
Interpolation and Intersection Algorithms and GPU

Vaclav Skala
Department of Computer Science

VSB-Technical University
Ostrava, Czech Republic

Vaclav.Skala@vsb.cz

Abstract — Interpolation and intersection methods are closely
related and used in computer graphics, visualization, computer
vision etc. The Euclidean representation is used nearly exclusively
not only in computational methods, but also in education despite it
might lead to instability in computation in many cases. The
projective geometry, resp. projective extension of the Euclidean
space, offers many positive features from the computational and
educational points of view with higher robustness and stability of
computation. This paper presents simple examples of projective
representation advantages, especially from the educational point of
view. In particular, how interpolation and intersection can be
applied to fundamental algorithms, which are becoming more
robust, stable and faster due to compact formulation. Another
advantage of the proposed approach is a simple implementation on
vector-vector architectures, e.g. GPU, as it is based on matrix-
vector operations.

Keywords - Interpolation; intersection; principle of duality;
barycentric coordinates; cross-product; linear systems of
equations.

I. INTRODUCTION
Algorithm efficiency and robustness are key points of

research activities in computer graphics [7], [1], computer
vision [6], [4], texture mapping [19] etc. Due to many items
to be processed, a strong requirement for speed arises; also
hardware architecture needs to be considered. However,
speed and robustness requirements are usually in
contradiction, especially if the Euclidean representation is
used.

Nevertheless, some other approaches like projective or
conformal geometries can be used to overcome selected
problems. As the projective representation is widely used in
computer graphics, a simple modification of interpolation
and intersection algorithms will be introduced and simple
examples presented for demonstration.

II. PROJECTIVE REPRESENTATION
Projective representation uses homogeneous coordinates

for computations and geometric transformations. A point
ࢄ ൌ ሺܺ, ܻሻ in E2 (the Euclidean space) can be represented as
࢞ ൌ ሾݔ, :ݕ ሿ்ݓ in P2 (the projective extension of the
Euclidean space). Mutual conversion is defined as:

ܺ ൌ ݔ ⁄ݓ ܻ ൌ ݕ
ൗݓ ݓ ് 0 (origin excluded)

x y

w

w=1
x

X
Y

(a)
a b

c

c=1
D(p)

D()ρ

A
B

(b)

p
D(P)2P2

E2
D(E) 2

ρ

Figure 1. Geometric interpretation of a dual space

One parametric set of points in P2 representing a unique
point in E2, see [14]. A significant advantage of the
projective representation is a possibility to use principle of
duality. In the above case, a point is dual to a line and vice
versa, etc. which might lead to new algorithms [2], [13],
[18].

Similarly, the concept of the projective extension of the
Euclidean space can be extended to n-dimensional space,
especially to E3 used in computer graphics and vision.

This simple formulation shows, that many computations,
not necessarily only geometric transformations, can be made
using homogeneous coordinates.

It means that “projective scalar”, i.e. ࢞ ൌ ሾݔҧ: ሿ்ݓ or
“projective vector” ࢞ ൌ ሾ࢞ഥ:ݓሿ் ൌ ሾݔ, :ݕ ሿ்ݓ , where ࢞ഥ is a
vector, can form an input or output of the processing
pipeline, e.g. interpolation and intersection computation.

Projective representation can also help to explain many
geometrical problems in a simple way, e.g. line intersection
[13], area or volume computation [14], solution of linear
homogeneous systems and computation of barycentric
coordinates [12].

III. PRINCIPLE OF DUALITY
Principle of duality is an essential principle and

especially in computer graphics and vision can bring quite a
new way how to handle and solve non-trivial problems. The
principle states that any theorem remains true when we
interchange the words “point” and “line”, “lie on” and “pass
through”, “join” and “intersection” and so on. Once the
theorem has been established, the dual theorem is obtained
as described above, see [5].

ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 193-198, 2012

The advantages of the projective geometry and principle
of duality use can be demonstrated on very simple
examples, e.g. a point as an intersection of two lines and a
line as a join of two points.

Let two points x1 and x2 be given in the projective space.
Then the coefficients of the line p, which is defined by those
two points, are determined as the of their homogeneous
coordinates.

p = x1× x2 i.e. 1 1 1

2 2 2

det x y w
x y w

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
p

where: p = [a,b:c]T
If the principle of duality is used, it is possible to write
computation of an intersection of two lines as:

x = p1× p2 i.e. 1 2 1 1 1

2 2 2

 × det a b c
a b c

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

i j k
x p p

where: x = [x,y:w]T
A computation of an intersection point of two lines or a

computation of a line if two points are given is made by the
same sequence using the principle of duality and no division
operation is needed.

In the case of E3 point is dual to a plane and vice versa,
i.e. if three points are given a computation of a plane is the
same, in the sense of duality, as intersection computation of
three planes, i.e. a plane is computed by the generalized
cross-product as:

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
x y z w
x y z w
x y z w

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

x x x

and an intersection of three planes is computed as:

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× × det
a b c d
a b c d
a b c d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

i j k l

ρ ρ ρ

It should noted that a division operation is not needed and
the computational sequence is the same for both the cases.

IV. LINEAR INTERPOLATION
Linear interpolation is frequently used method not only

in computer graphics. Let us consider a simple case of linear
interpolation, when we want to interpolate on a line ࢖ or on
a surface ࣋ , i.e.

ሻݐሺࢄ:࢖ ൌ ஺ࢄ ൅ or ݐଵࡿ

,ݑሺࢄ:࣋ ሻݒ ൌ ஺ࢄ ൅ ݑଵࡿ ൅ ݒଶࡿ

where: ࡿଵ ൌ ஻ࢄ െ ଶࡿ ஺ andࢄ ൌ ஼ࢄ െ ஺ࢄ

These are well-known formulas, of course. But what
happens if points are given in homogeneous coordinates?

From the teaching experience, the approach is
a conversion of points to the Euclidean space followed by
the “standard” linear interpolation. It means that in the first
case 6 divisions and in the second case 9 divisions are
needed with all consequences, including precision and
stability issues.

However, there is a possibility to make a linear
interpolation directly in homogeneous coordinates as:

:࢖ ሻݐሺ࢞ ൌ ஺࢞ ൅ ݐଵ࢙

where: ࢙૚ ൌ ஻࢞ െ ஺࢞
ൌ ሾݔ஻ െ ,஺ݔ ஻ݕ െ ஻ݓ :஺ݕ െ ் ஺ሿݓ

or
,ߦሺ࢞ :࣋ ሻߟ ൌ ஺࢞ ൅ ߦଵ࢙ ൅ ߟଶ࢙

where: ࢙૚ ൌ ஻࢞ െ ஺࢞
ൌ ሾݔ஻ െ ,஺ݔ ஻ݕ െ ,஺ݕ ஻ݖ െ ஻ݓ :஺ݖ െ ஺ሿ்ݓ

and
૛࢙ ൌ ஼࢞ െ ஺࢞ ൌ ሾݔ஼ െ ,஺ݔ ஼ݕ െ ,஺ݕ ஼ݖ െ ஼ݓ :஺ݖ െ ் ஺ ሿݓ

In both cases, the following conditions apply:
஺ݓ ൐ 0, ஻ݓ ൐ 0, ஼ݓ ൐ 0

As in the projective space the metric is not generally
defined, there must be some different behavior of such
interpolation. Note that there is a direct connection to
interpolation and projection operation in the graphical
pipeline.

Basic property of the interpolation in the projective
space is a non-linear monotonic parameterization, i.e. for
߬ ൌ 1/2 the center of the segment ࢄ஺ࢄ஻ in the Euclidean
space is not obtained in general. It is well known problem of
determining z-coordinate after projection operation. It
means that we have a linear interpolation with:
• Linear parameterization in the Euclidean space
• Non-linear parameterization, but with a monotonic

parameterization, in the projective space. This
fundamental property is needed when comparison
of ݐଵ ൏ ଶ, resp. ߬ଵݐ ൏ ߬ଶ , is required for a decision, e.g.
which object is closer etc.

In both cases, division operation can be avoided by
“hiding” denominator to the homogeneous coordinate, i.e.

ሻݐሺ࢞ ൌ ሾݓ஻࢞ഥ஺ ൅ ሺݓ஺࢞ഥ஻ െ :ݐഥ஺ሻ࢞஻ݓ ஻ሿ்ݓ஺ݓ
In this case, the parameterization is linear, of course.

It should be noted that barycentric coordinates can be
computed directly in homogeneous coordinates without
division operations as well, see [12], using generalized
cross-product.

The above presented approach is quite simple for
understanding projective space principles.

V. BARYCENTRIC COORDINATES
Barycentric coordinates are very often used not only in

computer graphics, computer graphics and visualization. It
is known that computation of barycentric coordinates leads
to solution of linear system of equations (LSE). A solution
of LSE is equivalent to the generalized cross-product. This

ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 193-198, 2012

result to computation of the barycentric coordinates directly
using generalized cross-product without use of division
operation and therefore the computation is more robust in
general. The barycentric coordinates are computed as

× ×=b ξ η w 0T =τ b

1 2 3 4, , , Tb b b b= ⎡ ⎤⎣ ⎦b Txxxx],,,[321=ξ
T]1,1,1,1[=w

Tyyyy],,,[321=η ݐ݁݀ ቮ

߬ଵ ߬ଶ ߬ଷ ߬
ଵݔ ଶݔ ଷݔ ݔ
ଵݕ ଶݕ ଷݕ ݕ
1 1 1 1

ቮ ൌ 0

The barycentric coordinates of the point x are then given as

 1
1

4

b
a

b
= − , 2

2
4

b
a

b
= − , 3

3
4

b
a

b
= −

The above formulas shows that the computation of the
barycentric coordinates is quite simple. If hardware
acceleration using matrix-vector operation is used, the
computation is very fast. It is important to note that the
similar scheme for the barycentric coordinates computation
is valid for homogeneous coordinates as the determinant is
multi-linear.

VI. INTERSECTION COMPUTATIONS

A. Line-plane intersection
There is lot of algorithms based on line intersections, like

ray-tracing, line clipping etc. Let us consider a simple case of
intersection of a line in a parametric form with a plane,
which is the fundamental principle of many algorithms, e.g.
Cyrus-Beck’s (CB) line clipping, see Fig. 2 for E2 analogy
(planes are “degenerated” to edges).

xA

x2
x3

xi

x0

e0

t0

e1

t1 e2t2
e3t3

e4

t4

ei

ti

en-1

tn-1xN-1

x1

xB

x4

Figure 2. Line clipping by a convex polygon

Let us consider two planes ࣋ଵ and ࣋ଶ and a line ࢖ in a
parametric form given in homogeneous coordinates by two
points ࢞஺ and ࢞஻.

In many algorithms including CB algorithm the
relation ݐଵ ൏ ଶ, needs to be evaluated, e.g. to get an order ofݐ
intersection points. For this only monotonic
parameterization on the line ࢖ is needed.. It means that the
linear interpolation with non-linear parameterization
presented above can be used efficiently.

The CB algorithm is based on an intersection solution of
a line ࢖ given in a parametric form and a plane ࣋ in E3 (or a
line in E2) given in the implicit form as follows:

:࣋ ்࢞ࢇ ൌ :࢖ 0 ሺ߬ሻ࢞ ൌ ஺࢞ ൅ ࢙߬

It should be noted that all vectors are vectors of the
projective space, i.e. they have homogeneous coordinates.
Therefore, it is easy to compute the intersection point as

஺்࢞ࢇ ൅ ்࢙߬ࢇ ൌ 0 then ߬ ൌ െࢇ
஺்࢞

ൗ்࢙ࢇ

The parameter can be represented by a “projective scalar” as

߬ ൌ ሾെ்࢞ࢇ஺: ሿ்்࢙ࢇ ൌ ሾ ҧ߬: ߬௪ሿ்

Then the CB’s algorithm can be modified as follows:
߬௠௜௡ ൌ ሾെ∞: 1ሿ்; ߬௠௔௫ ൌ ሾ∞: 1ሿ்
for i:=1 to N_planes do
ൌ:࣎ } ሾെ்࢞ࢇ஺: ࣎ # ;ሿ்்࢙ࢇ ൌ ሾ߬ҧ: ߬௪ሿ் #
 if ߬௪ ൏ 0 then ࣎ ؔ െ࣎;
 # ߬௪ coordinate needs to be non-negative #
 if ߬ҧ ൏ 0 then ࣎௠௜௡ ൌ max ሺ߬௠௜௡, ߬ሻ
 else ࣎௠௔௫ ൌ min ሺ߬௠௔௫, ߬ሻ
}
if NON-EMPTY (࣎௠௜௡, ࣎௠௔௫) = true then
 #equivalent test to ݐଵ ൏ # ଶݐ
஺_௡௘௪࢞ } ൌ ڮ . . ஻_௡௘௪࢞ ;.. ൌ { ڮ

Algorithm 1

The above shows that no division operation is needed.
Experiments made proved a slight speed-up for the case
when the points are given in the Euclidean space (the
algorithm has been simplified as wA, wB = 1 of course) and
significant speed-up for the case when the points of the
clipped line are given in the homogeneous coordinates. As
N_planes, the number of planes, is usually higher, the speed-
up will grow with the number of planes of the given convex
polyhedron.

B. Intersection of two planes
Intersection of two planes is another case very often

solved in computer graphics and vision. Unfortunately in
many cases available solutions are not robust or formula are
neither simple nor convenient for GPU use.

Figure 3. Intersection of two planes

ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 193-198, 2012

If the projective space is used, the solution is quite simple.
Let us consider two planes ࣋ଵ and ࣋ଵ given as

ଵ࣋ ൌ ሾܽଵ, ܾଵ, ܿଵ: ݀ଵሿ் ࣋ଶ ൌ ሾܽଶ, ܾଶ, ܿଶ: ݀ଶሿ்
It means that normal vectors of those planes are

ଵ࢔ ൌ ሾܽଵ, ܾଵ, ܿଵሿ் ࢔ଶ ൌ ሾܽଶ, ܾଶ, ܿଶሿ்
It is obvious that a directional vector of a line is determined
as an intersection of two planes ࣋ଵ and ࣋ଵ given as

࢙ ൌ ଵ࢔ ൈ ଶ࢔
However, the “starting” point ࢞଴ of the line is determined in
quite complicated ways, sometimes even not robustly
enough and based on a user choice of some value, or
proposes solution of a system of linear equations [Gol90],
[20].

The following “standard” formula can typically be
found:

ଷ࢔ ൌ ଵ࢔ ൈ ଶ࢔

଴ݔ ൌ
݀ଶ ฬ ଵܾ ܿଵ

ܾଷ ܿଷ
ฬ െ ݀ଵ ฬ

ܾଶ ܿଶ
ܾଷ ܿଷ

ฬ

ܶܧܦ

଴ݕ ൌ
݀ଶ ቚ

ܽଷ ܿଷ
ܽଵ ܿଵቚ െ ݀ଵ ቚ

ܽଷ ܿଷ
ܽଶ ܿଶቚ

ܶܧܦ

଴ݖ ൌ
݀ଶ ฬ

ܽଵ ܾଵ
ܽଷ ܾଷ

ฬ െ ݀ଵ ฬ
ܽଶ ܾଶ
ܽଷ ܾଷ

ฬ

ܶܧܦ

ܶܧܦ ൌ อ
ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

อ

The formula is quite “horrible” one and for students not
acceptable as it is too complex and they do not see from the
formula comes from.

As outline below, there is a quite simple geometrical
explanation and solution. So the first question is how to find
the “starting” point ࢞଴ of the line ࢖ given by two planes ࣋ଵ
and ࣋ଶ . If a robust solution is required a user should be
prevented from a selection of some “parameters”.

Let us imagine that there exists a plane ଴࣋ , whose
normal vector is given as ࢙ ൌ ଵ࢔ ൈ .ଶ࢔

It means that its position needs to be “fixed” in the
space. As there is no other requirement on this plane, we can
“fix” it so it passes through the origin of the coordinate
system, i.e. the plane ࣋଴ is given as

଴࣋ ൌ ሾܽ଴, ܾ଴, ܿ଴: 0ሿ்
and the line ࢖ is orthogonal to the plane ࣋଴ – resulting in a
robust geometric position.
Now, the intersection point of three planes is the point ࢞଴
we are looking for. Coordinates of the point ࢞଴ are
determined by generalized cross-product as

଴࢞ ൌ ଵ࣋ ൈ ଶ࣋ ൈ ଴࣋
As this formula is very compact and the cross-product is a
GPU instruction, it is suitable for GPU use. See the
Appendix for the extended cross-product GPU
implementation.

From the formulation presented above, it can be seen
that it is not only very simple, easy to understand and
remember, but also easy to implement. It is obvious that the
point ࢞଴ is also the closest point on the line to the origin,
too. As a result the Plücker coordinates formulation of this
problem solution is not needed when looking for such
properties.

VII. WINDOW CLIPPING
Line or line segment clipping against rectangular window

or convex polygon in E2 is a basic operation in computer
graphics. There are well-known Cohen-Sutherland algorithm
and many other algorithms. Some of these well-known
algorithms are not easy to implement due to their
complexity. However, there is a simple and effective solution
based on projective representation and the line clipping
algorithm can be described using 7 lines only.

The algorithm is based on classification of the window
vertices resulting in a binary code which is the address to
TAB1 and TAB2 tables, where indices of intersected edges
are stored. Coordinates of intersection points are computed
as a cross-product of the given line and intersected edges.

x0

xA

x2x3

e3

e0

e1

e2

x1

xB

F(x)<0

F(x)>0

Figure 4. Line clipping by a rectangular window

procedure CLIP_L; { input: xA , xB }
xA=[xA,yA:wA]T, xB=[xB,yB:wB]T #
xA , xB –in homogeneous coordinates #
the EXIT statement ends the procedure #
{ p := xA x xB; { ax+by+c = 0; p = [a,b,c]T }
 for k:=0 to N-1 do # xk=[xk,yk:wk]T #
 if pTxk ≥ 0 then ck:=1 else ck:=0;
 if c = [0000]T or c = [1111]T then EXIT;
 i:= TAB1[c]; j:= TAB2[c];
 xA := p x ei ; xB := p x ej ;
 DRAW (xA; xB)
}

Algorithm 2

Where N is a number of edges of the clipping window TAB1
and TAB2 are constant tables with window edges
classifications, for details see [15].

ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 193-198, 2012

For the situation at Fig. 4, CODE=[0011]=3, TAB1=1
and TAB2=3. The algorithm itself is easy to explain and
implement, too.

The line segment clipping algorithm is a little bit longer,
but still easy to implement, see [15], and to modify for line
or line segment clipping by a convex polygon as well. It
should be noted that due to the principle of duality, line
clipping by a convex polygon is dual to a point-in-polygon
test, which is of ܱሺ݈݃ܰሻ complexity. Line clipping algorithm
of ܱሺ݈݃ܰሻ complexity is more complex, see [16].

VIII. CONCLUSION
Application of projective geometry principles to the

computational pipeline, especially in the field of geometry
and computer graphics can bring new algorithms that are
more robust and faster even for the Euclidean space. Due to
the formulation, is very convenient for vector-vector or
matrix-vector architectures, like GPU and a significant
speed-up can be expected as well. Projective geometry can
easily explain several methods in a more simple way and
also provide new formula and geometric representation
which contributes to students’ better understanding.

ACKNOWLEDGMENT
The author would like to thank students and colleagues

at the VSB-Technical University and University of West
Bohemia for discussions and suggestions, reviewers for
their critical comments and constructive recommendations.

This work was partially supported by SGS, VSB-
Technical University of Ostrava, Czech Republic, under the
grant No. SP2011/163.

REFERENCES
[1] D. van Arsdale, “Homogeneous Transformation Matrices for

Computer Graphics,” Computers & Graphics, Vol.18, No. 2, March-
April 1994, pp. 177-191, 1994.

[2] M.M.S. Coxeter, “Projective Geometry,” Toronto: University of
Toronto, 2nd edition, 1974.

[3] R. Goldman, “Intersection of Three Planes,” Graphics Gems
(Ed. A.Glassner.), Academic Press, pp. 305-310, 1990.

[4] R. Hartley and A. Zisserman, “Multiple View Geometry in Computer
Vision,” Cambridge University Press, 2000.

[5] M. Johnson, “Proof by Duality: or the Discovery of “New”
Theorems,” Mathematics Today, December, 1996.

[6] M.E. Loaiza, A.B. Raposo and M. Gattass, “Multi-camera Calibration
Based on an Invariant Pattern,” Computers & Graphics, Vol. 35, Issue
2, pp. 198-207, 2011.

[7] J.R. Miller, “Vector Geometry for Computer Graphics,” IEEE
Computer Graphics and Applications, Vol. 19, No. 3., 1999.

[8] V. Skala, “Geometric Computation, Duality and Projective Space,”
IW-LGK workshop proceedings, pp.105-111, Dresden University of
Technology, 2011.

[9] V. Skala and V. Ondracka, “A Precision of Computation in the
Projective Space,” Recent Researchers in Computer Science,
WSEAS, pp. 35-40, 2011.

[10] V. Skala, “Duality and Intersection Computation in Projective Space
with GPU support,” ASM 2010 Conf., pp. 66-71, NAUN, 2010.

[11] V. Skala, “Computation in Projective Space,” MAMETICS 2009
Conf., pp. 152-157, WSEAS, 2009.

[12] V. Skala, “Barycentric Coordinates Computation in Homogeneous
Coordinates,” Computers & Graphics, Elsevier, Vol. 32, No. 1,
pp. 120-127, 2008.

[13] V. Skala, “Intersection Computation in Projective Space using
Homogeneous Coordinates,” International Journal on Image and
Graphics, Vol. 8, No. 4, pp. 615-628, 2008.

[14] V. Skala, “Length, Area and Volume Computation in Homogeneous
Coordinates,” International Journal of Image and Graphics, Vol. 6.,
No. 4, pp. 625-639, 2006.

[15] V. Skala, “A New Approach to Line and Line Segment Clipping in
Homogeneous Coordinates,” The Visual Computer, Vol.21, No.11,
pp.905-914, Springer Verlag, 2005.

[16] V. Skala, “O(lg N) Line Clipping Algorithm in E2,” Computers &
Graphics, Pergamon Press, Vol.18, No.4, 1994.

[17] J. Stolfi, “Oriented Projective Geometry,” Academic Press, 2001.
[18] F. Yamaguchi, “Computer-Aided Geometric Design,” Springer

Verlag, 2002.
[19] Y. Yu, “Efficient Visibility Processing for Projective Texture

Mapping,” Computers & Graphics, Vol. 23, No. 2, pp. 245-253, 1999.
WEB references
[20] Softsurfer http://softsurfer.com/ <retrieved on 2011-12-05>

APPENDIX
The cross-product in 4D defined as

૚࢞ ൈ ૛࢞ ൈ ૜࢞ ൌ ݐ݁݀ ተ

࢏ ࢐ ࢑ ࢒
ଵݔ ଵݕ ଵݖ ଵݓ
ଶݔ ଶݕ ଶݖ ଶݓ
ଷݔ ଷݕ ଷݖ ଷݓ

ተ

can be implemented in Cg/HLSL on GPU as follows:

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{
 float4 a;
 a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw));
 a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw));
 // or a.y=dot(x1.xzw, cross(x3.xzw, x2.xzw));
 a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw));
 a.w=-dot(x1.xyz, cross(x2.xyz, x3.xyz));
 // or a.w=dot(x1.xyz, cross(x3.xyz, x2.xyz));

 return a;
}

or more compactly

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{
 return (dot(x1.yzw, cross(x2.yzw, x3.yzw)),
 -dot(x1.xzw, cross(x2.xzw, x3.xzw)),
 dot(x1.xyw, cross(x2.xyw, x3.xyw)),
 -dot(x1.xyz, cross(x2.xyz, x3.xyz)));
}

ICONS 2012, Saint Gilles, Reunion Island, IARIA, ISBN: 978-1-61208-184-7, pp. 193-198, 2012

