
 

 

 

Abstract—Advances in computational power over the last two 

decades allowed fluid dynamic simulations that involve moving 

parts. Various mesh update methods are employed in such 

simulations to adapt cells around the moving parts, resulting in a 

separate new definition of the mesh geometry and associated values 

for each discrete simulation step. Common practice is to visualize 

every timestep of the simulation as a single static dataset. We present 

a novel method for interactive visualization of the evolving 

isosurfaces from the datasets with dynamic mesh. The effectiveness 

of the method is demonstrated on the real-life datasets from 

combustion simulation. 

 

Keywords — Iso-contour; time-varying mesh; interactive 

visualization.  

I. INTRODUCTION 

TEEP increase in computational power over the last 20 

years allowed fluid dynamic simulations that involve 

moving parts. Examples are combustion simulations with 

moving piston inside an engine cylinder [7, 16], see Fig.1, or 

falling payload from under an aircraft wing [13]. Various 

mesh update methods are involved in such simulations. The 

goal of the mesh update procedure is to re-calculate position 

and shape of the cells surrounding moving parts. Resulting 

datasets then have separate definition of the mesh geometry 

and values of the simulated quantities for each discrete 

simulation step. 

The biggest challenge in visualization of such a data is their 

large size due to the changing geometry of the mesh at 

successive timesteps. The inter-timestep correspondence of the 
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mesh Machine cells is usually lost. Another factor that 

contributes heavily to the overall size of such datasets is time-

varying values associated with cells. 

Isosurfaces are a standard tool for the investigation of fluid 

dynamic datasets. Most of the existing methods for efficient 

isosurface extraction from time-varying datasets assume static 

mesh geometry over the course of simulation with time-

varying values. Only a few method exist that are able to 

handle datasets with dynamic mesh geometry.  

The method presented in this paper allows for interactive 

playback of the evolving isosurfaces extracted from the 

datasets with dynamic mesh. We do not make any 

assumptions about the way the simulation mesh changes 

between adjacent timesteps. The major contribution of our 

work is a novel metrics for evaluation of temporal variation in 

a cell’s shape, which is used to re-establish lost inter-timestep 

cells correspondence. Those cells with similar position, 

geometry and value are efficiently re-used for multiple 

timesteps instead of being re-loaded from disk. The method 

proposed is particularly suitable for the engineering software, 

in which quick insight into investigated data is required rather 

than high accuracy of the computed isosurfaces. 

II. RELATED WORK 

The idea of dynamic simulation mesh is not new. Arbitrary 

Lagrangian-Eulerian (ALE) methods were developed for this 

purpose. Donea et al. [14] provides a good survey of the field. 

Most of the existing techniques for a efficient isosurface 

extraction from time-varying datasets assume static mesh. In 

static mesh the number of cells and their geometry do not 

change during the course of simulation. For such datasets a 

family of method has been developed based on the notion of 

Span-Space [5]. In Span-Space each cell of the dataset is 
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Fig.1: Dynamic mesh updated during the course of a combustion simulation. The mesh adapts total number of cells and their 

shape around moving parts - piston and fuel intakes. 
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represented as a point in plane with coordinates x, y equal to 

the minimum and maximum value associated with the cell’s 

vertices. Shen et al. use lattice subdivision of the Span-Space 

in their ISSUE algorithm [6]. Waters et al. [19] organizes the 

cells into the structure of fixed-sized buckets according to 

their min-max value. 

Originally proposed for the isosurface extraction from static 

datasets, the idea of Space-Space has soon appeared in the 

methods for time-varying datasets. The Temporal Hierarchical 

Index Tree (THIT) [8] assigns the cells of a simulation mesh 

to its nodes according to a temporal variation of their 

minimum and maximum values. Weigle and Banks [9] 

introduced method which treats 3D time-varying dataset as the 

static 4D data. T-BON technique [11] extends BONO tree [3] 

for the time-varying datasets. A common BONO tree structure 

is saved only once for the entire dataset, while minimum and 

maximum values of the cells are stored separately for each 

timestep. Time-space Partitioning Tree (TSP) [10] is a 

standard full octree. Each node of TSP tree has a binary time 

tree associated. The partial rendered sub-volumes are cached 

are re-used for faster visualization. The approach of Gregorski 

[15] builds a hierarchy of diamonds from the original mesh 

cells. The mesh refinement process (sequence of split and 

merge operations) ruled by the min, max and error values of 

the active diamonds is initiated for each iso-surface query, 

starting from either current refinement or from a root diamond 

of hierarchy. Recently the Difference Intervals method [21] 

has been introduced, encoding change of a cell’s status by 

either Add or Remove operation (a cell becomes 

active/inactive) similarly to the encoding of the video frames.  

All of the methods described above assume static 

simulation mesh. They exploit the fact that the number of 

mesh cell and their geometry do not change during a 

simulation. In a dynamic simulation mesh both the number of 

cells and their geometry change under the deformation of the 

simulation domain boundaries. Therefore none of the methods 

above is suitable for the dynamic mesh datasets. 

Only a few methods able to handle dynamic simulation 

mesh were introduced. A system for interactive visualization 

of the datasets with dynamic simulation mesh is introduced in 

[18], which assumes certain time intervals in a dataset 

(topology zones). Within a topology zone the number of cells 

and their correspondence between timesteps remains constant. 

Mesh cells are not matched or tracked over topology zone 

borders (rezone points). The method [22] tries to re-establish 

inter-timestep cell correspondence based on the geometric and 

positional similarity of the 2D cells. The method is based on 

the previous research on the shape reconstruction from planar 

cross-sections [4]. Later [23] introduced a method that pre-

processes all cells into a list of diamonds. Each created 

diamond is composed of two cells sharing common face. 

Diamonds are stored in a data structure that allows fast 

identification of the diamonds intersected by the isosurface for 

user-defined isovalue. 

The method presented in this paper pre-processes the data 

from each simulation timestep sequentially. First the active 

cells (cells intersected by the isosurface) are identified. For 

each active cell we try to find similar cell in the previous 

timestep and efficiently re-use its geometry information. 

Similarity of the compared cells is evaluated using our newly 

proposed metric (Sect. 3). Processed cells are stored in the 

tree-based structure, which accommodates geometry and 

scalar values of the cells for all timesteps (Sect. 4). 

III. METRICS 

The core of our proposed method is a metrics   for 

evaluation of temporal changes in a cell's shape. Let's consider 

two  -dimensional cells    and   . The metrics   compares 

the shapes of    and    by evaluating of how much the 

vertices of    have to move in order to morph    to   : 

               (1) 

where:        , and         .  
 

For the rest of this article, let's define L to be the length of the 

longest edge of   . The resulting distances between the shapes 

of   and    have the following meanings: 

     , shape and position of   is equal to    

     , vertices of   moved in total by less than   *   

     , the vertices of    moved by     between    and 

   

     , vertices of    moved in total by more than  *  

 

In other words, if       then positions of vertices of    

are exactly the same as the positions of vertices of   . As the 

value of     grows the two compared cells become more and 

more different. Note that the metrics   is not translation, 

rotation and scale invariant.  

 

Fig.2: Computation of vector      for a 2D triangular cell C. 

     is equal to the vector sum of average center CP of cell C 

and all vectors from the center CP to the cell’s vertices. 

Computation of      scales well to the other dimensions, e.g. 

tetrahedral cells in 3D. Calculated vector      is kept as a 

description of a cell’s position and shape and is used later in 

the algorithm presented. 

 

The metrics (or distance function)   between the shape and 

position of    and    is defined as: 
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where:       represents the center point of the  -th cell computed 

as the average sum of the positions of all cell's vertices;   is 

dimensionality of the cell and       represents position of  -th 

vertex of the  -th cell. 

IV. ALGORITHM 

Input parameters of our algorithm are start and finish 

timestep   , finish timestep    and selected isovalue  . The 

algorithm presented is thus able to identify active cells for one 

selected isovalue for any timestep between    and    of the 

dataset.  

 
Fig.3: Buckets of the proposed data structure are organized 

in the 2D grid. Each bucket contains cells organized in a Red-

Black tree. The operation Add for timestep T adds a cell into 

the bucket on position (T, T) of the grid of buckets. The 

operation Adopt removes the cell from its previous bucket and 

adds it to the bucket over the original one. In this way, similar 

cells are re-used between timesteps. For each cell of the 

dataset either Add or Adopt is performed. 

 

Next we describe our data structure that keeps all active 

cells for entire time window between user-selected start and 

finish timestep. The data structure consists of 2-dimensional 

lattice of     buckets, where   is equal to the total 

number of simulation steps. Only half of the buckets above the 

diagonal in lattice is used. The other half of the buckets under 

the diagonal plays no role in our algorithm and does not need 

to be initialized. Along each axis, one bucket represents one 

timestep.   and   axis of the lattice have meaning of 

minimum and maximum timestep similarly to the min-max 

isovalues in Span-Space [5]. 

 

Each bucket in our data structure accommodates certain 

amount of cells organized in a Red-Black tree. The Red-Black 

trees introduced by Guibas and Sedgewick in 1978 [1] are 

self-balancing binary trees, which guarantee worst-case 

running time         , for   accommodated items, for 

insert, delete and search operations. The data in Red-Black 

tree are kept in the non-leaf nodes (one data item per node), 

thus their space complexity is     . Space complexity      

makes the Red-Black trees suitable data structure for large 

number of cells that we need to accommodate due to fact that 

the geometry of simulation mesh is changing with each 

discrete timestep of a simulation. 

Before we describe the algorithm itself, let us define two 

operations for a cell  : Add and Adopt, see Fig.3. Operation 

Add] for the cell   and the timestep  , adds   into the bucket 

( ,  ), which lies on the diagonal of the lattice. On the other 

hand, operation Adopt for cell   and timestep   removes   

from the bucket ( ,    ) and adds   into the bucket ( ,  ), 

where          . By adding or removing a cell from a 

bucket we mean inserting/deleting the cell out of/into the tree 

inside the bucket.   

The algorithm to populate our data structure is governed by 

the outer loop in which all timesteps from the user-defined 

time span   ,    are prepossessed one-by-one, starting from 

earliest one. For the currently processed timestep, only active 

cells (e.g. cells intersected by the isosurface) are filtered out 

and further processed. 

For each active cell we keep geometry (position of its 

vertices), values associated with its vertices and hash key  . 

The hash key   for a cell is computed using equation Eg.3 

from the previous section [24].   is used later in our algorithm 

for accommodation of a cell into the buckets of the data 

structure described above as well as for the comparison of the 

cell's shape with a candidate cell from successive timestep. 

The algorithm starts at the row equal to the first timestep   

of the lattice of buckets, see Fig.4. For each timestep all its 

active cells are processed one-by-one. For each active cell   

the algorithm runs the inner loop that traverses buckets of the 

row     in the columns   to    . If a candidate cell    is 

found the algorithm performs the Adopt operation for the cell 

  and the timestep  , otherwise the Add operation for the 

timestep   is performed.  

The metrics   described in the previous section is used for 

assessment of temporal variations of a cell's shape.    (from 

the timestep    ) is pronounced to be a predecessor of   

(from the timestep  ) only if the distance     , Eq.1., between 

  and    is smaller than the user defined threshold Delta. In 

such case the operation Adopt is performed, removing    from 

its bucket   and inserting   as an approximate substitution of 

   into the bucket above  . If a candidate    for   is not  

found, the operation Add for the cell   is performed. By 

increasing the treshold Delta for     the user may store active 

cells more space-efficiently (i.e. more Adopt operations will 

be performed); however, the higher the Delta the higher 

approximation of the actual isosurface is extracted and 

rendered. In this way the user can balance between the 

algorithm's space demands and isosurface accuracy.  

During the isosurface rendering step for a timestep  , the 

active cells are collected from all buckets in and above the 

grid row corresponding to   and left of and of the column  , 

see Fig.4. Once the active cells are collected, the isosurface 
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geometry can be computed and rendered out. 

 
Fig.4: Active cells extraction. 

The active cells for the timestep T are collected from the 

buckets that lie inside or on the borders of the greyed-out area. 

Dotted arrows show the way in which the buckets are 

traversed during active cells extraction. For each traversed 

bucket all its cells are collected by traversing its internal tree. 

V. RESULTS 

In order to test performance of our method, we ran the 

series of tests on two datasets produced during Computational 

Fluid Dynamic simulations. Both datasets are from 

simulations of the combustion process inside a valve of a 

diesel engine. Multiple scalar and vector variables like 

pressure or temperature were computed. The specificity of 

both datasets is that the geometry of the mesh is not fixed. The 

total number and shape of the cells changes with each discrete 

simulation step. The goal of the mesh update procedure is to 

re-build the mesh around moving parts inside valve. The 

moving parts are piston and fuel inlets on the top of cylinder. 

The Move3D dataset consists of 149 timesteps, capturing a 

complete combustion cycle inside cylinder. The total number 

of cells (as well as their shape) varies between 40k and 115k. 

The dataset occupies 8.31 GB of space. The second dataset 

Valve consists of 960 timesteps and occupies 21.2 GB of 

storage. Total number of cells for the second dataset changes 

between 60k and 90k. 

All tests were done on Intel Core2 Duo T5750 2GHz 

workstation with 4 GB of RAM. The method has been 

implemented in C language using Standard Template Library 

and compiled with GCC compiler. 

A preprocessing time has been measured for both datasets. 

Fig.4. shows that the preprocessing time depends on the 

overall size of the dataset (total number of cells for given 

isovalue) rather than on the ratio of Add and Adopt operations 

performed. This is due to the fact that the time required for 

Adopt operation (and searching for predecessor cell) is only 

slightly different than the time required for Add.  

 

 
Fig.5: Preprocessing times for Move3D dataset. Relationship 

between preprocessing time and the Delta parameter of the 

proposed method. The preprocessing time depends on the total 

number of cells for given isovalue rather than on the number 

of Add and Adopt operations performed. 

 

The saving of runtime memory depends on the value of the 

parameter Delta, Eq. 2. The higher the value of Delta the 

higher space savings are achieved and vice versa. Higher 

threshold for Delta means that higher number of cells will be 

re-used between the timesteps, i.e. operation Adopt will be 

performed instead of Add, which requires new memory 

allocation. Thus, the overall space saving depends on the 

similarity of the changing simulation mesh in the adjacent 

timesteps.  

 

 
Fig.6: Move3D dataset. Percentage of the Adopt operations 

vs. parameter Delta of the proposed method for three different 

isovalues. For high values of Delta the method achieves 

around 50% of the Adopt operations, which is proportional to 

the space savings for the given value of Delta. 

 

Fig.5 shows the relationship between the increasing value of 

the parameter Delta and the percentage of the Adopt 

operations performed over the cells in the Move3D dataset for 

three different isovalues. We have only chosen parameter 

Delta in the range 0.0 to 3.0; higher values of Delta show 

higher degree of the damage of the produced isosurface, Fig.8.  

 

Fast insight into time varying datasets with dynamic mesh, CSCC 2014 conference, Advances in Information Science and Applications, 
Vol.I,  pp. 104-109, series: Recent Advances in Computer Engineering Series, ISSN 1790-5109, ISBN 978-1-61804-236-1, Santorini, Greece, 2014



 

 

 
 

 
 

 
Fig.7: Extraction times for the Move3D dataset for three 

different isovalues  : 0.01, 0.0245 and 0.039 and different 

values of the parameter Delta between 0.0 and 3.0. 

 

Finally, we measured the extraction times of the sets of 

active cells for three different isovalues and different values of 

parameter Delta of the Move3D dataset. Due to the common 

difficulties in measuring code execution time under 1 ms, for 

each pair isovalue-Delta a total of 400 extractions were made 

and the average time was computed. The overall extraction 

time of the active cells show no dependency on the parameter 

Delta used, but is proportional to the number of buckets 

visited during the extraction step (i.e. total number of active 

cells extracted). Fig.7 shows extraction times for the Move3D 

datasets for three different isovalues and parameter Delta 

between 0.0 and 3.0.  

For visual assessment of the damage fragments of the 

produced isosurface with growing parameter Delta, Fig.8 

shows isosufaces for the isovalue 0.0245 of the quantity AMU 

(total viscosity) of the Move3D dataset for three different 

values of Delta: 0.0, 1.0 and 3.0. For the tested datasets Delta 

> 3.0 produced considerable damage of the isosurface. 

However, the degree of the damages in higher Deltas is 

dataset-depended and thus left to be a choice of the user. 

VI. CONCLUSION 

An efficient method has been described, capable of 

interactive visualization of the evolving isosurfaces from the 

time-varying datasets with dynamic mesh. The method 

consists of the computationally inexpensive preprocessing step 

with logarithmic space and time complexity and the extraction 

step, during which the active cells are idenfied and collected. 

Two basic stones of the method are the metrics for assessment 

of the temporal change of a cell's shape (Sec. 3) and the 

buckets-based data structure (Sec.4) that facilitates space-

efficient storage of the similar cells. 

The method is particularly suitable for the applications 

where fast insight into the dataset is more important than high 

accuracy of the produced isosurfaces. The relative simplicity 

of the proposed method allows its easy implementation.  
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Fig.8: Isosurfaces of the Move3D dataset. Top row: timestep 13, bottom row: timestep 113. Isovalue q=0.0245 of the AMU 

(total viscosity).  

Each isosurface has been generated with different value of Delta; from left to right: Delta = 0.0, 1.0, 3.0. 
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