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Plzen (Pilsen) City 

    
Plzen is an old city [first records of Plzen castle 976] city of culture, 
industry, and brewery. 

City, where today’s beer fermentation process was invented 
that is why today’s beers are called Pilsner - world wide   
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University of West Bohemia 17530 students + 987 PhD students 

Computer Science and Engineering Mathematics (+ Geomatics)  
Physics     Cybernetics   Mechanics (Computational) 

• Over 50% of income from research and application projects 
•  NTIS project (investment of 64 mil. EUR) 
•  2nd in the ranking of Czech technical / informatics faculties 2009, 2012  
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“Real science” in the XXI century 

 
Courtesy of Czech Film, Barrandov  
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Numerical systems 

• Binary system is used nearly exclusively 
• Octal & hexadecimal representation is used 
• If we would be direct descendants of tetrapods –  

we would have a great advantage – “simple counting in 
hexadecimal system” 

  

 Name Base Digits E min E max 
BINARY 

B 16 Half 2 10+1 −14 15 
B 32 Single 2 23+1 −126 127 
B 64 Double 2 52+1 −1022 1023 
B 128 Quad 2 112+1 −16382 16383 

DECIMAL 
D 32 

 
10 7 −95 96 

D 64 
 

10 16 −383 384 
D 128 

 
10 34 −6143 6144 

IEEE 758-2008 standard 
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Mathematically perfect algorithms fail due to instability 

Main issues 

• stability, robustness of algorithms 
• acceptable speed 
• linear speedup – results depends on HW, CPU …. parameters ! 

Numerical stability 

• limited precision of float / double  
• tests  A ? B with floats 

if A = B then ….. else …..   ;   if A = 0 then ….. else …. 
should be forbidden in programming languages 

• division operation should be removed or postponed to the last 
moment if possible - “blue screens”, system resets  
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Floating point  

• Not all numbers are represented 
correctly 

• Logarithmic arithmetic 

• Continuous fractions 

• Interval arithmetic 

  

Generally NOT valid 
identities due to limited 
precision 

ߙଶݏ݋ܿ • ൅ ߚଶݏ݋ܿ ൌ 1 
ߙ ] ൅ ߚ ൌ  [ ߨ

• xଶ െ yଶ ൌ ሺݔ െ ݔሻሺݕ ൅  ሻݕ

  

ߨ ൌ
4

1 ൅ 1ଶ

3 ൅ 2ଶ

5 ൅ 3ଶ

…

 

x + y = [a + c, b + d]  x = [ a , b ] 

x -  y = [a - d, b - c]  y = [ c , d ] 

x × y = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)] 

x / y = [min(a/c, a/d, b/c, b/d),  

max(a/c, a/d, b/c, b/d)]  if y ≠ 0 

ߨ ൌ ሾ3; 7,15,1,292,1,1,1,2,1,3,1 … ሿ 
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Statements like  

if <float> = <float> then ….  or       if <float> ≠ <float> then …. 

should not be allowed in languages 

 

Quadratic equation 

ଶݐܽ ൅ ݐܾ ൅ ܿ ൌ 0    usually solved as ݐଵ,ଶ ൌ ି௕േ√௕మିସ௔௖
ଶ௔

 

If ܾଶ ب 4ܽܿ then 

ݍ ൌ െሺܾ ൅ ሺܾሻඥܾଶ݊݃݅ݏ െ 4ܽܿ ሻ/2 

ଵݐ ൌ ݍ
ܽൗ ଶݐ           ൌ ܿ ܽ⁄  

to get more reliable results.   
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Function value computation     at  ݔ ൌ ݕ  ,77617 ൌ 33096  

݂ሺݔ, ሻݕ ൌ ଺ݕ333.75 ൅ ଶݕଶݔଶሺ11ݔ െ ଺ݕ െ ସݕ121 െ 2ሻ ൅ ଼ݕ5.5 ൅  ሻݕሺ2/ݔ

݂ ൌ 6.33835 10ଶଽ   single precision 

݂ ൌ 1,1726039400532   double precision 

݂ ൌ 1,1726039400531786318588349045201838    extended precision  

The correct result is “somewhere” in the interval of 

[െ0,82739605994682136814116509547981629૛૙૙૞, 
െ0,82739605994682136814116509547981629૚ૢૡ૟ሿ 

Exact solution 

݂ሺݔ, ሻݕ ൌ െ2 ൅
ݔ

ݕ2 ൌ െ
54767
66192 
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Numerical computations    ࢞࡭ ൌ ࢞   ࢈ ൌ  ࢈૚ି࡭

Hilbert’s Matrix      ܪ௜௝ ൌ ଵ
௜ା௝ିଵ

 

௜௝ܪ
ିଵ ൌ ሺെ1ሻ௜ା௝ሺ݅ ൅ ݆ െ 1ሻ ൬݊ ൅ ݅ െ 1

݊ െ ݆ ൰ ቀ݊ ൅ ݆ െ 1
݊ െ ݅ ቁ ቀ݅ ൅ ݆ െ 2

݅ െ 1 ቁ
ଶ
 

 

1.0E-13
1.0E-11
1.0E-09
1.0E-07
1.0E-05
1.0E-03
1.0E-01
1.0E+01
1.0E+03
1.0E+05
1.0E+07
1.0E+09
1.0E+11
1.0E+13
1.0E+15
1.0E+17
1.0E+19

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
rr

or

Order of the Hilbert matrix

ε

εp

ξ



CSIT 2013 

Amman, Jordan 2013 Vaclav Skala          http://www.VaclavSkala.eu 13 

Projective Space  

X = [X, Y]T     X∈E2 

x = [ x, y: w]T x∈P2 

 

Conversion: 

X = x / w     Y = y / w 

& w ≠ 0 

 

If w = 0 then x represents “an ideal point” - a point in infinity, i.e. it is 
a directional vector.  

The Euclidean space E2 is represented as a plane w = 1.   

x y

w

w=1
x

X Y

(a)

p
P2

E2

ρ

a b

c

c=1
D(p)

D(ρ

A B

(b)

D(P )2

D(E ) 2
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Points and vectors 

• Vectors are “freely movable” – not having a fixed position 

ଵࢇ ൌ ሾݔଵ, :ଵݕ 0ሿ் 
• Points are not “freely movable” – they are fixed to an origin of 

the current coordinate system 

ଵ࢞ ൌ ሾݔଵ, :ଵݕ ଶ࢞    ଵሿ்    andݓ ൌ ሾݔଶ, :ଶݕ  ଶሿ்ݓ

usually in textbooks  ݓଵ ൌ ଶݓ ൌ 1  

A vector ࡭ ൌ ଶࢄ െ  ଵ in the Euclidean coordinate system - CORRECTࢄ

Horrible “construction”  DO NOT USE IT – IT IS TOTALLY WRONG 

ࢇ ൌ ଶ࢞ െ ଵ࢞ ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ ଶݓ െ ଵሿ்ݓ ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ 1 െ 1ሿ்

ൌ ሾݔଶ െ ,ଵݔ ଶݕ െ :ଵݕ 0ሿ் 
This was presented as “How a vector” is constructed in the projective 
space  ܲ௞ in a textbook!! WRONG, WRONG, WRONG 

This construction has been found in SW as well!!  
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Points and vectors 

A vector given by two points in the projective space 

ࢇ ൌ ଶ࢞ െ ଵ࢞ ൌ ሾݓଵݔଶ െ ,ଵݔଶݓ ଶݕଵݓ െ :ଵݕଶݓ  ଶሿ்ݓ ଵݓ

This is the CORRECT SOLUTION, but what is the interpretation? 

A “difference” of coordinates of two points is a vector in the 
mathematical meaning and ࢝૚ ࢝૛ is a “scaling” factor actually 

In the projective representation (if the vector length matters) 

ࢇ ൌ ଶ࢞ െ ଵ࢞ ൌ ሾݓଵݔଶ െ ,ଵݔଶݓ ଶݕଵݓ െ :ଵݕଶݓ ଶሿ்ݓ ଵݓ

؜ ൤
ଶݔଵݓ െ ଵݔଶݓ

ଶݓ ଵݓ
,
ଶݕଵݓ  െ ଵݕଶݓ

ଶݓ ଵݓ
: 0൨

்
 

We have to strictly distinguish if we are working with points, i.e. vector 
as a data structure represents the coordinates, or with a vector in the 
mathematical meaning stored in a vector data structure. 

VECTORS x FRAMES  
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Duality 

For simplicity, let us 
consider a line p defined 
as: 

aX + bY + c = 0 

We can multiply it by 
w ≠ 0 and we get: 

 ax + by + cw = 0  

i.e.   pTx = 0 
 p = [ a, b: c]T 
 x = [ x, y: w]T=[ wX, wY: w]T 

 

A line p∈E2 is actually a plane in the projective space P2  
(point [0,0:0]T excluded)  

x y

w

w=1
x

X Y

(a)

p
P2

E2

ρ

a b

c

c=1
D(p)

D( )ρ

A B

(b)

D(P )2

D(E ) 2
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Duality 

From the mathematical notation   ࢞ࢀ࢖ ൌ 0 

we cannot distinguish whether p is a line and x is a point or vice versa 
in the case of P2. It means that  

• a point and a line are dual in the case of P2, and  
• a point and a plane are dual in the case of P3. 

The principle of duality in P2 states that: 

Any theorem remains true when we interchange the words “point” and 
“line”, “lie on” and “pass through”, “join” and “intersection”, “collinear” 
and “concurrent” and so on.  

 

Once the theorem has been established, the dual theorem is 
obtained as described above. 

This helps a lot to solve some geometrical problems.   
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Examples of dual objects and operators 

 

 Primitive Dual primitive 

E2 Point 

Line 

Line 

Point 

E3 Point 

Plane 

Plane 

Point 

   

 Operator Dual operator 

 Join 

Intersect 

Intersect 

Join 

 

Computational sequence for a problem is the same for a dual 
problem.  
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Intersection of two lines 

Let two lines ݌ଵ and ݌ଶ are given by 

ଵ݌ ൌ ሾܽଵ, ܾଵ ׷ ܿଵሿ்       and       ݌ଶ ൌ ሾܽଶ, ܾଶ ׷  ܿଶሿ் 

We have to solve a system of linear equations  ࢞࡭ ൌ  ࢈

൤ܽଵ ܾଵ
ܽଶ ܾଶ

൨ ቂܺ
ܻቃ ൌ ቂ

ଵݍ
ଶݍ

ቃ             and              ቂ
ଵݍ
ଶݍ

ቃ ൌ ቂ
െܿଵ
െܿଶ

ቃ * 

Then well known formula is used 

ܺ ൌ
௑ݐ݁ܦ

ݐ݁ܦ ൌ
ݐ݁݀ ൤ݍଵ ܾଵ

ଶݍ ܾଶ
൨

ݐ݁݀ ൤ܽଵ ܾଵ
ܽଶ ܾଶ

൨
 ܻ ൌ

௒ݐ݁ܦ

ݐ݁ܦ ൌ
ݐ݁݀ ቂ

ܽଵ ଵݍ
ܽଶ ଶݍ

ቃ

ݐ݁݀ ൤ܽଵ ܾଵ
ܽଶ ܾଶ

൨
 

But what if ݐ݁ܦ is small?  
Usually a sequence like ݏܾܽ ࢌ࢏ሺdetሺ. . ሻሻ ൑   ?ݏ݌݁ is used. What is ࢔ࢋࢎ࢚ ݏ݌݁

Note * usually a line is in its explicit form as  ܽݔ ൅ ݕܾ ൌ ݕinstead of ൅ܾ ݍ ൅ ܿ ൌ 0 , i.e. the 

implicit form  
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How a line is given by two X1 and X2points? 

We have to solve a homogeneous system of linear equations  

൤ ଵܺ ଵܻ 1
ܺଶ ଶܻ 1൨ ቈ

ܽ
ܾ
ܿ

቉ ൌ ቂ0
0ቃ 

i.e. ࢞࡭ ൌ ૙ . It means that there is one parametric set of solutions! 

 

NOW 

Computation of 

• an intersection of two lines is given as  ࢞࡭ ൌ  ࢈

• a line given by two points is given as  ࢞࡭ ൌ ૙ 

Different schemes for computation BUT 

Those problems are DUAL, why algorithms are different?? 
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Definition 

 

The cross product of the two vectors  

x1 = [x1,y1:w1]T and x2 = [x2,y2:w2]T 

is defined as: 

ଵ࢞ ൈ ଶ࢞ ൌ ݐ݁݀ ൥
࢏ ࢐ ࢑

ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ 

where: i = [1,0:0]T, j = [0,1:0]T, k = [0,0:1]T   

Please, note that homogeneous coordinates are used.  
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Theorem 
Let two points x1 and x2 be given in the projective space. Then the 
coefficients of the p line, which is defined by those two points, are 
determined as the cross product of their homogeneous coordinates 

࢖ ൌ ଵ࢞ ൈ ଶ࢞ ൌ ሾܽ, ܾ ׷ ܿሿ்  
Proof 
Let the line p∈E2 be defined in homogeneous coordinates as 
(coefficient ݀ is used intentionally to have the same symbol 
representing a “distance” of the element from the origin for lines and 
planes) 

ݔܽ ൅ ݕܾ ൅ ݓܿ ൌ 0 

We are actually looking for a solution to the following equations: 

ଵ்࢞࢖ ൌ ଶ்࢞࢖                  0 ൌ 0 
where: p = [a, b : c]T 
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It means that any point ࢞ that lies on the p line must satisfy both the 

equation, i.e. ்࢞࢖ଵ ൌ ଶ்࢞࢖                  0 ൌ 0 and the equation ࢞ࢀ࢖ ൌ 0 in 
other words the p vector is defined as 

࢖ ൌ ଵ࢞ ൈ ଶ࢞ ൌ ݐ݁݀ ൥
࢏ ࢐ ࢑

ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ 

We can write  

ሺ࢞ଵ ൈ ࢞ࢀଶሻ࢞ ൌ 0              i.e.  ݀݁ݐ ൥
ݔ ݕ ݓ
ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ ൌ 0 

Note that cross product and dot product are instructions in Cg/HLSL 
on GPU 
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Evaluating the determinant  ݀݁ݐ ൥
ܽ ܾ ܿ
ଵݔ ଵݕ ଵݓ
ଶݔ ଶݕ ଶݓ

൩ ൌ 0 

we get the line coefficients of the line p as: 

ܽ ൌ ݐ݁݀ ቂ
ଵݕ ଵݓ
ଶݕ ଶݓ

ቃ ܾ ൌ െ݀݁ݐ ቂ
ଵݔ ଵݓ
ଶݔ ଶݓ

ቃ ܿ ൌ ݐ݁݀ ቂ
ଵݔ ଵݕ
ଶݔ ଶݕ

ቃ 
 
Note:  

1.A line ܽݔ ൅ ݕܾ ൅ ܿ ൌ 0 is a one parametric set of coefficients  
࢖ ൌ ሾܽ, ܾ ׷ ܿሿ் 

From two values ࢞ଵ and ࢞ଶ we have to compute 3 values, 
coefficients ܽ , ܾ and ܿ 
 

2.For w = 1 we get the standard cross product formula and the cross 
product defines the p line, i.e. ࢖ ൌ 1࢞ ൈ   :where 2࢞

࢖ ൌ ሾܽ, ܾ ׷ ܿሿ் 
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We have seen, in the Euclidean space, the computation of 

• an intersection of two lines is given as  ࢞࡭ ൌ  ࢈

• a line given by two points is given as  ࢞࡭ ൌ ૙  

If projective representation is used it is actually an application 
of the cross product.  

 

Those problems are DUAL and algorithms are identical ?? 

 

  

Cross product is equivalent to a solution of 
a linear system of equations! 

No division operations! 
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DUALITY APPLICATION 

 

In the projective space  ܲଶ points and lines are dual. Due to duality we 
can directly intersection of two lines as 

࢞ ൌ ଵ࢖ ൈ ଶ࢖ ൌ ݐ݁݀ ൥
࢏ ࢐ ࢑

ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ

൩ ൌ ሾݔ, :ݕ  ሿܶݓ

If the lines are parallel or close to parallel, the homogeneous 
coordinate  ݓ ՜ 0 and users have to take a decision – so there is no 
sequence in the code like ݏܾܽ ࢌ࢏ሺdetሺ. . ሻሻ ൑ ࢔ࢋࢎ࢚ ݏ݌݁ …in the procedure. 

 
Generally computation can continue even if ݓ ՜ 0 if projective space is 
used.
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Computation in Projective Space - Barycentric coordinates 

Let us consider a triangle with vertices X1, X2, X3, 

A position of any point X∈E2 can be expressed as  

 

 

 

 

 

 

A linear system of equations ࢞࡭ ൌ  has to be solved࢈

 

If points xi are given as [xi, yi, zi: wi ]T and wi ≠ 1then xi must be 
“normalized” to wi = 1, i.e. 4 * 3 = 12 division operations  

1 1 2 2 3 3

1 1 2 2 3 3

1 2 3

additional condition
1 0 1

i = 1,...,3

i

i
i

a X a X a X X
a Y a Y a Y Y

a a a a
P

a
P

+ + =

+ + =

+ + = ≤ ≤

=

P1

x1

x

x3

P3

x2

P2
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Computation in Projective Space 

 

 

 

 

Rewriting 

1
1 2 3

2
1 2 3

3

4
1 1 1 1

b
X X X X

b
Y Y Y Y

b
b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0

 

Solution of the linear system of equations (LSE) is equivalent to 
generalized cross product  

࢈ ൌ ࣈ ൈ ࣁ ൈ   ࢝

1 1 2 2 3 3 4

1 1 2 2 3 3 4

1 2 3 4

4 4

0
0

0
1,...,3 0i i

b X b X b X b X
b Y b Y b Y b Y
b b b b
b a b i b

+ + + =

+ + + =

+ + + =

= − = ≠

[ ]

1 2 3 4

1 2 3

1 2 3

× ×

, , ,

, , ,

, , ,

1,1,1,1

T

T

T

T

b b b b

X X X X

Y Y Y Y

=

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

=

b ξ η w

b

ξ

η

w
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Computation in Projective Space 

 

if wi ≠ 1 or wi = 1  

 

 

 

 

 

 

=> new entities:  
          projective scalar, projective vector 

• Skala,V.: Barycentric coordinates computation in homogeneous coordinates, 
Computers&Graphics, 2008) 

1
1 2 3

2
1 2 3

3
1 2 3

4

b
x x x x

b
y y y y

b
w w w w

b

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦

0

1 2 3 4

1 2 3

1 2 3

1 2 3

× ×

, , ,

, , ,

, , ,

, , ,

T

T

T

T

b b b b

x x x x

y y y y

w w w w

=

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

= ⎡ ⎤⎣ ⎦

b ξ η w

b

ξ

η

w

1 2 3

2 3 1

3 1 2

0 ( : ) 1
0 ( : ) 1
0 ( : ) 1

b w w w
b w w w
b w w w

≤ − ≤

≤ − ≤

≤ − ≤



CSIT 2013 

Amman, Jordan 2013 Vaclav Skala          http://www.VaclavSkala.eu 30 

Computation in Projective Space 

Line in E3 as Two Plane Intersection 

Standard formula in the Euclidean space 

ଵ࣋ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ൌ ሾ࢔ଵ
்: ݀ଵሿ்           ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ் ൌ ሾ࢔ଶ

்: ݀ଶሿ் 

Line given as an intersection of two planes 

࢙ ൌ ଵ࢔ ൈ ଶ࢔ ؠ ሾܽଷ, ܾଷ, ܿଷ: 0ሿ்            ࢄሺ࢚ሻ ൌ ଴ࢄ ൅  ݐ࢙

ܺ଴ ൌ
݀ଶ ฬܾଵ ܿଵ

ܾଷ ܿଷ
ฬ െ ݀ଵ ฬܾଶ ܿଶ

ܾଷ ܿଷ
ฬ

ܶܧܦ  ଴ܻ ൌ
݀ଶ ቚ

ܽଷ ܿଷ
ܽଵ ܿଵ

ቚ െ ݀ଵ ቚ
ܽଷ ܿଷ
ܽଶ ܿଶ

ቚ

ܶܧܦ  

ܼ଴ ൌ
݀ଶ ฬܽଵ ܾଵ

ܽଷ ܾଷ
ฬ െ ݀ଵ ฬܽଶ ܾଶ

ܽଷ ܾଷ
ฬ

ܶܧܦ  
ܶܧܦ ൌ อ

ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ 

The formula is quite “horrible” one and for students not 
acceptable as it is too complex and  

they do not see from the formula comes from.   
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Basic operations using projective  

Robustness of computation is a key issue in many sophisticated 
computational algorithms as sophisticated engineering problems solved 
today might be ill conditioned. However different data structures have 
to be considered, i.e.  

• projective scalar ሾܽ଴: ܽଵሿ • projective vector ሾܽ଴: ܽଵ, … , ܽ௡ሿ 

Fundamental operations with: 

A. scalars 

• addition, resp. subtraction ሾܽ଴: ܽଵሿ േ ሾܾ଴: ܾଵሿ ൌ ሾܽ଴ܾ଴: ܾ଴ܽଵ േ ܽ଴ܾଵሿ 

• multiplication     ሾܽ଴: ܽଵሿ כ ሾܾ଴: ܾଵሿ ൌ ሾܽ଴ܾ଴: ܽଵܾଵሿ 

• division       ሾܽ଴: ܽଵሿ/ሾܾ଴: ܾଵሿ ൌ ሾܽ଴ܾଵ: ܽଵܾ଴ሿ 
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B. vectors 

• addition resp. subtraction 

ሾܽ଴: ܽଵ, … , ܽ௡ሿ േ  ሾܾ଴: ܾଵ, … , ܾ௡ሿ ൌ ሾܽ଴ܾ଴: ሼܾ଴ሺܽଵ, … , ܽ௡ሻ േ ܽ଴ሺܾଵ, … , ܾ௡ሻሽሿ 

• scalar multiplication (dot product) 

ሾܽ଴: ሺܽଵ, … , ܽ௡ሻሿ · ሾܾ଴: ሺܾଵ, … , ܾ௡ሻሿ ൌ ሾܽ଴ܾ଴: ෍ ܽ௜ܾ௜

௡

௜ୀଵ

ሿ 

• vector multiplication (cross product) 

ሾܽ଴: ሺܽଵ, … , ܽଷሻሿ ൈ ሾܾ଴: ሺܾଵ, … , ܾଷሻሿ ൌ ሾܽ଴ܾ଴: ሼሺܽଵ, … , ܽଷሻ ൈ ሺܾଵ, … , ܾଷሻሽሿ 

Note that the projective vector is different from a vector which consists 
of projective scalars. 
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C. exponent normalization 

Exponents due to arithmetic operations tend to grow or become 
smaller. It means that the exponent overflow or underflow is to be 
check and exponents can be normalized. This is very simple operation 
as it means that the same value in the exponent is to be added or 
subtracted from both – numerator and denominator as well. 

Extraction of an exponent for a single and double precision is defined  

EXP := (FP_value land MASK) shr m; 

where: land is bitwise and operation, shr is shift right, MASK is the 
binary mask and m is the argument for the shift operation.  

Precision MASK m Exp_Digits 

Single &7FC0 4 255 

Double &7F80 7 2047 
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D. Comparison operation  

The comparison operation is a little bit tricky as the condition  

ܽ ൏ ܾ 

i.e. 

ሾܽ଴: ܽଵሿ ൏ ሾܾ଴: ܾଵሿ 

Projective scalars have to have homogeneous coordinate non-negative, 
i.e. ܽ଴ ൐ 0 and ܾ଴ ൐ 0  

The condition is to be replaced as follows: 

ሾܾ଴ܽଵሿ ൏ ሾܽ଴ܾଵሿ 
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Advantages 

• The mantissa is actually doubled due to the “hidden” division 
operation by the homogeneous value a there is a higher range of the 
fractional part  

• The exponent range is higher. If a single precision is used, the range 
is  2ିଶହସ to  2ଶହସ , i.e.the range is actually 2ହ଴଼ 

• The division operation is eliminated by multiplication of a 
homogeneous value in which denominator is “hidden” 

• Infinity can be handled properly, i.e. division by a value close or 
equal to zero does not cause “floating point overflow” 

• If double precision for numerator and denominator is used is used, 
actually a quadruple extended precision is implemented; if quadruple 
precision is available we get more that 2 times better precision 

• Simple implementation on vector-vector architectures, like GPU – 
available projective Library P-Lib [25]  
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Disadvantages 

• Current hardware does not support projective rational floating point, 
but the additional computational cost of that is low, but should be 
considered 

• Operations are approx. two times longer if not vector-vector 
architecture or SSE instructions are used 

• Value of exponents have to be controlled – there is a possibility of 
exponent overflow or underflow, but easily solved by addition or 
subtraction to numerator and denominator in hardware. 

Normalization can be made in software without a significant slowdown 
of computations. 

• There is a significant difference between vector of projective scalar 
values and projective vector, i.e. representation of values 
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Vector of projective scalars Projective vector 

ቈ
ܽଵ

ܽ଴
ଵ , … ,

ܽ௡

ܽ଴
௡቉ ؍ ሾሺܽ଴

ଵ: ܽଵሻ, … , ሺܽ଴
௡: ܽ௡ሻሿ 

 means equal projectively ؍

ሾܽ଴: ܽଵ, … , ܽ௡ሿ 

and users have to be careful in the mathematical and expression 
formulations.  

• In the case of iterative methods on the current CPU longer 
computation time is to be expected. The given approach is not 
convenient for application of iterative methods on CPU due to 
exponent values control in software 

Experimental verification 

Let us consider following simple examples for demonstration of the 
proposed projective rational arithmetic in linear algebra. 
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Gauss elimination 

Gaussian elimination method is well known for solving a system of 
linear equations ࢞࡭ ൌ  :where ࢈

࡭ ൌ ൥
ܽଵଵ ڮ ܽଵ௡

ڭ ڰ ڭ
ܽ௡ଵ ڮ ܽ௡௡

൩ ࢈ ൌ ൥
ܾଵ
ڭ

ܾ௡

൩ ࢞ ൌ ൥
ଵݔ
ڭ

௡ݔ

൩ 

It generally produces an upper triangular matrix, row echolon form, 
and then solves the unknown  ࢞ in the backward run. 

The structure of the Gaussian elimination method is  

for k := 1 to n  
      for i := k+1 to m  
            for j := k+1 to m  

ܽ௜௝ ؔ  ܽ௜௝ െ
ܽ௜௞ܽ௞௝

ܽ௞௞
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The expression for  ܽ௜௝ can be rewritten as  

ܽ௜௝ ൌ
ܽ௜௝ܽ௞௞ െ ܽ௜௞ܽ௞௝

ܽ௞௞
 

As the value of ܽ௞௞ can be very small, i.e. ܽ௞௞ ՜ 0, and division by a 
denominator could cause significant inaccuracy or floating point 
overflow, exchange of rows is made in practice. If the projective 
notation is used  

ܽ௜௝ ൌ ሾܽ௞௞: ܽ௜௝ܽ௞௞ െ ܽ௜௞ܽ௞௝ሿ 

where:  ܽ௞௞ is the homogeneous part of the expression. If ܽ ൌ ሾܽ଴: ܽଵሿ 
and ܽ ൌ ሾܽଵ: ܽ଴ሿ is the reciprocal value on  ܽ, then we can write  

ܽ௜௝ ൌ ሾ ܽ௞௞ כ ሺܽ௜௝ܽ௞௞ െ ܽ௜௞ܽ௞௝ሻሿ 

It should be noted that a reciprocal value ܽ ൌ ሾܽଵ: ܽ଴ሿ is actually a swap 
of  ܽ଴ and  ܽଵ values. The scalar value  0 represented in the projective 
notation is ܽ ൌ ሾ1: 0ሿ, i.e. the homogeneous value is non-zero, usually 1. 
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It means that no division operation is needed, however it is still 
“hidden” in the homogeneous coordinate and pivoting has to be used. 

As the solution of a system linear equations ࢞࡭ ൌ  is equivalent to ࢈
extended cross-product [9] [12] [14] we can write 

ષ ࣈ ൌ ૙ 

where 

ષ ൌ ሾെ࡭|࢈ሿ ൌ ൥
െܾଵ

ڭ
െܾ௡

อ
ܽଵଵ ڮ ܽଵ௡

ڭ ڰ ڭ
ܽ௡ଵ ڮ ܽ௡௡

൩ ൌ ൥
࣓ଵ

ڭ
࣓௡

൩ 

and 
࢞ ൌ ࣓ଵ ൈ ࣓ଶ ൈ … ൈ ࣓௡ 

where  ࢞ is the solution of the linear system of equations in the 
projective form, i.e. ࢞ ൌ ሾݔ଴: ,ଵݔ … ,  .௡ሿݔ

It can be seen that no division is required unless we need to express 
the computed value in the Euclidean space.  
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As direct consequence of the equivalence we can easily solved many 
computational problems without the division operation.  

The projective rational arithmetic with floating point has been verified 
experimentally for stability and precision of computation and inversion 
of the Hilbert matrix was used, which converge to a singular matrix 
with the growing size. The experiments proved the expected properties 
of the proposed approach, details can be found in [12]. [25]. 
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Conclusion 

Projective rational arithmetic with floating point was described and 
fundamental arithmetic operations were described. The projective 
representation using homogeneous coordinates is used in computer 
graphics and computer vision and its application enabled to solve many 
problems in more effective way. As it was shown the projective 
representation is convenient for general numerical computation as well 
as it has several advantages of the standard single or double floating 
point representation. From the precision point of view, it offers higher 
range of exponents and also significantly wider range for a fraction 
representation.  

The presented approach is convenient for vector-vector hardware 
architectures including GPU. If used on CPU with SSE instructions it is 
slightly slower than the computation with the Euclidean notation, but 
offers higher precision natively. If double representation is used it 
offers more than quadruple or extended representation.   
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Geometry algebra 

 

࢈ࢇ ൌ ࢇ · ࢈ ൅ ࢇ ר ࢈ࢇ in E3  ࢈ ൌ ࢇ · ࢈ ൅ ࢇ ൈ  ࢈

 

It is strange – result of a dot product is a scalar value while result of 
the outer product (cross product) is a vector.  

 

What is ࢈ࢇ??? 

Please, for details see  

• http://geometricalgebra.zcu.cz/  
• GraVisMa – recent workshops on Computer Graphics, Computer Vision  

& Mathematics http://www.GraVisMa.eu 
• WSCG – Conferences on Computer Graphics, Computer Vision  

& Visualization since 1992 http://www.wscg.eu   
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