Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

Fast Parallel Triangulation Algorithm
of Large Data Setsin E? and E3
for In-Core and Out-Core Memory Processing

Michal Smolik, Vaclav Skala

1 Faculty of Applied Sciences, University of West Baotia,
22 Univerzitni, 30614 Pilsen, Czech Republic

Abstract. A triangulation of points irE?, or a tetrahedronization of points in
E3, is used in many applications. It is not necesgarfulfill the Delaunay
criteria in all cases. For large data (more tBeri07 points), parallel methods
are used for the purpose of decreasing time coritpleX new approach for
fast and effective parallel CPU and GPU triangutgtiar tetrahedronization, of
large data sets iBi? or E3, is proposed in this paper. Experimental restits\s
that the triangulation/tetrahedralization, is clos® the Delaunay
triangulation/tetrahedralization. It also demonssathe applicability of the
method presented in applications.

1 Introduction

Today’s applications need to process large da& &hg several processors with
shared memory, i.e. in parallel processing, or/andsystems using distributed
processing. In this paper we describe an approggplicable for effective
triangulation inE? and E3 (tetrahedralization) using CPU and/or GPU paratiel
distributed systems, e.g. on computational clusferdarge data sets.

Many algorithms for triangulation irE? and E® have been developed and
described with different criteria [1], [2], [4], [Bmostly Delaunay triangulation ifi?
is used due to the duality with the Voronoi diagsamhe Delaunay triangulation
maximizes the minimum angle; on the other handpés not minimize the maximum
angle, which is required in some fields, like CABt®ynNs etc. Moreover, if the points
form a squared mesh, algorithms are sensitive ® rmerical precision of
computation. It is well known that the Delaunayamgulation (DT) contains
O(N'4/21) simplicities whered is dimensionality. The computational complexity of

the DT is(N4/21+1) | j.e. ford = 2 isO(N?) and ford = 3 isO(N?3).

1.1 Motivation

However, in many cases we do not need exact Dejatmaagulation nor another
specific triangulation, as triangulation “close agb” to the required type is

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

acceptable. Weakening this strict requirement @sahis to formulate a simple
algorithm based on “divide and conquer (D&C)” stggteand the approach is
independent from the triangulation property requieats.
There are the following critical issues to be sdhié triangulation is to be
applicable for large data sets:
. how to store data so as to especially have fastsacon parallel/distributed
system,
. how the triangulation is made on a data subset —ewmect that each
processor will process the given data subset ieglitt a triangulated subset,
. hcz)w to ;oin triangulated subsets in order to getfthal large triangulation in
E“ orE”°.
Of course, implementation on CPU should be simptkiarplementation on GPU
should be simple as well.

2 Proposed Algorithm

In this section, we will introduce a new fast phafafriangulation algorithm i£? and
E3. The main idea of this algorithm is to divide @lput points into several subsets,
perform a triangulation in each of them and then fbem together.

First, in sections 2.1-6, we will introduce the posed algorithm for parallel
triangulation. In section 2.7, we will show howdivide data between multiple GPUs
and/or cluster PCs. Finally, in section 2.8, we witbpose an approach for large data
processing.

2.1 PointsDivision

The approach proposed is based on D&C strategythardfore input data set has to
be split to several subsets. In our case, we 8l tectangular grid of size x m
domains inE? (see Fig. 1), resp. X m X p domains inE3. The grid does not have to
be necessarily regular and we can adjust it acegrth the properties of the input
data set. However, we will use orthogonal grid im approach: it is not necessary
because domains can be triangular or tetrahedcal, e

In the case when a domain does not contain anyt,pai@ have to generate
a random one and place it into this domain. Thétrietion is necessary because of
the joining procedure which will be introduced fate

Fig. 1. Division of points into a rectangular grid.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

The virtual corner points of the grid are includedhe domains. It means that now
each data subset contains the original points filasvirtual corner points of the
appropriate domain.

2.2 Domains Triangulation

Now, each domain can be triangulated using anyngdtikation library. Properties of
the final triangulation will depend on which triarigtion will be used. It should be
noted that in some applications, it is inapprogridd use DT, as some other
triangulations are more appropriate.

Each domain contains added virtual points. Thia great advantage because the
convex hull of domain triangulation will only comtethese virtual points (see Fig. 2).

——

Fig. 2. Domain triangulation (irk?2).

In case of using triangulation library that constsutriangulation with incremental
insertion, we do not have to create initial bigngle/tetrahedron. We can directly
construct triangles/tetrahedra from virtual corpeints.

It should be noted that domain triangulations atallly independent and thus can
be done in parallel. We havex m independent processes i, resp.n x m X p
in E3.

2.3 Domains Joining

After domains triangulation, we hawex m triangulations irE?, orn X m X p in E3,
and we have to join them to only one triangulatidhe process of joining two
domains triangulations is very simple. We only h&weswap common edge EF to
edge AB (see Fig. 3).

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

Fig. 3. Joining triangulated domains by edd&#s— AB swapping.

Situation inE?3 is identical to inE%. Two domains share one common side with
vertices E, F, G and H, and thus we only have tapsedges EG and FH to edge AB
(see Fig. 4). It can be seen that the connectiomiarigulated subsets is extremely

simple in theE? case. In theE?® case the situation is straightforward and not
complicated as well.

Fig. 4. Joining tetrahedralized domains by edf§6s& FH — AB swapping.

Joining two domains is totally independent fromnjpg another two domains.

Therefore, joining of all triangulations to oneatrgulation can be done in parallel
without any conflicts.

2.4 Removing or Retaining of Virtual Corner Points

If the triangulation is used for scalar potenti@ld in E? or E3, or 2&1/2D
applications in GIS systems, the value in the wirtccorner points can be
approximated from the neighbors using Radial Basisckon Interpolation (RBF)
[7]. Virtual corner points can be retained in théartgulation and thereby the
triangulation is done. Otherwise the corner poiraee to be removed.

If the corner points have to be removed, theresareeral algorithms to manage
deletion of vertices from triangulation/tetrahedration [8], [3]. Simply removing
a vertex together with its incident simplices leava star-shaped hole in the
triangulation, which is not necessarily convex.sTapproach will be described in the

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

next subsection. Another approach is to move thexeowards its nearest neighbor
in several steps; each followed by a sequencdps festoring the triangulation until
the simplices between the two vertices are verydtal can be clipped out of the
triangulation [6]. This approach will be describedhe second subsection.

The process of removing one virtual corner poimifrtriangulation is totally
independent from removing any other virtual corpeint. Thus removing of virtual
corner points in the middle part of triangulati@nde done totally in parallel.

Star-shape Polygon Re-Triangulation. This algorithm removes a vertex from the
triangulation and thus creates a star-shape holggpn/polyhedron) which has to be
re-triangulated. The polygon can be divided inteesal parts (see Fig. 5). We have
one center part and four “arms” &%, resp. six “arms” irg3.

Fig. 5. Star-shape polygon (hole in triangulation).

The center part of the star-shape polygon contdiasclosest vertex from each
surrounding domains. However, the number of vestiseusually four, or eight if?3;
more vertices can be included, e.g. the situatioRig. 6. The center polygon can be
triangulated using ear clipping algorithm, which a6 computational complexity
0(N?), but the number of verticéé is very small.

e

Fig. 6. Intersection of two edges (left) and the solufioght) in E2.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

The arms of the star-shape polygon are monotonggpo$ in respect to axis
x ory, resp.x, y or z. Monotone polygon can be triangulateddiW) time and thus
triangulation of the star-shape hole is a realdt faocess.

Moving and Deleting Vertex. This algorithm moves the virtual corner point tods
its nearest neighbor vertex in triangulatign-$ A”) [6]. The main question is how far
a vertexv can be moved into a certain direction without lidating the triangulation,
i.e. without creating overlapping simplices. We cgfine the pseudo-orientation of
a simplexS = (4, B, C), resp.S = (4,B,C, D), as follows:

Ax_Bx Bx_Cx
V= , resp.

4y —B, B,—C, P

Ay =By By—Cy By—D, (l)
v=|4,—B, B,—C B,—Dy|.

Az_Bz Z_CZ BZ_DZ

Now suppose one of the vertices is moved alongdifextion ofA, i.e. A - A" =
A + AA with 1 € (0; 1). The maximum size of is the minimum value of all for all
simplices incident the moving vertéx 4 is calculated using the formula:

A= vl resp
abs Ax Bx - Cx ’ '
Ay By - Cy
1= [v| 2)
Ax Bx - Cx Bx - Dx .
abs Ay By —C, B,—D,
AZ BZ - CZ Bz - DZ

If 1= 1, then the vertex can simply be moved along thepteta pathd, whereas if
A < 1, the vertexA can only be moved by a fractidihd and the triangulation has to
be validated using a sequence of flips. After gislation validation, we have to
recalculate parametetsand repeat the algorithm until vertéxs equal td’.

2.5 Removing of Extra Inserted Points

Some domains did not contain any vertex and thusxténa vertex was inserted into
such each domain. Now the vertices inserted hawe teemoved from triangulation.
This situation is the same as when removing virt@her points. Algorithms for
removing extra inserted vertices were presentéderprevious section.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

2.6 Convex Hull Creation

The union of all simplices forms a convex hull. Toeate a convex hull of
triangulation, we have to remove all virtual corpeints at the border of the created
grid. The vertices have to be removed and presgbereonvex hull. There exist many
algorithms how to do it. One of them is the eappuig algorithm. We remove all
simplices containing one virtual corner point amrt re-triangulate the border.
Another way how to do it is to use the approactsg@méed in section “Moving and
Deleting a Vertex”.

The process of triangulation from input vertices dgne after removing all
remaining virtual grid points.

2.7 Multiple GPUsor PCs

Today's applications need to process data setsshod time. Therefore we may use
several processors with shared memory, i.e. inllphmocessing, or/and on systems
using distributed processing, or/and systems usinigiple GPUs.

When using several PCs, or/and GPUs, we have tofibéhow to divide the work
and how to join results into one triangulation.afgulations of domains are totally
independent so there is no problem with work distibn. Joining of domains
triangulations is, again, totally independent. le ttase of retaining virtual corner
points in final triangulation, there is no challenig work distribution between PCs,
or/and GPUs. Otherwise in the case of removinguairtcorner points, we have to
distribute work between PCs, or/fand GPUs, accortlinfig. 7. Both GPUs need
triangulations of yellow domains for removing viticorner points.

Fig. 7. Distribution of domains per GPU.

Division of work between more PCs, or/and GPUs iprablem and can be easily
implemented. Triangulation time can be easily reduwhile using more PCs, or/and
GPUs.

2.8 Large Data Processing
However there are many algorithms for trianguldtemahedralization and only

a few of them can be used for large data proces3ing main problem is available
memory, which is usually no more than tens of giged The number of points

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

which can be triangulated/tetrahedralized, is kahiby the available memory.

The approach proposed does not have this restriciiothe maximal number of
points. We can triangulate large data sets whicimagfit at once into the available
memory. For one domain triangulation, we do notdnaey information about other
domains. The situation in joining is almost the sakVe only need information about
two domains which will be joined. And finally, wheemoving one virtual corner
point, we only need information about domains whazmntain this virtual corner
point, i.e. four domains iA?, or eight domains if3.

The input data set can be processed by parts. Wkoad input data only for some
domains, perform parallel triangulation accordihg tapproach proposed, and save
resulting triangulation/tetrahedralization, in defi Then we can load data for
following domains and perform the same operatidis is a very small change in
the approach proposed and is easy to implemenigUhis approach, we are able to
perform a triangulation/tetrahedralization, on &gput data sets with more thae’
vertices. The most important feature is that wenaterestricted by the limited size of
the maximal available memory.

3 Implementation

We implemented the approach proposed in C++ withngusOpenMP for
parallelization and in CUDA for GPU implementatiofrhe implementation of the
approach proposed has been fairly simple in BétandE3.

It is appropriate to save a copy of points into dore rather than only references
to points. Then a full advantage of cache memoeyaas be taken, and speedup your
implementation.

4 Experimental Results

The approach proposed has been tested in sevieslacrFirst of all, we tested the
optimal number of points per domain for the purpoSkbw time requirements. In the
second part, we tested time performance of triatguil/tetrahedralization, for
a different number of input points. After that, wested the quality of
triangulation/tetrahedralization. Finally, we tektaur approach on both synthetic and
real data sets.

The approach proposed has been tested on datastagsPC with the following
configuration:

. CPU: Intel(R) Core(TM) i7 920 (4 x 2,67GHz) with 8 Hyp hreads,
. GPU: 2 x GeForce GTX 295
o] 30 multiprocessors x 8 CUDA Cores per multiprocedsg8GHz
o] memory 896MB 1,05GHz
. memory: 12 GB RAM,

. operating system Microsoft Windows 7 64bits

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

4.1 Number of Points per Domain

The first part in the approach proposed is thes@w of all vertices into a grid. We
need to know what the average number of pointglperain is. According to that, we
can compute parametemsandm, or n, m andp, to split input vertices inta x m
domains inE?, orn x m X p domains ing3.

We measured time complexity of triangulation/teg@dalization, for different
numbers of input vertices with uniform distributiand different numbers of points
per domain. One example of the time measured@dipoints and a different number
of points per domain can be seen in Graph 1. Ithmseen that with an increasing
number of points per domain time complexity deceeasThis happens up to
an optimal number of points per domain where thee tcomplexity is minimal. From
this number of points, the time complexity increaséth an increasing number of
points per domain.

3.0 \
2.8 \
Y26
2,0\
=24 /
22 %
2.0

10 20 30 40 50 60 70 80 90 100
points per domain

Graph 1. Number of points per domain f@07 points (in£?2) with uniform distribution.

An optimal number of points per grid depends on ¢kact implementation of
triangulation/tetrahedralization, which is used ftomains triangulation. The next
factor is the number of threads used during pdralngulation. In our case, we used
eight hyper-threads and two different implementatio of
triangulation/tetrahedralization. In the case ahgs brutal-force implementation, the
optimal number of points per domain is 45, or 171 inE3. In the case of using an
optimized implementation, the optimal number ofrpeiper domain is 2 000 i&?,
resp. 400 irE3.

4.2 Time Performance

In some applications, time performance is one dafrgsortant criterion. We measured
running times for triangulation/tetrahedralizatidor, different numbers of points with
uniform distribution. Running times were measurad8fthreads running and for only
1 thread. The times dof thread running, have been compared with runnimggi of

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

publicly available serial library for triangulatiocalled Fade or serial library for
tetrahedralization called TetGen

Triangulation. Tab. 1 presents running times of triangulationonGi#U. Running
times of triangulation on GPU in comparison witlmming times of publicly available
GPU library GPU D¥ can be seen in Tab. 2.

Table 1. Running times of triangulations E? (using CPU’

8 threads (4 cores) 1 thread
=3 [=

Number of points % Time [s] .% Time [s] > Time [s]
316 227 g 0.06 g 0.20 g 0.27

o)
1000 000 5 0.18 5 0.67 = 0.88
3162 277 = 0.65 = 2.23 el 2.96
10 000 000 = 2.16 = 7.33 w 9.58
31622776] 7.99 < 24.88 35.66

100 000 000 o 28.21 o 81.94

The running time for10® points using Fade triangulation library could st
measured because of high memory requirements. Hawexe do not have time of
triangulation for102 points: we can see that the parallel triangulaisoalways faster,
even when using serial execution of our paraliahgulation. The time required for
triangulation of108 vertices i28.21 [s] on CPU.

Table 2. Running times of triangulations E? (usingGPU).

o

Number of points % Time [s] Time [s]
1000 & o010 2 0149

3162 8 0.012 S 0.173

10 000 5 0.015 5 0.186
31622 I 0.019 35 0.260

100 000 s 0.034 g 0.317

316 227 2 0.093 0.620

1 000 000 o 0.253 1.625

According to the results from Tab. 2, it can benst®at our GPU triangulation is
much faster than publicly available library for GRiangulation called GPU DT. The
time required for triangulation df0® vertices i0.253 [s] on GPU.

Tetrahedralization. Running times of tetrahedralization in comparisothvpiublicly
available serial library TetGen can be seen in Bab.

! Kornberger, B., Fade2D & Fade2.5D, Geom e.U. Soivizevelopment.

2 Si, H., TetGen: A Quality Tetrahedral Mesh Germmrand a 3D Delaunay Triangulator,
Weierstrass Institute for Applied Analysis and $tastics.

3 GPU-DT: A 2D Delaunay Triangulator using Graphtdardware, National University of
Singapore.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

Table 3. Running times of tetrahedralizationsE?.

8 threads (4 cores) . 1 thread

Number of points % Time [s] (—i Time [s] 2| Timels]
100 000 5 0.29 5 0.97 3 1.78
316 227 [0.85 [2.92 = 5.75
1000 000 @ 2.52 o 8.77 0 18.97
3162 277 K3 8.11 k] 28.35 2 60.60
10 000 000 g 25.72 g 88.69 196.00

31622 776 o 81.70 o 278.45

The running time for/10-107 points using TetGen tetrahedralization library
could not be measured because of high memory esgaints. Although we do not
have time of tetrahedralization faf10-107 points, we can see that the parallel
tetrahedralization is always faster, even whengusierial execution of our parallel
tetrahedralization, and the speed-up is increasitlythe increasing number of input
vertices. The time required for tetrahedralizatiéw/10 - 107 vertices is81.7 [s].

Speed-up. Using Tab.1 and Tab. 3, we can calculate the sppedf parallel
triangulation/tetrahedralization when using onl\edhread, in respect to the publicly
available serial library for triangulation calleéde, or for tetrahedralization called
TetGen, see Graph 2.

2.
s
5 1.9
g l
o 1.6
2]
1.3 B—m “'-I/.\T
1.0
1E+5 1E+6 1E+7 1E+8
number of points
—@— Triangulation in E2—&— Tetrahedralization in E3

Graph 2. Speed-up of parallel triangulation (using 1 th)gad~ade library and speed-up of parallel
tetrahedralization (using 1 thread) to TetGen ljpra

4.3 Triangulation Quality

Delaunay triangulation maximizes the minimal intdrrangle in triangulation.
Therefore, one test of triangulation quality is tiistribution of minimal internal
angles in triangulation. We measured the intermgjleain degrees if£? and the
internal solid angle in steradiansAf (see Graph 3).

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

3%

1% 4
S 4
N/,

\ . N
0% 0%
0 20 40 60

2 4
minimal angle [°] minimal solid angle [steradian]
--------- 45 PpD ~===-2000 PpD <eveeeses 171 PpD ==<=-400 PpD
Delaunay Delaunay

3
X

E2

7\ =
" /

)
3
\
e

percentage of triangles [%]

percentage of tetrahedra [%]

Graph 3. Distribution of minimal internal angles (PpD = Rts per Domain).

According to the results, a triangulation/tetraladidation created with the
algorithm proposed is very close to Delaunay tridatjpon, see Graph 2. Moreover,
the inner parts of the domains are Delaunay’s. Mbee points per domain are used,
the closer to the Delaunay triangulation the tridation proposed is.

The Delaunay triangulation maximizes the mean @heirradii. Due to this
criterion, we calculated Graph 4. We can see alairbehavior like in Graph 3. The
more points per domain are used, the closer toDbkunay triangulation our
triangulation is. If we retain corner points inatmgulation, then the quality of
triangulation is a bit worse. However, 000 vertices there is almost no difference
in the mean inradius for triangulation with andhaitit virtual corner points.

1.00
0.95

0.90
0.85
0.80 I
0.75

2000 PpD 45 PpD 2000 PpD45 PpD Delaunay
with cornemwith corner
points points

mean inradius

Graph 4. Mean inradius of triangles for different trianguteis (mean inradius of Delaunay triangulation
was normalized to size0).

4.4 Synthetic and Real Data Sets

In many applications, we do not need to triangutatly uniformly distributed data
sets, but real data sets. An example of real dets may be sets for geographic
information system applications. Triangulation aecsuch set is shown in Fig. 8. It is

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

aGIS data set of South America. The set contdirds 10® points and the
triangulation time of our parallel triangulatioroposed wa$.42 [s].

VAR = A

B

Fig. 8. Triangulation of South Americas GIS data set.

We compared the obtained triangulation from Figwith the Delaunay
triangulation of the same data set. We used thehdison of minimal internal angles
in triangulation for comparison (see Graph 5).dh de seen that there is almost no
difference and all graphs are overlapped over e#toér. The highest maxima are for
angles45° (edges of the triangle in the proportionlofl:/2), 26.6° (edges of the
triangle in the proportion ofl:2:v/5) and18.4° (edges of the triangle in the
proportion of1: 3:/10).

D
(]

40

20

0 A

percentage of triangles [%

A Ak‘ 2\
40

0
minimal angle {]

......... 45 PpD ====-2000 PpD

60

Delaunay

Graph 5. Distribution of minimal internal angle (PpD = Ptrper Domain).

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

5 Conclusion

A new fast parallel triangulation algorithm Bf andE?3 has been presented. It is
based on the “Divide & Conquer” strategy. It candasily implemented on parallel
environments with shared and/or distributed menusiyg both CPU and GPU. As it
is scalable; the proposed algorithm is especiatipvenient for large data sets
processing. The approach proposed has been impiethand tested using both CPU
and GPU. An additional speed-up can be expectttiflata structures are carefully
implemented for the given HW.

Acknowledgments. The authors would like to thank their colleaguetha University
of West Bohemia, Plzen, for their comments and sstjmes, and anonymous
reviewers for their valuable comments and hintsvigied. The research was
supported by MSMT CR projects LG13047, LH12181 an® 2G13-029.

References

1. Chen, M.-B.: A Parallel 3D Delaunay Triangulatibtethod. & ISPA, IEEE, 2011,
pp.52-56.

2. Cignoni, P., Montani, C., Scopigno, R.: DeWall: AsF Divide & Conquer Delaunay
Triangulation Algorithm in Ed. Computer Aided Desjd®98, Vol.30, No.5, pp.333-341.

3. Ledoux, H., Gold, Ch. -M., Baciu, G.: Flipping Robustly Delete a Vertex in a Delaunay
Tetrahedralization. Computational Science and Itpligptions — ICCSA, 2005, Vol. 3480,
pp. 737-747.

4. Liu, Y.-X., Snoeying, J.: A Comparison of Fiveplementations 3D Delaunay Tessellations.
Combinatorial and Computational Geometry, MSRI piflQ5, Vol.52, pp.439-458.

5. Rong, G.D., Tan, T.S., Cao, T.-T.: Computing Twaehsional Delaunay Triangulation
Using Graphics Hardware. ACM Symposium on InteractBD Graphics and Games,
Redwood City, CA, USA, 2008, pp. 89-9.

6. Schaller, G., Meyer-Hermann, M.: Kinetic and Byric Delaunay Tetrahedralization in
Three Dimensions. Computer Physics Communicatior,2001.162, No.1, pp.9-23.

7. Skala, V.: Radial Basis Functions for High Dimensil Visualization. VisGra - ICONS12,
Saint Gilles, Reunion Island, IARIA, 2012, ISBN: 9741208-184-7, pp. 218-222.

8. Zemek, M., Kolingerova, |.: Hybrid Algorithm foDeletion of a Point in Regular and
Delaunay Triangulation. ICCSA, 2009, ISBN: 978-1-480%9-7, pp. 137-144.

