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Abstract. A triangulation of points in ��, or a tetrahedronization of points in 
��, is used in many applications. It is not necessary to fulfill the Delaunay 
criteria in all cases. For large data (more then 5 ∙  10	 points), parallel methods 
are used for the purpose of decreasing time complexity. A new approach for 
fast and effective parallel CPU and GPU triangulation, or tetrahedronization, of 
large data sets in �� or ��, is proposed in this paper. Experimental results show 
that the triangulation/tetrahedralization, is close to the Delaunay 
triangulation/tetrahedralization. It also demonstrates the applicability of the 
method presented in applications. 

1 Introduction 

Today’s applications need to process large data sets using several processors with 
shared memory, i.e. in parallel processing, or/and on systems using distributed 
processing. In this paper we describe an approach applicable for effective 
triangulation in �� and �� (tetrahedralization) using CPU and/or GPU parallel or 
distributed systems, e.g. on computational clusters, for large data sets. 

Many algorithms for triangulation in �� and �� have been developed and 
described with different criteria [1], [2], [4], [5]; mostly Delaunay triangulation in �� 
is used due to the duality with the Voronoi diagrams. The Delaunay triangulation 
maximizes the minimum angle; on the other hand, it does not minimize the maximum 
angle, which is required in some fields, like CAD systems etc. Moreover, if the points 
form a squared mesh, algorithms are sensitive to the numerical precision of 
computation. It is well known that the Delaunay triangulation (DT) contains 

���/��� simplicities where � is dimensionality. The computational complexity of 
the DT is (��/����) , i.e. for � = 2 is 
(��) and for � = 3 is 
(��). 

1.1 Motivation 

However, in many cases we do not need exact Delaunay triangulation nor another 
specific triangulation, as triangulation “close enough” to the required type is 

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014



acceptable. Weakening this strict requirement enables us to formulate a simple 
algorithm based on “divide and conquer (D&C)” strategy and the approach is 
independent from the triangulation property requirements. 

There are the following critical issues to be solved if triangulation is to be 
applicable for large data sets: 

• how to store data so as to especially have fast access on parallel/distributed 
system, 

• how the triangulation is made on a data subset – we expect that each 
processor will process the given data subset resulting in a triangulated subset, 

• how to join triangulated subsets in order to get the final large triangulation in 
�� or ��. 

Of course, implementation on CPU should be simple and implementation on GPU 
should be simple as well. 

2 Proposed Algorithm 

In this section, we will introduce a new fast parallel triangulation algorithm in �� and 
��. The main idea of this algorithm is to divide all input points into several subsets, 
perform a triangulation in each of them and then join them together. 

First, in sections 2.1-6, we will introduce the proposed algorithm for parallel 
triangulation. In section 2.7, we will show how to divide data between multiple GPUs 
and/or cluster PCs. Finally, in section 2.8, we will propose an approach for large data 
processing. 

2.1 Points Division 

The approach proposed is based on D&C strategy and therefore input data set has to 
be split to several subsets. In our case, we will use rectangular grid of size � × � 
domains in �� (see Fig. 1), resp. � × � × � domains in ��. The grid does not have to 
be necessarily regular and we can adjust it according to the properties of the input 
data set. However, we will use orthogonal grid in our approach: it is not necessary 
because domains can be triangular or tetrahedral, etc.  

In the case when a domain does not contain any point, we have to generate 
a random one and place it into this domain. This restriction is necessary because of 
the joining procedure which will be introduced later. 

 

Fig. 1. Division of points into a rectangular grid. 
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The virtual corner points of the grid are included in the domains. It means that now 
each data subset contains the original points plus the virtual corner points of the 
appropriate domain. 

2.2 Domains Triangulation 

Now, each domain can be triangulated using any triangulation library. Properties of 
the final triangulation will depend on which triangulation will be used. It should be 
noted that in some applications, it is inappropriate to use DT, as some other 
triangulations are more appropriate. 

Each domain contains added virtual points. This is a great advantage because the 
convex hull of domain triangulation will only contain these virtual points (see Fig. 2). 

 

Fig. 2. Domain triangulation (in ��). 

In case of using triangulation library that constructs triangulation with incremental 
insertion, we do not have to create initial big triangle/tetrahedron. We can directly 
construct triangles/tetrahedra from virtual corner points. 

It should be noted that domain triangulations are totally independent and thus can 
be done in parallel. We have � × � independent processes in ��, resp. � × � × � 
in ��. 

2.3 Domains Joining 

After domains triangulation, we have � × � triangulations in ��, or � × � × � in ��, 
and we have to join them to only one triangulation. The process of joining two 
domains triangulations is very simple. We only have to swap common edge EF to 
edge AB (see Fig. 3). 
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Fig. 3. Joining triangulated domains by edges �� →  ! swapping. 

Situation in �� is identical to in ��. Two domains share one common side with 
vertices E, F, G and H, and thus we only have to swap edges EG and FH to edge AB 
(see Fig. 4). It can be seen that the connection of triangulated subsets is extremely 
simple in the �� case. In the �� case the situation is straightforward and not 
complicated as well. 

 

Fig. 4. Joining tetrahedralized domains by edges �"	&	�$ →  ! swapping. 

Joining two domains is totally independent from joining another two domains. 
Therefore, joining of all triangulations to one triangulation can be done in parallel 
without any conflicts. 

2.4 Removing or Retaining of Virtual Corner Points 

If the triangulation is used for scalar potential field in �� or ��, or 2&1/2% 
applications in GIS systems, the value in the virtual corner points can be 
approximated from the neighbors using Radial Basis Function Interpolation (RBF) 
[7]. Virtual corner points can be retained in the triangulation and thereby the 
triangulation is done. Otherwise the corner points have to be removed. 

If the corner points have to be removed, there are several algorithms to manage 
deletion of vertices from triangulation/tetrahedralization [8], [3]. Simply removing 
a vertex together with its incident simplices leaves a star-shaped hole in the 
triangulation, which is not necessarily convex. This approach will be described in the 
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next subsection. Another approach is to move the vertex towards its nearest neighbor 
in several steps; each followed by a sequence of flips restoring the triangulation until 
the simplices between the two vertices are very flat and can be clipped out of the 
triangulation [6]. This approach will be described in the second subsection. 

The process of removing one virtual corner point from triangulation is totally 
independent from removing any other virtual corner point. Thus removing of virtual 
corner points in the middle part of triangulation can be done totally in parallel. 

Star-shape Polygon Re-Triangulation. This algorithm removes a vertex from the 
triangulation and thus creates a star-shape hole (polygon/polyhedron) which has to be 
re-triangulated. The polygon can be divided into several parts (see Fig. 5). We have 
one center part and four “arms” in ��, resp. six “arms” in ��. 

 

Fig. 5. Star-shape polygon (hole in triangulation). 

The center part of the star-shape polygon contains the closest vertex from each 
surrounding domains. However, the number of vertices is usually four, or eight in ��; 
more vertices can be included, e.g. the situation in Fig. 6. The center polygon can be 
triangulated using ear clipping algorithm, which is of computational complexity 

(��), but the number of vertices � is very small. 

 

Fig. 6. Intersection of two edges (left) and the solution (right) in ��. 
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The arms of the star-shape polygon are monotone polygons in respect to axis 
& or ', resp. &, ' or (. Monotone polygon can be triangulated in 
(�) time and thus 
triangulation of the star-shape hole is a really fast process. 

Moving and Deleting Vertex. This algorithm moves the virtual corner point towards 
its nearest neighbor vertex in triangulation ( →  ´) [6]. The main question is how far 
a vertex * can be moved into a certain direction without invalidating the triangulation, 
i.e. without creating overlapping simplices. We can define the pseudo-orientation of 
a simplex + = � , !, -�, resp. + = � , !, -, %�, as follows: 

* = . / − !/ !/ − -/ 1 − !1 !1 − -1. ,	resp.	
* = 7 / − !/ !/ − -/ !/ − %/ 1 − !1 !1 − -1 !1 − %1 8 − !8 !8 − -8 !8 − %8 7 . 

(1)

Now suppose one of the vertices is moved along the direction of ∆, i.e. 	 →  ´ = + ;∆ with ; ∈ 〈0; 1〉. The maximum size of ; is the minimum value of all ; for all 
simplices incident the moving vertex  . ; is calculated using the formula: 

; = |*|
abs .∆/ !/ − -/∆1 !1 − -1.

,	resp.	
; = |*|

abs 7∆/ !/ − -/ !/ − %/∆1 !1 − -1 !1 − %1∆8 !8 − -8 !8 − %8 7
. (2)

If ; ≥ 1, then the vertex can simply be moved along the complete path ∆, whereas if ; < 1, the vertex   can only be moved by a fraction ;∆ and the triangulation has to 
be validated using a sequence of flips. After triangulation validation, we have to 
recalculate parameters ; and repeat the algorithm until vertex   is equal to  ´. 
2.5 Removing of Extra Inserted Points 

Some domains did not contain any vertex and thus an extra vertex was inserted into 
such each domain. Now the vertices inserted have to be removed from triangulation. 
This situation is the same as when removing virtual corner points. Algorithms for 
removing extra inserted vertices were presented in the previous section. 
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2.6 Convex Hull Creation 

The union of all simplices forms a convex hull. To create a convex hull of 
triangulation, we have to remove all virtual corner points at the border of the created 
grid. The vertices have to be removed and preserve the convex hull. There exist many 
algorithms how to do it. One of them is the ear clipping algorithm. We remove all 
simplices containing one virtual corner point and then re-triangulate the border. 
Another way how to do it is to use the approach presented in section “Moving and 
Deleting a Vertex”. 

The process of triangulation from input vertices is done after removing all 
remaining virtual grid points. 

2.7 Multiple GPUs or PCs 

Today’s applications need to process data sets in a short time. Therefore we may use 
several processors with shared memory, i.e. in parallel processing, or/and on systems 
using distributed processing, or/and systems using multiple GPUs.  

When using several PCs, or/and GPUs, we have to find out how to divide the work 
and how to join results into one triangulation. Triangulations of domains are totally 
independent so there is no problem with work distribution. Joining of domains 
triangulations is, again, totally independent. In the case of retaining virtual corner 
points in final triangulation, there is no challenge in work distribution between PCs, 
or/and GPUs. Otherwise in the case of removing virtual corner points, we have to 
distribute work between PCs, or/and GPUs, according to Fig. 7. Both GPUs need 
triangulations of yellow domains for removing virtual corner points. 

 

Fig. 7. Distribution of domains per GPU.  

Division of work between more PCs, or/and GPUs is no problem and can be easily 
implemented. Triangulation time can be easily reduced while using more PCs, or/and 
GPUs. 

2.8 Large Data Processing 

However there are many algorithms for triangulation/tetrahedralization and only 
a few of them can be used for large data processing. The main problem is available 
memory, which is usually no more than tens of gigabytes. The number of points 
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which can be triangulated/tetrahedralized, is limited by the available memory. 
The approach proposed does not have this restriction on the maximal number of 

points. We can triangulate large data sets which cannot fit at once into the available 
memory. For one domain triangulation, we do not need any information about other 
domains. The situation in joining is almost the same. We only need information about 
two domains which will be joined. And finally, when removing one virtual corner 
point, we only need information about domains which contain this virtual corner 
point, i.e. four domains in ��, or eight domains in ��.  

The input data set can be processed by parts. We can load input data only for some 
domains, perform parallel triangulation according the approach proposed, and save 
resulting triangulation/tetrahedralization, in a file. Then we can load data for 
following domains and perform the same operations. This is a very small change in 
the approach proposed and is easy to implement. Using this approach, we are able to 
perform a triangulation/tetrahedralization, on large input data sets with more than 10	 
vertices. The most important feature is that we are not restricted by the limited size of 
the maximal available memory.  

3 Implementation 

We implemented the approach proposed in C++ with using OpenMP for 
parallelization and in CUDA for GPU implementation. The implementation of the 
approach proposed has been fairly simple in both �� and ��.  

It is appropriate to save a copy of points into domains rather than only references 
to points. Then a full advantage of cache memory use can be taken, and speedup your 
implementation. 

4 Experimental Results 

The approach proposed has been tested in several criteria. First of all, we tested the 
optimal number of points per domain for the purpose of low time requirements. In the 
second part, we tested time performance of triangulation/tetrahedralization, for 
a different number of input points. After that, we tested the quality of 
triangulation/tetrahedralization. Finally, we tested our approach on both synthetic and 
real data sets. 

The approach proposed has been tested on data sets using PC with the following 
configuration:  
• CPU: Intel(R) Core(TM) i7 920 (4 × 2,67GHz) with 8 HyperThreads,  
• GPU: 2 × GeForce GTX 295 

o 30 multiprocessors × 8 CUDA Cores per multiprocessor 1,38GHz 
o memory 896MB 1,05GHz 

• memory: 12 GB RAM, 
• operating system Microsoft Windows 7 64bits 
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4.1 Number of Points per Domain 

The first part in the approach proposed is the division of all vertices into a grid. We 
need to know what the average number of points per domain is. According to that, we 
can compute parameters � and �, or �, � and �, to split input vertices into � × � 
domains in ��, or � × � × � domains in ��. 

We measured time complexity of triangulation/tetrahedralization, for different 
numbers of input vertices with uniform distribution and different numbers of points 
per domain. One example of the time measured for 10	 points and a different number 
of points per domain can be seen in Graph 1. It can be seen that with an increasing 
number of points per domain time complexity decreases. This happens up to 
an optimal number of points per domain where the time complexity is minimal. From 
this number of points, the time complexity increases with an increasing number of 
points per domain.  

 

Graph 1. Number of points per domain for 10	 points (in ��) with uniform distribution. 

An optimal number of points per grid depends on the exact implementation of 
triangulation/tetrahedralization, which is used for domains triangulation. The next 
factor is the number of threads used during parallel triangulation. In our case, we used 
eight hyper-threads and two different implementation of 
triangulation/tetrahedralization. In the case of using a brutal-force implementation, the 
optimal number of points per domain is 45 in ��, or 171 in ��. In the case of using an 
optimized implementation, the optimal number of points per domain is 2 000 in ��, 
resp. 400 in ��. 

4.2 Time Performance 

In some applications, time performance is one of an important criterion. We measured 
running times for triangulation/tetrahedralization, for different numbers of points with 
uniform distribution. Running times were measured for 8 threads running and for only 
1 thread. The times of 1 thread running, have been compared with running times of 
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publicly available serial library for triangulation called Fade1, or serial library for 
tetrahedralization called TetGen2.  

Triangulation. Tab. 1 presents running times of triangulationon on CPU. Running 
times of triangulation on GPU in comparison with running times of publicly available 
GPU library GPU DT3 can be seen in Tab. 2. 

Table 1. Running times of triangulations in �� (using CPU). 
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The running time for 10F points using Fade triangulation library could not be 

measured because of high memory requirements. However, we do not have time of 
triangulation for 10F points: we can see that the parallel triangulation is always faster, 
even when using serial execution of our parallel triangulation. The time required for 
triangulation of 10F vertices is 28.21	[H] on CPU. 

Table 2. Running times of triangulations in �� (using GPU). 
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100 000     0.034     0.317     
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1 000 000     0.253     1.625     
 

 
According to the results from Tab. 2, it can be seen that our GPU triangulation is 

much faster than publicly available library for GPU triangulation called GPU DT. The 
time required for triangulation of 10J vertices is 0.253	[H] on GPU. 

Tetrahedralization. Running times of tetrahedralization in comparison with publicly 
available serial library TetGen can be seen in Tab. 3.  

                                                           
1 Kornberger, B., Fade2D & Fade2.5D, Geom e.U. Software Development. 
2 Si, H., TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator, 

Weierstrass Institute for Applied Analysis and Stochastics. 
3 GPU-DT: A 2D Delaunay Triangulator using Graphics Hardware, National University of 

Singapore. 

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014



Table 3. Running times of tetrahedralizations in ��. 
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The running time for √10 ∙ 10	 points using TetGen tetrahedralization library 

could not be measured because of high memory requirements. Although we do not 
have time of tetrahedralization for √10 ∙ 10	 points, we can see that the parallel 
tetrahedralization is always faster, even when using serial execution of our parallel 
tetrahedralization, and the speed-up is increasing with the increasing number of input 
vertices. The time required for tetrahedralization of √10 ∙ 10	 vertices is 81.7	[H]. 

Speed-up. Using Tab. 1 and Tab. 3, we can calculate the speed-up of parallel 
triangulation/tetrahedralization when using only one thread, in respect to the publicly 
available serial library for triangulation called Fade, or for tetrahedralization called 
TetGen, see Graph 2.  

 

Graph 2. Speed-up of parallel triangulation (using 1 thread) to Fade library and speed-up of parallel 
tetrahedralization (using 1 thread) to TetGen library. 

4.3 Triangulation Quality 

Delaunay triangulation maximizes the minimal internal angle in triangulation. 
Therefore, one test of triangulation quality is the distribution of minimal internal 
angles in triangulation. We measured the internal angle in degrees in �� and the 
internal solid angle in steradians in �� (see Graph 3).  
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Graph 3. Distribution of minimal internal angles (PpD = Points per Domain). 

According to the results, a triangulation/tetrahedralization created with the 
algorithm proposed is very close to Delaunay triangulation, see Graph 2. Moreover, 
the inner parts of the domains are Delaunay’s. The more points per domain are used, 
the closer to the Delaunay triangulation the triangulation proposed is. 

The Delaunay triangulation maximizes the mean incircle radii. Due to this 
criterion, we calculated Graph 4. We can see a similar behavior like in Graph 3. The 
more points per domain are used, the closer to the Delaunay triangulation our 
triangulation is. If we retain corner points in triangulation, then the quality of 
triangulation is a bit worse. However, for 2 000 vertices there is almost no difference 
in the mean inradius for triangulation with and without virtual corner points. 

 

Graph 4. Mean inradius of triangles for different triangulations (mean inradius of Delaunay triangulation 
was normalized to size 1.0). 

4.4 Synthetic and Real Data Sets 

In many applications, we do not need to triangulate only uniformly distributed data 
sets, but real data sets. An example of real data sets may be sets for geographic 
information system applications. Triangulation of one such set is shown in Fig. 8. It is 
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a GIS data set of South America. The set contains 1.1 ∙ 10J points and the 
triangulation time of our parallel triangulation proposed was 0.42	[H]. 

 

Fig. 8. Triangulation of South Americas GIS data set. 

We compared the obtained triangulation from Fig. 8 with the Delaunay 
triangulation of the same data set. We used the distribution of minimal internal angles 
in triangulation for comparison (see Graph 5). It can be seen that there is almost no 
difference and all graphs are overlapped over each other. The highest maxima are for 
angles 45° (edges of the triangle in the proportion of 1: 1: √2), 26.6° (edges of the 
triangle in the proportion of 1: 2: √5) and	18.4° (edges of the triangle in the 
proportion of 1: 3: √10). 

 

Graph 5. Distribution of minimal internal angle (PpD = Points per Domain). 
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5 Conclusion 

A new fast parallel triangulation algorithm in �� and �� has been presented. It is 
based on the “Divide & Conquer” strategy. It can be easily implemented on parallel 
environments with shared and/or distributed memory using both CPU and GPU. As it 
is scalable; the proposed algorithm is especially convenient for large data sets 
processing. The approach proposed has been implemented and tested using both CPU 
and GPU. An additional speed-up can be expected if the data structures are carefully 
implemented for the given HW. 
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