
Fast Parallel Triangulation Algorithm
of Large Data Sets in E2 and E3

for In-Core and Out-Core Memory Processing

Michal Smolik1, Vaclav Skala1

1 Faculty of Applied Sciences, University of West Bohemia,
22 Univerzitni, 30614 Pilsen, Czech Republic

Abstract. A triangulation of points in ��, or a tetrahedronization of points in
��, is used in many applications. It is not necessary to fulfill the Delaunay
criteria in all cases. For large data (more then 5 ∙ 10	 points), parallel methods
are used for the purpose of decreasing time complexity. A new approach for
fast and effective parallel CPU and GPU triangulation, or tetrahedronization, of
large data sets in �� or ��, is proposed in this paper. Experimental results show
that the triangulation/tetrahedralization, is close to the Delaunay
triangulation/tetrahedralization. It also demonstrates the applicability of the
method presented in applications.

1 Introduction

Today’s applications need to process large data sets using several processors with
shared memory, i.e. in parallel processing, or/and on systems using distributed
processing. In this paper we describe an approach applicable for effective
triangulation in �� and �� (tetrahedralization) using CPU and/or GPU parallel or
distributed systems, e.g. on computational clusters, for large data sets.

Many algorithms for triangulation in �� and �� have been developed and
described with different criteria [1], [2], [4], [5]; mostly Delaunay triangulation in ��
is used due to the duality with the Voronoi diagrams. The Delaunay triangulation
maximizes the minimum angle; on the other hand, it does not minimize the maximum
angle, which is required in some fields, like CAD systems etc. Moreover, if the points
form a squared mesh, algorithms are sensitive to the numerical precision of
computation. It is well known that the Delaunay triangulation (DT) contains

���/��� simplicities where � is dimensionality. The computational complexity of
the DT is (��/����) , i.e. for � = 2 is
(��) and for � = 3 is
(��).

1.1 Motivation

However, in many cases we do not need exact Delaunay triangulation nor another
specific triangulation, as triangulation “close enough” to the required type is

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

acceptable. Weakening this strict requirement enables us to formulate a simple
algorithm based on “divide and conquer (D&C)” strategy and the approach is
independent from the triangulation property requirements.

There are the following critical issues to be solved if triangulation is to be
applicable for large data sets:

• how to store data so as to especially have fast access on parallel/distributed
system,

• how the triangulation is made on a data subset – we expect that each
processor will process the given data subset resulting in a triangulated subset,

• how to join triangulated subsets in order to get the final large triangulation in
�� or ��.

Of course, implementation on CPU should be simple and implementation on GPU
should be simple as well.

2 Proposed Algorithm

In this section, we will introduce a new fast parallel triangulation algorithm in �� and
��. The main idea of this algorithm is to divide all input points into several subsets,
perform a triangulation in each of them and then join them together.

First, in sections 2.1-6, we will introduce the proposed algorithm for parallel
triangulation. In section 2.7, we will show how to divide data between multiple GPUs
and/or cluster PCs. Finally, in section 2.8, we will propose an approach for large data
processing.

2.1 Points Division

The approach proposed is based on D&C strategy and therefore input data set has to
be split to several subsets. In our case, we will use rectangular grid of size � × �
domains in �� (see Fig. 1), resp. � × � × � domains in ��. The grid does not have to
be necessarily regular and we can adjust it according to the properties of the input
data set. However, we will use orthogonal grid in our approach: it is not necessary
because domains can be triangular or tetrahedral, etc.

In the case when a domain does not contain any point, we have to generate
a random one and place it into this domain. This restriction is necessary because of
the joining procedure which will be introduced later.

Fig. 1. Division of points into a rectangular grid.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

The virtual corner points of the grid are included in the domains. It means that now
each data subset contains the original points plus the virtual corner points of the
appropriate domain.

2.2 Domains Triangulation

Now, each domain can be triangulated using any triangulation library. Properties of
the final triangulation will depend on which triangulation will be used. It should be
noted that in some applications, it is inappropriate to use DT, as some other
triangulations are more appropriate.

Each domain contains added virtual points. This is a great advantage because the
convex hull of domain triangulation will only contain these virtual points (see Fig. 2).

Fig. 2. Domain triangulation (in ��).

In case of using triangulation library that constructs triangulation with incremental
insertion, we do not have to create initial big triangle/tetrahedron. We can directly
construct triangles/tetrahedra from virtual corner points.

It should be noted that domain triangulations are totally independent and thus can
be done in parallel. We have � × � independent processes in ��, resp. � × � × �
in ��.

2.3 Domains Joining

After domains triangulation, we have � × � triangulations in ��, or � × � × � in ��,
and we have to join them to only one triangulation. The process of joining two
domains triangulations is very simple. We only have to swap common edge EF to
edge AB (see Fig. 3).

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

Fig. 3. Joining triangulated domains by edges �� → ! swapping.

Situation in �� is identical to in ��. Two domains share one common side with
vertices E, F, G and H, and thus we only have to swap edges EG and FH to edge AB
(see Fig. 4). It can be seen that the connection of triangulated subsets is extremely
simple in the �� case. In the �� case the situation is straightforward and not
complicated as well.

Fig. 4. Joining tetrahedralized domains by edges �"	&	�$ → ! swapping.

Joining two domains is totally independent from joining another two domains.
Therefore, joining of all triangulations to one triangulation can be done in parallel
without any conflicts.

2.4 Removing or Retaining of Virtual Corner Points

If the triangulation is used for scalar potential field in �� or ��, or 2&1/2%
applications in GIS systems, the value in the virtual corner points can be
approximated from the neighbors using Radial Basis Function Interpolation (RBF)
[7]. Virtual corner points can be retained in the triangulation and thereby the
triangulation is done. Otherwise the corner points have to be removed.

If the corner points have to be removed, there are several algorithms to manage
deletion of vertices from triangulation/tetrahedralization [8], [3]. Simply removing
a vertex together with its incident simplices leaves a star-shaped hole in the
triangulation, which is not necessarily convex. This approach will be described in the

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

next subsection. Another approach is to move the vertex towards its nearest neighbor
in several steps; each followed by a sequence of flips restoring the triangulation until
the simplices between the two vertices are very flat and can be clipped out of the
triangulation [6]. This approach will be described in the second subsection.

The process of removing one virtual corner point from triangulation is totally
independent from removing any other virtual corner point. Thus removing of virtual
corner points in the middle part of triangulation can be done totally in parallel.

Star-shape Polygon Re-Triangulation. This algorithm removes a vertex from the
triangulation and thus creates a star-shape hole (polygon/polyhedron) which has to be
re-triangulated. The polygon can be divided into several parts (see Fig. 5). We have
one center part and four “arms” in ��, resp. six “arms” in ��.

Fig. 5. Star-shape polygon (hole in triangulation).

The center part of the star-shape polygon contains the closest vertex from each
surrounding domains. However, the number of vertices is usually four, or eight in ��;
more vertices can be included, e.g. the situation in Fig. 6. The center polygon can be
triangulated using ear clipping algorithm, which is of computational complexity

(��), but the number of vertices � is very small.

Fig. 6. Intersection of two edges (left) and the solution (right) in ��.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

The arms of the star-shape polygon are monotone polygons in respect to axis
& or ', resp. &, ' or (. Monotone polygon can be triangulated in
(�) time and thus
triangulation of the star-shape hole is a really fast process.

Moving and Deleting Vertex. This algorithm moves the virtual corner point towards
its nearest neighbor vertex in triangulation (→ ´) [6]. The main question is how far
a vertex * can be moved into a certain direction without invalidating the triangulation,
i.e. without creating overlapping simplices. We can define the pseudo-orientation of
a simplex + = � , !, -�, resp. + = � , !, -, %�, as follows:

* = . / − !/ !/ − -/ 1 − !1 !1 − -1. ,	resp.	
* = 7 / − !/ !/ − -/ !/ − %/ 1 − !1 !1 − -1 !1 − %1 8 − !8 !8 − -8 !8 − %8 7 .

(1)

Now suppose one of the vertices is moved along the direction of ∆, i.e. 	 → ´ = + ;∆ with ; ∈ 〈0; 1〉. The maximum size of ; is the minimum value of all ; for all
simplices incident the moving vertex . ; is calculated using the formula:

; = |*|
abs .∆/ !/ − -/∆1 !1 − -1.

,	resp.	
; = |*|

abs 7∆/ !/ − -/ !/ − %/∆1 !1 − -1 !1 − %1∆8 !8 − -8 !8 − %8 7
. (2)

If ; ≥ 1, then the vertex can simply be moved along the complete path ∆, whereas if ; < 1, the vertex can only be moved by a fraction ;∆ and the triangulation has to
be validated using a sequence of flips. After triangulation validation, we have to
recalculate parameters ; and repeat the algorithm until vertex is equal to ´.
2.5 Removing of Extra Inserted Points

Some domains did not contain any vertex and thus an extra vertex was inserted into
such each domain. Now the vertices inserted have to be removed from triangulation.
This situation is the same as when removing virtual corner points. Algorithms for
removing extra inserted vertices were presented in the previous section.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

2.6 Convex Hull Creation

The union of all simplices forms a convex hull. To create a convex hull of
triangulation, we have to remove all virtual corner points at the border of the created
grid. The vertices have to be removed and preserve the convex hull. There exist many
algorithms how to do it. One of them is the ear clipping algorithm. We remove all
simplices containing one virtual corner point and then re-triangulate the border.
Another way how to do it is to use the approach presented in section “Moving and
Deleting a Vertex”.

The process of triangulation from input vertices is done after removing all
remaining virtual grid points.

2.7 Multiple GPUs or PCs

Today’s applications need to process data sets in a short time. Therefore we may use
several processors with shared memory, i.e. in parallel processing, or/and on systems
using distributed processing, or/and systems using multiple GPUs.

When using several PCs, or/and GPUs, we have to find out how to divide the work
and how to join results into one triangulation. Triangulations of domains are totally
independent so there is no problem with work distribution. Joining of domains
triangulations is, again, totally independent. In the case of retaining virtual corner
points in final triangulation, there is no challenge in work distribution between PCs,
or/and GPUs. Otherwise in the case of removing virtual corner points, we have to
distribute work between PCs, or/and GPUs, according to Fig. 7. Both GPUs need
triangulations of yellow domains for removing virtual corner points.

Fig. 7. Distribution of domains per GPU.

Division of work between more PCs, or/and GPUs is no problem and can be easily
implemented. Triangulation time can be easily reduced while using more PCs, or/and
GPUs.

2.8 Large Data Processing

However there are many algorithms for triangulation/tetrahedralization and only
a few of them can be used for large data processing. The main problem is available
memory, which is usually no more than tens of gigabytes. The number of points

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

which can be triangulated/tetrahedralized, is limited by the available memory.
The approach proposed does not have this restriction on the maximal number of

points. We can triangulate large data sets which cannot fit at once into the available
memory. For one domain triangulation, we do not need any information about other
domains. The situation in joining is almost the same. We only need information about
two domains which will be joined. And finally, when removing one virtual corner
point, we only need information about domains which contain this virtual corner
point, i.e. four domains in ��, or eight domains in ��.

The input data set can be processed by parts. We can load input data only for some
domains, perform parallel triangulation according the approach proposed, and save
resulting triangulation/tetrahedralization, in a file. Then we can load data for
following domains and perform the same operations. This is a very small change in
the approach proposed and is easy to implement. Using this approach, we are able to
perform a triangulation/tetrahedralization, on large input data sets with more than 10	
vertices. The most important feature is that we are not restricted by the limited size of
the maximal available memory.

3 Implementation

We implemented the approach proposed in C++ with using OpenMP for
parallelization and in CUDA for GPU implementation. The implementation of the
approach proposed has been fairly simple in both �� and ��.

It is appropriate to save a copy of points into domains rather than only references
to points. Then a full advantage of cache memory use can be taken, and speedup your
implementation.

4 Experimental Results

The approach proposed has been tested in several criteria. First of all, we tested the
optimal number of points per domain for the purpose of low time requirements. In the
second part, we tested time performance of triangulation/tetrahedralization, for
a different number of input points. After that, we tested the quality of
triangulation/tetrahedralization. Finally, we tested our approach on both synthetic and
real data sets.

The approach proposed has been tested on data sets using PC with the following
configuration:
• CPU: Intel(R) Core(TM) i7 920 (4 × 2,67GHz) with 8 HyperThreads,
• GPU: 2 × GeForce GTX 295

o 30 multiprocessors × 8 CUDA Cores per multiprocessor 1,38GHz
o memory 896MB 1,05GHz

• memory: 12 GB RAM,
• operating system Microsoft Windows 7 64bits

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

4.1 Number of Points per Domain

The first part in the approach proposed is the division of all vertices into a grid. We
need to know what the average number of points per domain is. According to that, we
can compute parameters � and �, or �, � and �, to split input vertices into � × �
domains in ��, or � × � × � domains in ��.

We measured time complexity of triangulation/tetrahedralization, for different
numbers of input vertices with uniform distribution and different numbers of points
per domain. One example of the time measured for 10	 points and a different number
of points per domain can be seen in Graph 1. It can be seen that with an increasing
number of points per domain time complexity decreases. This happens up to
an optimal number of points per domain where the time complexity is minimal. From
this number of points, the time complexity increases with an increasing number of
points per domain.

Graph 1. Number of points per domain for 10	 points (in ��) with uniform distribution.

An optimal number of points per grid depends on the exact implementation of
triangulation/tetrahedralization, which is used for domains triangulation. The next
factor is the number of threads used during parallel triangulation. In our case, we used
eight hyper-threads and two different implementation of
triangulation/tetrahedralization. In the case of using a brutal-force implementation, the
optimal number of points per domain is 45 in ��, or 171 in ��. In the case of using an
optimized implementation, the optimal number of points per domain is 2 000 in ��,
resp. 400 in ��.

4.2 Time Performance

In some applications, time performance is one of an important criterion. We measured
running times for triangulation/tetrahedralization, for different numbers of points with
uniform distribution. Running times were measured for 8 threads running and for only
1 thread. The times of 1 thread running, have been compared with running times of

 2.0

 2.2

 2.4

 2.6

 2.8

 3.0

10 20 30 40 50 60 70 80 90 100

tim
e

 [s
]

points per domain

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

publicly available serial library for triangulation called Fade1, or serial library for
tetrahedralization called TetGen2.

Triangulation. Tab. 1 presents running times of triangulationon on CPU. Running
times of triangulation on GPU in comparison with running times of publicly available
GPU library GPU DT3 can be seen in Tab. 2.

Table 1. Running times of triangulations in �� (using CPU).

8 threads (4 cores)

1 thread

Number of points

P
ar

al
le

l t
ria

ng
ul

at
io

n

Time [s]

P
ar

al
le

l t
ria

ng
ul

at
io

n

Time [s]

F
ad

e
lib

ra
ry

 Time [s]

316 227

0.06

0.20

0.27
1 000 000

0.18

0.67

0.88

3 162 277

0.65

2.23

2.96
10 000 000

2.16

7.33

9.58

31 622 776

7.99

24.88

35.66
100 000 000

28.21

81.94

The running time for 10F points using Fade triangulation library could not be

measured because of high memory requirements. However, we do not have time of
triangulation for 10F points: we can see that the parallel triangulation is always faster,
even when using serial execution of our parallel triangulation. The time required for
triangulation of 10F vertices is 28.21	[H] on CPU.

Table 2. Running times of triangulations in �� (using GPU).

Number of points

G
P

U
 p

ar
al

le
l t

ria
ng

ul
at

io
n

Time [s]

G
P

U
 D

T
 li

br
ar

y

Time [s]

1 000 0.010 0.149
3 162 0.012 0.173

10 000 0.015 0.186
31 622 0.019 0.260

100 000 0.034 0.317
316 227 0.093 0.620

1 000 000 0.253 1.625

According to the results from Tab. 2, it can be seen that our GPU triangulation is

much faster than publicly available library for GPU triangulation called GPU DT. The
time required for triangulation of 10J vertices is 0.253	[H] on GPU.

Tetrahedralization. Running times of tetrahedralization in comparison with publicly
available serial library TetGen can be seen in Tab. 3.

1 Kornberger, B., Fade2D & Fade2.5D, Geom e.U. Software Development.
2 Si, H., TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator,

Weierstrass Institute for Applied Analysis and Stochastics.
3 GPU-DT: A 2D Delaunay Triangulator using Graphics Hardware, National University of

Singapore.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

Table 3. Running times of tetrahedralizations in ��.

8 threads (4 cores)

1 thread

Number of points

P
ar

al
le

l t
et

ra
he

dr
al

iz
a.

Time [s]

P
ar

al
le

l t
et

ra
he

dr
al

iz
a.

Time [s]

T
et

G
en

 li
br

ar
y Time [s]

100 000

0.29

0.97

1.78
316 227

0.85

2.92

5.75

1 000 000

2.52

8.77

18.97
3 162 277

8.11

28.35

60.60

10 000 000

25.72

88.69

196.00
31 622 776

81.70

278.45

The running time for √10 ∙ 10	 points using TetGen tetrahedralization library

could not be measured because of high memory requirements. Although we do not
have time of tetrahedralization for √10 ∙ 10	 points, we can see that the parallel
tetrahedralization is always faster, even when using serial execution of our parallel
tetrahedralization, and the speed-up is increasing with the increasing number of input
vertices. The time required for tetrahedralization of √10 ∙ 10	 vertices is 81.7	[H].

Speed-up. Using Tab. 1 and Tab. 3, we can calculate the speed-up of parallel
triangulation/tetrahedralization when using only one thread, in respect to the publicly
available serial library for triangulation called Fade, or for tetrahedralization called
TetGen, see Graph 2.

Graph 2. Speed-up of parallel triangulation (using 1 thread) to Fade library and speed-up of parallel
tetrahedralization (using 1 thread) to TetGen library.

4.3 Triangulation Quality

Delaunay triangulation maximizes the minimal internal angle in triangulation.
Therefore, one test of triangulation quality is the distribution of minimal internal
angles in triangulation. We measured the internal angle in degrees in �� and the
internal solid angle in steradians in �� (see Graph 3).

1.0

1.3

1.6

1.9

2.2

2.5

1E+5 1E+6 1E+7 1E+8

sp
e

e
d

-u
p

number of points
Triangulation in E2 Tetrahedralization in E3

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

Graph 3. Distribution of minimal internal angles (PpD = Points per Domain).

According to the results, a triangulation/tetrahedralization created with the
algorithm proposed is very close to Delaunay triangulation, see Graph 2. Moreover,
the inner parts of the domains are Delaunay’s. The more points per domain are used,
the closer to the Delaunay triangulation the triangulation proposed is.

The Delaunay triangulation maximizes the mean incircle radii. Due to this
criterion, we calculated Graph 4. We can see a similar behavior like in Graph 3. The
more points per domain are used, the closer to the Delaunay triangulation our
triangulation is. If we retain corner points in triangulation, then the quality of
triangulation is a bit worse. However, for 2 000 vertices there is almost no difference
in the mean inradius for triangulation with and without virtual corner points.

Graph 4. Mean inradius of triangles for different triangulations (mean inradius of Delaunay triangulation
was normalized to size 1.0).

4.4 Synthetic and Real Data Sets

In many applications, we do not need to triangulate only uniformly distributed data
sets, but real data sets. An example of real data sets may be sets for geographic
information system applications. Triangulation of one such set is shown in Fig. 8. It is

0%

1%

2%

3%

0 20 40 60p
e

rc
e

nt
a

ge
 o

f t
ria

n
g

le
s

[%
]

minimal angle [°]
45 PpD 2000 PpD
Delaunay

E2

0%

1%

2%

3%

4%

0 2 4 6p
e

rc
e

nt
a

ge
 o

f t
e

tr
a

h
e

d
ra

 [%
]

minimal solid angle [steradian]
171 PpD 400 PpD
Delaunay

E3

0.75

0.80

0.85

0.90

0.95

1.00

2000 PpD 45 PpD 2000 PpD
with corner

points

45 PpD
with corner

points

Delaunay

m
e

a
n

 in
ra

d
iu

s

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

a GIS data set of South America. The set contains 1.1 ∙ 10J points and the
triangulation time of our parallel triangulation proposed was 0.42	[H].

Fig. 8. Triangulation of South Americas GIS data set.

We compared the obtained triangulation from Fig. 8 with the Delaunay
triangulation of the same data set. We used the distribution of minimal internal angles
in triangulation for comparison (see Graph 5). It can be seen that there is almost no
difference and all graphs are overlapped over each other. The highest maxima are for
angles 45° (edges of the triangle in the proportion of 1: 1: √2), 26.6° (edges of the
triangle in the proportion of 1: 2: √5) and	18.4° (edges of the triangle in the
proportion of 1: 3: √10).

Graph 5. Distribution of minimal internal angle (PpD = Points per Domain).

0

20

40

60

0 20 40 60p
e

rc
e

nt
a

ge
 o

f t
ria

n
g

le
s

[%
]

minimal angle [°]

45 PpD 2000 PpD Delaunay

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

5 Conclusion

A new fast parallel triangulation algorithm in �� and �� has been presented. It is
based on the “Divide & Conquer” strategy. It can be easily implemented on parallel
environments with shared and/or distributed memory using both CPU and GPU. As it
is scalable; the proposed algorithm is especially convenient for large data sets
processing. The approach proposed has been implemented and tested using both CPU
and GPU. An additional speed-up can be expected if the data structures are carefully
implemented for the given HW.

Acknowledgments. The authors would like to thank their colleagues at the University
of West Bohemia, Plzen, for their comments and suggestions, and anonymous
reviewers for their valuable comments and hints provided. The research was
supported by MSMT CR projects LG13047, LH12181 and SGS 2013-029.

References

1. Chen, M.-B.: A Parallel 3D Delaunay Triangulation Method. 9th ISPA, IEEE, 2011,
pp.52-56.

2. Cignoni, P., Montani, C., Scopigno, R.: DeWall: A Fast Divide & Conquer Delaunay
Triangulation Algorithm in Ed. Computer Aided Design, 1998, Vol.30, No.5, pp.333-341.

3. Ledoux, H., Gold, Ch. -M., Baciu, G.: Flipping to Robustly Delete a Vertex in a Delaunay
Tetrahedralization. Computational Science and Its Applications – ICCSA, 2005, Vol. 3480,
pp. 737-747.

4. Liu, Y.-X., Snoeying, J.: A Comparison of Five Implementations 3D Delaunay Tessellations.
Combinatorial and Computational Geometry, MSRI publ., 2005, Vol.52, pp.439-458.

5. Rong, G.D., Tan, T.S., Cao, T.-T.: Computing Two-dimensional Delaunay Triangulation
Using Graphics Hardware. ACM Symposium on Interactive 3D Graphics and Games,
Redwood City, CA, USA, 2008, pp. 89-9.

6. Schaller, G., Meyer-Hermann, M.: Kinetic and Dynamic Delaunay Tetrahedralization in
Three Dimensions. Computer Physics Communications, 2004, Vol.162, No.1, pp.9-23.

7. Skala, V.: Radial Basis Functions for High Dimensional Visualization. VisGra - ICONS12,
Saint Gilles, Reunion Island, IARIA, 2012, ISBN: 978-1-61208-184-7, pp. 218-222.

8. Zemek, M., Kolingerova, I.: Hybrid Algorithm for Deletion of a Point in Regular and
Delaunay Triangulation. ICCSA, 2009, ISBN: 978-1-4503-0769-7, pp. 137-144.

Fast Parallel Triangulation Algorithms of Large Data Sets in E2 and E3 for In-Core and Out-Core Processing,
 ICCSA 2014 conference, 978-3-319-09128-0, pp.301-314, Springer, 2014

