

Then projective barycentric coordinates are given as:

 (34)

The Euclidean barycentric coordinates are given as:

(35)

How simple and elegant solution!

It can be seen that the presented computation of barycentric

coordinates is simple, convenient for GPU or SSE

application. Even more, as we have assumed from the very

beginning, there is no need to convert coordinates of points

from the homogeneous coordinates to the Euclidean

coordinates. As a direct consequence of that is that we save

lot of division operations and also increase robustness of the

computation.

GPU Fast and Robust Computation for Barycentric Coordinates and Intersection of Planes Using Projective Representation
IEEE WICT 2014 Conference, pp.34-38, ISBN 978-1-4799-8115-1, Malaysia, 2014

IX. THE CLOSEST POINT TO AN INTERSECTION OF PLANES

Finding the closest point on the intersection of two

planes to the given point is not an easy problem. The usual

solution is based on application of the Lagrange multipliers

[6] leading to a solution of a system of linear equations with

a matrix . This solution is computationally costly and

not convenient for the GPU applications. Using projective

representation we can easily solve the problem as follows.

Let us assume given two planes:

(36)
with normal vectors:

(37)
Directional vector of a line given as an intersection of two

planes and is determined as

 (38)
and the “starting” point is determined as recently stated

 (39)
and the plane is passing the origin with a normal

vector , i.e. the plane is defined by .

The solution is now quite simple applying the following

steps:

 Translate planes and so the given point is in

the origin, transformation matrix is

 Compute intersection of two planes, i.e. determine the

directional vector of the line and the point

 Translate the computed point using

The point is the closest point of the line to the given

point . Even more, the parameter value to this point is

 .

Again – an elegant solution, simple formula supporting

matrix-vector architectures like GPU and parallel

processing.

X. CONCLUSION

In this paper we have presented a new robust approach for a

solution of selected geometrical problems using projective

representation. This approach offers much simpler

formulation, algorithms based on matrix-vector

multiplications. Resulting formulas are convenient for GPU

and SSE applications with achievable significant speedup as

well.

XI. ACKNOWLEDGMENT

The author thanks to anonymous reviewers for their

critical comments and hints that improved this paper

significantly. Thanks also belong to students and colleagues

at the University of West Bohemia, Plzen for their

suggestions.

The project was supported by the Ministry of Education

of the Czech Republic, projects No.LG13047 and LH12181.

XII. REFERENCES

[1] Bloomenthal,J., Rokne,J.: Homogeneous Coordinates, The Visual
Computer, Vol.11,No.1, pp.15-26, 1994.

[2] Coxeter,H.S.M.: Introduction to Geometry, John Wiley, 1969.

[3] Hartley,R, Zisserman,A.: MultiView Geometry in Computer
Vision, Cambridge Univ. Press, 2000.

[4] Jimenez,J.J., Segura,R.J., Feito,F.R.: Efficient Collision Detection
between 2D Polygons, Journal of WSCG, Vol.12, No.1-3, 2003

[5] Johnson,M.: Proof by Duality: or the Discovery of “New”
Theorems, Mathematics Today, December 1996.

[6] Krumm,J.: Intersection of Two Planes, Microsoft Research,
Research note, 2000

[7] Skala,V.: A New Approach to Line and Line Segment Clipping in
Homogeneous Coordinates, The Visual Computer, Vol.21, No.11,
pp.905 914, Springer Verlag, 2005

[8] Skala,V.: Length, Area and Volume Computation in Homogeneous
Coordinates, International Journal of Image and Graphics, Vol.6.,
No.4, pp.625-639, 2006

[9] Skala,V.: Barycentric Coordinates Computation in Homogeneous
Coordinates, Computers & Graphics, Elsevier, ISSN 0097-8493,
Vol. 32, No.1, pp.120-127, 2008

[10] Skala,V.: Projective Geometry, Duality and Precision of
Computation in Computer Graphics, Visualization and Games,
Tutorial Eurographics 2013, Girona, 2013

[11] Skala,V.: Projective Geometry and Duality for Graphics, Games
and Visualization - Course SIGGRAPH Asia 2012, Singapore,
ISBN 978-1-4503-1757-3, 2012

APPENDIX

The cross product in 4D is defined as

and can be implemented in Cg/HLSL on a GPU as follows:

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{ float4 a;

a.x = dot(x1.yzw, cross(x2.yzw, x3.yzw));
a.y = - dot(x1.xzw, cross(x2.xzw, x3.xzw));
a.z = dot(x1.xyw, cross(x2.xyw, x3.xyw));
a.w = - dot(x1.xyz, cross(x2.xyz, x3.xyz));
return a;

}

or more compactly as

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{
return (
 dot(x1.yzw, cross(x2.yzw, x3.yzw)),

- dot(x1.xzw, cross(x2.xzw, x3.xzw)),
 dot(x1.xyw, cross(x2.xyw, x3.xyw)),
- dot(x1.xyz, cross(x2.xyz, x3.xyz)));

}

GPU Fast and Robust Computation for Barycentric Coordinates and Intersection of Planes Using Projective Representation
IEEE WICT 2014 Conference, pp.34-38, ISBN 978-1-4799-8115-1, Malaysia, 2014

