

Abstract—Advances in computational power over the last two

decades allowed fluid dynamic simulations that involve moving

parts. Various mesh update methods are employed in such

simulations to adapt cells around the moving parts, resulting in a

separate new definition of the mesh geometry and associated values

for each discrete simulation step. Common practice is to visualize

every timestep of the simulation as a single static dataset. We present

a novel method for interactive visualization of the evolving

isosurfaces from the datasets with dynamic mesh. The effectiveness

of the method is demonstrated on the real-life datasets from

combustion simulation.

Keywords — Iso-contour; time-varying mesh; interactive

visualization.

I. INTRODUCTION

TEEP increase in computational power over the last 20

years allowed fluid dynamic simulations that involve

moving parts. Examples are combustion simulations with

moving piston inside an engine cylinder [7, 16], see Fig.1, or

falling payload from under an aircraft wing [13]. Various

mesh update methods are involved in such simulations. The

goal of the mesh update procedure is to re-calculate position

and shape of the cells surrounding moving parts. Resulting

datasets then have separate definition of the mesh geometry

and values of the simulated quantities for each discrete

simulation step.

The biggest challenge in visualization of such a data is their

large size due to the changing geometry of the mesh at

successive timesteps. The inter-timestep correspondence of the

This work was supported by MŠMT Czech Republic, projects

No.LG13047 and LH12181. V,Skala and S.Petrik are with the University of

West Bohemia, Faculty of Applied Sciences, Department of Computer

Science and Engineering, Plzen, Czech Republic (http://www.VaclavSkala.eu)

mesh Machine cells is usually lost. Another factor that

contributes heavily to the overall size of such datasets is time-

varying values associated with cells.

Isosurfaces are a standard tool for the investigation of fluid

dynamic datasets. Most of the existing methods for efficient

isosurface extraction from time-varying datasets assume static

mesh geometry over the course of simulation with time-

varying values. Only a few method exist that are able to

handle datasets with dynamic mesh geometry.

The method presented in this paper allows for interactive

playback of the evolving isosurfaces extracted from the

datasets with dynamic mesh. We do not make any

assumptions about the way the simulation mesh changes

between adjacent timesteps. The major contribution of our

work is a novel metrics for evaluation of temporal variation in

a cell’s shape, which is used to re-establish lost inter-timestep

cells correspondence. Those cells with similar position,

geometry and value are efficiently re-used for multiple

timesteps instead of being re-loaded from disk. The method

proposed is particularly suitable for the engineering software,

in which quick insight into investigated data is required rather

than high accuracy of the computed isosurfaces.

II. RELATED WORK

The idea of dynamic simulation mesh is not new. Arbitrary

Lagrangian-Eulerian (ALE) methods were developed for this

purpose. Donea et al. [14] provides a good survey of the field.

Most of the existing techniques for a efficient isosurface

extraction from time-varying datasets assume static mesh. In

static mesh the number of cells and their geometry do not

change during the course of simulation. For such datasets a

family of method has been developed based on the notion of

Span-Space [5]. In Span-Space each cell of the dataset is

Fast insight into time varying datasets with

dynamic mesh

Vaclav Skala, Slavomir Petrik

S

Fig.1: Dynamic mesh updated during the course of a combustion simulation. The mesh adapts total number of cells and their

shape around moving parts - piston and fuel intakes.

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications,
Vol.I, pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014

represented as a point in plane with coordinates x, y equal to

the minimum and maximum value associated with the cell’s

vertices. Shen et al. use lattice subdivision of the Span-Space

in their ISSUE algorithm [6]. Waters et al. [19] organizes the

cells into the structure of fixed-sized buckets according to

their min-max value.

Originally proposed for the isosurface extraction from static

datasets, the idea of Space-Space has soon appeared in the

methods for time-varying datasets. The Temporal Hierarchical

Index Tree (THIT) [8] assigns the cells of a simulation mesh

to its nodes according to a temporal variation of their

minimum and maximum values. Weigle and Banks [9]

introduced method which treats 3D time-varying dataset as the

static 4D data. T-BON technique [11] extends BONO tree [3]

for the time-varying datasets. A common BONO tree structure

is saved only once for the entire dataset, while minimum and

maximum values of the cells are stored separately for each

timestep. Time-space Partitioning Tree (TSP) [10] is a

standard full octree. Each node of TSP tree has a binary time

tree associated. The partial rendered sub-volumes are cached

are re-used for faster visualization. The approach of Gregorski

[15] builds a hierarchy of diamonds from the original mesh

cells. The mesh refinement process (sequence of split and

merge operations) ruled by the min, max and error values of

the active diamonds is initiated for each iso-surface query,

starting from either current refinement or from a root diamond

of hierarchy. Recently the Difference Intervals method [21]

has been introduced, encoding change of a cell’s status by

either Add or Remove operation (a cell becomes

active/inactive) similarly to the encoding of the video frames.

All of the methods described above assume static

simulation mesh. They exploit the fact that the number of

mesh cell and their geometry do not change during a

simulation. In a dynamic simulation mesh both the number of

cells and their geometry change under the deformation of the

simulation domain boundaries. Therefore none of the methods

above is suitable for the dynamic mesh datasets.

Only a few methods able to handle dynamic simulation

mesh were introduced. A system for interactive visualization

of the datasets with dynamic simulation mesh is introduced in

[18], which assumes certain time intervals in a dataset

(topology zones). Within a topology zone the number of cells

and their correspondence between timesteps remains constant.

Mesh cells are not matched or tracked over topology zone

borders (rezone points). The method [22] tries to re-establish

inter-timestep cell correspondence based on the geometric and

positional similarity of the 2D cells. The method is based on

the previous research on the shape reconstruction from planar

cross-sections [4]. Later [23] introduced a method that pre-

processes all cells into a list of diamonds. Each created

diamond is composed of two cells sharing common face.

Diamonds are stored in a data structure that allows fast

identification of the diamonds intersected by the isosurface for

user-defined isovalue.

The method presented in this paper pre-processes the data

from each simulation timestep sequentially. First the active

cells (cells intersected by the isosurface) are identified. For

each active cell we try to find similar cell in the previous

timestep and efficiently re-use its geometry information.

Similarity of the compared cells is evaluated using our newly

proposed metric (Sect. 3). Processed cells are stored in the

tree-based structure, which accommodates geometry and

scalar values of the cells for all timesteps (Sect. 4).

III. METRICS

The core of our proposed method is a metrics for

evaluation of temporal changes in a cell's shape. Let's consider

two -dimensional cells and . The metrics compares

the shapes of and by evaluating of how much the

vertices of have to move in order to morph to :

 (1)

where: , and .

For the rest of this article, let's define L to be the length of the

longest edge of . The resulting distances between the shapes

of and have the following meanings:

 , shape and position of is equal to

 , vertices of moved in total by less than *

 , the vertices of moved by between and

 , vertices of moved in total by more than *

In other words, if then positions of vertices of

are exactly the same as the positions of vertices of . As the

value of grows the two compared cells become more and

more different. Note that the metrics is not translation,

rotation and scale invariant.

Fig.2: Computation of vector for a 2D triangular cell C.

 is equal to the vector sum of average center CP of cell C

and all vectors from the center CP to the cell’s vertices.

Computation of scales well to the other dimensions, e.g.

tetrahedral cells in 3D. Calculated vector is kept as a

description of a cell’s position and shape and is used later in

the algorithm presented.

The metrics (or distance function) between the shape and

position of and is defined as:

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications,
Vol.I, pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014

 (2)

 (3)

where: represents the center point of the -th cell computed

as the average sum of the positions of all cell's vertices; is

dimensionality of the cell and represents position of -th

vertex of the -th cell.

IV. ALGORITHM

Input parameters of our algorithm are start and finish

timestep , finish timestep and selected isovalue . The

algorithm presented is thus able to identify active cells for one

selected isovalue for any timestep between and of the

dataset.

Fig.3: Buckets of the proposed data structure are organized

in the 2D grid. Each bucket contains cells organized in a Red-

Black tree. The operation Add for timestep T adds a cell into

the bucket on position (T, T) of the grid of buckets. The

operation Adopt removes the cell from its previous bucket and

adds it to the bucket over the original one. In this way, similar

cells are re-used between timesteps. For each cell of the

dataset either Add or Adopt is performed.

Next we describe our data structure that keeps all active

cells for entire time window between user-selected start and

finish timestep. The data structure consists of 2-dimensional

lattice of buckets, where is equal to the total

number of simulation steps. Only half of the buckets above the

diagonal in lattice is used. The other half of the buckets under

the diagonal plays no role in our algorithm and does not need

to be initialized. Along each axis, one bucket represents one

timestep. and axis of the lattice have meaning of

minimum and maximum timestep similarly to the min-max

isovalues in Span-Space [5].

Each bucket in our data structure accommodates certain

amount of cells organized in a Red-Black tree. The Red-Black

trees introduced by Guibas and Sedgewick in 1978 [1] are

self-balancing binary trees, which guarantee worst-case

running time , for accommodated items, for

insert, delete and search operations. The data in Red-Black

tree are kept in the non-leaf nodes (one data item per node),

thus their space complexity is . Space complexity

makes the Red-Black trees suitable data structure for large

number of cells that we need to accommodate due to fact that

the geometry of simulation mesh is changing with each

discrete timestep of a simulation.

Before we describe the algorithm itself, let us define two

operations for a cell : Add and Adopt, see Fig.3. Operation

Add] for the cell and the timestep , adds into the bucket

(,), which lies on the diagonal of the lattice. On the other

hand, operation Adopt for cell and timestep removes

from the bucket (,) and adds into the bucket (,),

where . By adding or removing a cell from a

bucket we mean inserting/deleting the cell out of/into the tree

inside the bucket.

The algorithm to populate our data structure is governed by

the outer loop in which all timesteps from the user-defined

time span , are prepossessed one-by-one, starting from

earliest one. For the currently processed timestep, only active

cells (e.g. cells intersected by the isosurface) are filtered out

and further processed.

For each active cell we keep geometry (position of its

vertices), values associated with its vertices and hash key .

The hash key for a cell is computed using equation Eg.3

from the previous section [24]. is used later in our algorithm

for accommodation of a cell into the buckets of the data

structure described above as well as for the comparison of the

cell's shape with a candidate cell from successive timestep.

The algorithm starts at the row equal to the first timestep

of the lattice of buckets, see Fig.4. For each timestep all its

active cells are processed one-by-one. For each active cell

the algorithm runs the inner loop that traverses buckets of the

row in the columns to . If a candidate cell is

found the algorithm performs the Adopt operation for the cell

 and the timestep , otherwise the Add operation for the

timestep is performed.

The metrics described in the previous section is used for

assessment of temporal variations of a cell's shape. (from

the timestep) is pronounced to be a predecessor of

(from the timestep) only if the distance , Eq.1., between

 and is smaller than the user defined threshold Delta. In

such case the operation Adopt is performed, removing from

its bucket and inserting as an approximate substitution of

 into the bucket above . If a candidate for is not

found, the operation Add for the cell is performed. By

increasing the treshold Delta for the user may store active

cells more space-efficiently (i.e. more Adopt operations will

be performed); however, the higher the Delta the higher

approximation of the actual isosurface is extracted and

rendered. In this way the user can balance between the

algorithm's space demands and isosurface accuracy.

During the isosurface rendering step for a timestep , the

active cells are collected from all buckets in and above the

grid row corresponding to and left of and of the column ,

see Fig.4. Once the active cells are collected, the isosurface

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications,
Vol.I, pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014

geometry can be computed and rendered out.

Fig.4: Active cells extraction.

The active cells for the timestep T are collected from the

buckets that lie inside or on the borders of the greyed-out area.

Dotted arrows show the way in which the buckets are

traversed during active cells extraction. For each traversed

bucket all its cells are collected by traversing its internal tree.

V. RESULTS

In order to test performance of our method, we ran the

series of tests on two datasets produced during Computational

Fluid Dynamic simulations. Both datasets are from

simulations of the combustion process inside a valve of a

diesel engine. Multiple scalar and vector variables like

pressure or temperature were computed. The specificity of

both datasets is that the geometry of the mesh is not fixed. The

total number and shape of the cells changes with each discrete

simulation step. The goal of the mesh update procedure is to

re-build the mesh around moving parts inside valve. The

moving parts are piston and fuel inlets on the top of cylinder.

The Move3D dataset consists of 149 timesteps, capturing a

complete combustion cycle inside cylinder. The total number

of cells (as well as their shape) varies between 40k and 115k.

The dataset occupies 8.31 GB of space. The second dataset

Valve consists of 960 timesteps and occupies 21.2 GB of

storage. Total number of cells for the second dataset changes

between 60k and 90k.

All tests were done on Intel Core2 Duo T5750 2GHz

workstation with 4 GB of RAM. The method has been

implemented in C language using Standard Template Library

and compiled with GCC compiler.

A preprocessing time has been measured for both datasets.

Fig.4. shows that the preprocessing time depends on the

overall size of the dataset (total number of cells for given

isovalue) rather than on the ratio of Add and Adopt operations

performed. This is due to the fact that the time required for

Adopt operation (and searching for predecessor cell) is only

slightly different than the time required for Add.

Fig.5: Preprocessing times for Move3D dataset. Relationship

between preprocessing time and the Delta parameter of the

proposed method. The preprocessing time depends on the total

number of cells for given isovalue rather than on the number

of Add and Adopt operations performed.

The saving of runtime memory depends on the value of the

parameter Delta, Eq. 2. The higher the value of Delta the

higher space savings are achieved and vice versa. Higher

threshold for Delta means that higher number of cells will be

re-used between the timesteps, i.e. operation Adopt will be

performed instead of Add, which requires new memory

allocation. Thus, the overall space saving depends on the

similarity of the changing simulation mesh in the adjacent

timesteps.

Fig.6: Move3D dataset. Percentage of the Adopt operations

vs. parameter Delta of the proposed method for three different

isovalues. For high values of Delta the method achieves

around 50% of the Adopt operations, which is proportional to

the space savings for the given value of Delta.

Fig.5 shows the relationship between the increasing value of

the parameter Delta and the percentage of the Adopt

operations performed over the cells in the Move3D dataset for

three different isovalues. We have only chosen parameter

Delta in the range 0.0 to 3.0; higher values of Delta show

higher degree of the damage of the produced isosurface, Fig.8.

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications,
Vol.I, pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014

Fig.7: Extraction times for the Move3D dataset for three

different isovalues : 0.01, 0.0245 and 0.039 and different

values of the parameter Delta between 0.0 and 3.0.

Finally, we measured the extraction times of the sets of

active cells for three different isovalues and different values of

parameter Delta of the Move3D dataset. Due to the common

difficulties in measuring code execution time under 1 ms, for

each pair isovalue-Delta a total of 400 extractions were made

and the average time was computed. The overall extraction

time of the active cells show no dependency on the parameter

Delta used, but is proportional to the number of buckets

visited during the extraction step (i.e. total number of active

cells extracted). Fig.7 shows extraction times for the Move3D

datasets for three different isovalues and parameter Delta

between 0.0 and 3.0.

For visual assessment of the damage fragments of the

produced isosurface with growing parameter Delta, Fig.8

shows isosufaces for the isovalue 0.0245 of the quantity AMU

(total viscosity) of the Move3D dataset for three different

values of Delta: 0.0, 1.0 and 3.0. For the tested datasets Delta

> 3.0 produced considerable damage of the isosurface.

However, the degree of the damages in higher Deltas is

dataset-depended and thus left to be a choice of the user.

VI. CONCLUSION

An efficient method has been described, capable of

interactive visualization of the evolving isosurfaces from the

time-varying datasets with dynamic mesh. The method

consists of the computationally inexpensive preprocessing step

with logarithmic space and time complexity and the extraction

step, during which the active cells are idenfied and collected.

Two basic stones of the method are the metrics for assessment

of the temporal change of a cell's shape (Sec. 3) and the

buckets-based data structure (Sec.4) that facilitates space-

efficient storage of the similar cells.

The method is particularly suitable for the applications

where fast insight into the dataset is more important than high

accuracy of the produced isosurfaces. The relative simplicity

of the proposed method allows its easy implementation.

ACKNOWLEDGMENT

The authors thank to colleagues at the University of West

Bohemia for fruitful discussions and to anonymous reviewers

for their comments which helped to improve this manuscript.

REFERENCES

[1] Guibas L. J., Sedgewick R.: A dichromatic framework for balanced

trees. Proceedings of the 19th Annual Symposium on Foundations of

Computer Science, 8-21.

[2] Lorensen W. E., Cline H. E.: Marching cubes: A high resolution 3D

surface construction algorithm. Proceedings of ACM SIGGRAPH '87,

163-169.

[3] Wilhelms J., van Gelder A.: Octrees for faster isosurface generation.

ACM Trans. Graph., 11(3), 201-227.

[4] Bajaj Ch. L., Coyle E. J., Lin K.-N.: Arbitrary topology shape

reconstruction from planar cross sections. Graphical Models and Image

Processing, 58(6), 524-543.

[5] Livnat Y., Shen H.-W., Johnson Ch. R.: A Near Optimal Isosurface

Extraction Algorithm Using the Span Space. IEEE Transactions on

Visualization and Computer Graphics, 2(1), 73-84.

[6] Shen H.-W., Hansen Ch. D., Livnat Y., Johnson Ch. R.: Isosurfacing in

Span Space with Utmost Efficiency, IEEE Visualization '96, 287-294.

[7] Amsden A.A.: KIVA-3V: A block-structured KIVA program for engines

with vertical or canted valves. Los Alamos NATIONAL

LABORATORY, Technical Report LA-13313-MS.

[8] Shen H.-W.: Iso-surface extraction in time-varying fields using a

temporal hierarchical index tree. Proceedings of Visualization '98, 159-

166.

[9] Weigle Ch., Banks D. C.: Extracting iso-valued features in 4-

dimensional scalar fields. Proceedings of IEEE Symposium on Volume

Visualization '98, 103-110.

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications,
Vol.I, pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014

[10] Shen H.-W., Chiang L.-J., Ma K.-L.: A fast volume rendering algorithm

for time-varying fields using a time-space partitioning TSP tree.

Proceedings of Visualization '99, 371-377.

[11] Sutton P., Hansen Ch. D.: Isosurface extraction in time-varying fields

using a temporal branch-on-need tree. Proceedings of Visualization '99,

147-153.

[12] de Leeuw W., van Liere R.: Chromatin decondensation: a case study of

tracking features in confocal data. Proceedings of Visualization '01,

441-444.

[13] Fluent news: Dynamic Mesh, Volume: XI, editor: Liz Marshall, Fluent

Inc.

[14] Donea J., Huerta A., Ponthot J.-Ph., Rodriguez-Ferran A.: Encyclopedia

of Computational Mechanics, Volume 1. John Wiley \& Sons.

[15] Gregorski B.: Adaptive Extraction of Time-Varying Isosurfaces. IEEE

Transactions on Visualization and Computer Graphics 10(6), 683-694.

[16] Cavallo P., Hosangadi A., Ahuja V.: Transient simulations of valve

motion in cryogenic systems. Proceeding of 35th AIAA Fluid Dynamics

Conference and Exhibit.

[17] Szymczak A.: Subdomain-aware contour trees and contour tree

evolution in time-dependent scalar fields. Proceedings of Shape

Modeling International '05, 136-144.

[18] Doleisch H., Mayer M., Gasser M., Priesching P., Hauser H.:

Interactive Feature Specification for Simulation Data on Time-Varying

Grids. SimVis'05, 291-304.

[19] Waters K. W., Co Ch. S., Joy K. I.: Isosurface Extraction Using Fixed-

Sized Buckets. IEEE VGTC Symposium on Visualization, 207-214.

[20] Bernardon F., Callahan S., Comba J., Silva C.: Interactive volume

rendering of unstructured grids with time-varying scalar fields.

Proceedings of Eurographics Symposium on Parallel Graphics and

Visualization '06, 51-58.

[21] Waters K. W., Co Ch. S.: Using Difference Intervals for Time-Varying

Isosurface Visualization. IEEE Transactions on Visualization and

Computer Graphics, 12(5), 1275-1282.

[22] Petrik S., Skala V.: Iso-contouring in Time-varying Meshes. SCCG 2007

Proceedings, 216-223.

[23] Petrik S., Skala V.: Z-Diamonds: A Fast Iso-surface Extraction

Algorithm for Dynamic Meshes. IADIS Computer Graphics and

Visualization proceedings 2007.

[24] Hradek,J., Skala,V.: Hash Function and Triangular Mesh

Reconstruction, Vol.29, No.6., pp.741-751, Computers&Geosciences,

Pergamon Press, ISSN 0098-3004, 2003

Fig.8: Isosurfaces of the Move3D dataset. Top row: timestep 13, bottom row: timestep 113. Isovalue q=0.0245 of the AMU

(total viscosity).

Each isosurface has been generated with different value of Delta; from left to right: Delta = 0.0, 1.0, 3.0.

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications,
Vol.I, pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014

