
1. Introduction
A clipping operation is a fundamental operation within all com-
puter graphics systems and it has been well explored as many algo-
rithms have been developed. However there are still other ways
how a graphical primitive can be clipped against a window. The
type of the window has a strong influence on the final algorithm
complexity. The window can be orthogonal and axis aligned, 4-
sided orthogonal non-axis aligned convex or non‑convex. Clipped
primitives are mostly lines, line segments and polygons of the
above mentioned types. It leads to algorithms with O(lg N)
[Skala 1994] up to O(NM) complexities in general. In some cases,
when a clipping window is constant and many primitives are to be
clipped, a clipping algorithm with O(1) complexity [Skala 1996]
can be used. Algorithms are mostly based on Cohen-Sutherland,
Cyrus-Beck, Liang‑Barsky and Sutherland-Hodgman algorithms
[Theoharis, et al. 2008]. Some of them are intended for hardware
implementation but all operate in the Euclidean space.
Points in computer graphics are represented in homogeneous coor-
dinates as x=[x,y:w]T, i.e. actually in the projective extension of
the Euclidean space. A line p in the implicit form is represented by
a vector a=[a,b:c]T, i.e. ax+by+cw=0 , .aTx = 0. Due to the princi-
ple of duality in E2 points and lines, join and intersection etc. are
dual. It means that any theorem remains valid if the meaning of the
symbols is swapped. This leads to nice applications, e.g.

where p is the line given by two points in homogeneous coordi-
nates. Due to the principle of duality we can determine an intersec-
tion point of two lines. So we need only one code to compute both.

2. Proposed Smart Clip Algorithm
The approach presented is based on a basic principle – test first and
then compute. Unlike Cohen-Sutherland’s algorithm it evaluates a
position of the given line with respect to the corners of the clipping
window.
2.1. Line clipping
Let us consider a line p given by two points xA and xB as
p = xA× xB clipped by an orthogonal axis aligned window. The
clipping window is given by corners x0, x1, x2, x3 .

The position of the line p with respect to the corners of the clipping
window is determined by a code vector c. The binary code of the
window vertices for the line p can be determined as

for i := 1 to N-1 do /* c = [c3,c2,c1,c0]T */

{ ξ i := pT xi ; if ξ i ≥ 0 then ci = 1 else ci = 0 }

Algorithm 1
It should be noted, that the vector c is constructed differently from
the Cohen-Sutherland’s algorithm as the window corner’s position
against the line p is now coded.
This is actually a classification of corners by a half space given by
the line p. The code c is actually the index to a table in which indi-
ces of intersected window edges are stored. Note that there is no
geometrical meaning for some values c and “N/A” value is as-
signed. Value “-1” means no intersection at all [Skala 2004]. TAB1,
TAB2 stores indices of the edges intersected by the line.

Table 1
procedure CLIP_L; /* input: xA , xB ; CONVEX polygon */
/* xA=[xA,yA : wA]T xB=[xB, yB :wB]T , wA, wB > 0*/
/* xk=[xk, yk : wk]T , wk > 0 N - number of window edges*/
{ /* ax+by+c = 0; p = [a,b : c]T */
/*1*/ p := xA × xB;
/*2*/ for k:=0 to N-1 do /* xk=[xk, yk: wk]T */
/*3*/ if pTxk ≥ 0 then ck:=1 else ck:=0;
/*4*/ if c = [0...0]T or c = [1....1]T then EXIT;
/*5*/ i:= TAB1[c]; j:= TAB2[c];
/*6*/ xA := p × ei ; xB := p × ej ;
/*7*/ output (xA , xB)
} /*CLIP_L*/;

Algorithm 2

A simple, elegant solution!

Now, we know the edges intersected by the given line p. The inter-
section points can be computed as

 xA = p × ei1 xB = p × ei2
where: ei* mean clipping window edges given by the Tab.1.

It can be seen that this algorithm is quite general as it does not
need the clipping window edges aligned with the axes and it is ap-
plicable for clipping by a convex window as well. In the case of an
orthogonal axis aligned window and with the corners given in the
Euclidean space, i.e. wk = 1 , the code can be even more optimized.
If clipping is a part of the graphical pipeline, then clipping itself is
made in the normalized space, i.e. in the interval <-1,1>×<-1,1>..
It means that the transformation pipeline R (clip) S is actually
modified to the “normalized” clip given by the transformation:

R N (normalized clip) N-1 S = R’ (normalized clip) S’

where: R’ and S’ are cumulative transformation matrices. Now,
the vectors of edges are ei = [±1, 0: 0]T or ej = [0, ±1: 0]T .
It means that multiplications in the if pTxk ≥ 0 statement are not
needed. The cost of multiplication is actually hidden to the cumu-
lative matrices, but it is made only once independently from a
number of primitives processed.
Analyzing the algorithm, it can be seen that the proposed concept
and algorithm above can be used for any 4-sided clipping window,
not necessarily orthogonal, for axis unaligned windows and for
N-sided convex polygon clipping as well.
The Tab.1 can be easily generated for a convex polygon by an al-
gorithm as follows:

/*no intersection at all */
TAB1[0000]:=-1; TAB2[0000]:=-1;
TAB1[1111]:=-1; TAB2[1111]:=-1;
/* N = 2k, where: k is number of windows edges */
for c:=1 to N-2 do /* c = 0 and c = N-1 solved already */
{ /* take the code c and extended by c0 from the left */
/* to avoid modulo operation over indices */
/* q = [c0 ,c3,c2,c1,c0]T */

 i := 1;

 for k := N-1 to 1do
 { if i ≤ 2 then
 { if qk+1 ≠ qk then { TABi[c] := ek; i := i+1; }
 }
 else { TAB1[c] := N/A; TAB2[c] := N/A;}
 }
}

Algorithm 3 Table generation for a general convex case

2.2. Line segment clipping
Line segment clipping is a bit more complicated as the position of
end points of the line segment must be considered. It leads to
a more complicated structure of computation, but with low compu-
tational expense, see [Skala 2005].
In many cases we are more interested in a parametric form of the
line p and in the resulting line segment. If the line segment is given
in a parametric form as p: x(t) = xA+s t then the solution is quite
simple.

Let us consider clipping by a 4-sided convex window with anti-
clockwise orientation. The first step is clipping of the line on
which the line segment lies by the Algorithm 1. Now, we know
which edges, ei and ej intersected by the line p. A parameter t is de-
termined by equations for intersected edge ei , resp. ej as

ei: ai
T x = 0 and p: x(t) = xA+s t

where: xA = [x, y: w]T and s = [xB-xA, yB-yA: wB-wA]T

Note, that computation is made in the projective space using ho-
mogeneous coordinates. The line p is considered as a linear inter-
polation with monotonically non‑linear parameterization
[Skala 2011]. Solving those equations we get

t = [aTxA : aTs]T
where: t is a scalar value expressed in homogeneous coordinates.
For both intersected edges we get two values t, i.e. tmin and tmax.
The resulting segment is determined as <tmin , tmax> ∩ <0 , 1> that
is a trivial operation. If the orientation of the clipping window is
known, no ordering of t values is needed.

2.3. Non-convex Window
The presented concept and algorithm are also valid for non‑convex
line and line segment clipping with some modifications as the val-
ues t have to be ordered as there might be more than one segment,
i.e. several intervals < tmin , tmax > can occur. Also the intersection
computation of <tmin , tmax> ∩ <0 , 1> is to be done for all k/2 re-
sulting segments. Therefore, the algorithm is of O(N)+O(k lg k)
complexity, where k is a number of segments.

3. Results
The presented concept and algorithms were experimentally veri-
fied. The proposed algorithm is slightly faster than the Cohen-
Sutherland and about 2 times faster than Cyrus-Beck algorithms if
all points are given in the Euclidean coordinates. If points are
given in homogeneous coordinates or the window is in a general
position the proposed algorithm is significantly faster.

4. Conclusions
A new approach is presented to line and line segment clipping by a
convex polygon in E2. The algorithm is simple, easy to implement
and convenient for GPU application, too. The presented concept is
more general, offers higher robustness and reduces division opera-
tions. It is comparable and competitive, at least with other relevant
algorithms.
A significant advantage of the proposed concept is the use of
a separation function, which is not only more robust, but enables
avoidance of complicated cases difficult to resolve [Skala 1989].

Acknowledgment
The author would like to thank to colleagues at the University of
West Bohemia, Plzen, VSB-Technical University, Ostrava in Czech
Republic, Shandong University and Zhejiang University in China
for their comments and suggestions. Research was supported by
MSMT CR projects ME10060, LH12181.

References
CYRUS, M., BECK, J. 1978. Generalized Two and Three Dimensional

Clipping, Computers&Graphics, Vol.3, No.1, Pergamon Press,
pp.23-28.

BUI, D.H., SKALA, V. 1998. Fast Algorithms for Line Segment and Line
Clipping in E2, The Visual Computer, No.1, Vol.14, Springer Ver-
lag, pp. 31-37.

LIANG, D.H., BARSKY, B. 1984. A new concept and method for Line
Clipping, ACM, TOG,3(I), pp.l-22.

SKALA,V., 1989. Algorithms for 2D Line Clipping, Eurographics89 Pro-
ceedings, Elsevier, pp.355-366.

SKALA, V. 1994. O(lgN) Line Clipping Algorithm in E2, Com-
puters&Graphics, Elsevier, Vol.18, No.4, pp.517-524.

SKALA, V. 1996. Line Clipping in E2 with O(1) Processing Complexity,
Computers&Graphics, Vol.20, No.4, pp.523-530.

BUI, D.H., SKALA, V. 1998. Fast Algorithms for Line Segment and Line
Clipping in E2, The Visual Computer, No.1, Vol.14, Springer Ver-
lag, pp. 31-37.

SKALA, V., BUI, D.H. 2000. Two New Algorithms for Line Clipping in
E2 and Their Comparison, Machine Graphics&Vision, No.1/2,
Vol.9, Poland Academy of Sciences, Poland, pp.297-306.

SKALA, V. 2004. A New Line Clipping Algorithm with Hardware Accel-
eration. CGI2004 Proceedings, pp. 270-273.

SKALA, V. 2005. A new approach to line and line segment clipping in ho-
mogeneous coordinates, The Visual Computer, Vol.21, No.11,
Springer Verlag, pp.905-914.

SKALA, V. 2010. Duality and Intersection Computation in Projective
Space Using GPU Support, WSEAS Trans. on Mathematics, Vol.9,
No.6, pp.407-416.

SKALA, V. 2012. Projective Geometry and Duality for Graphics, Games
and Visualization, course notes, 2012, ACM SIGGRAPH.

THEOHARIS, T.,PAPAIOANNOU, G., PLATIS,N., PATRIKALAKIS, M.N.
2008. Graphics and Visualization, A.K.Peters.

S-Clip E2: A New Concept of Clipping Algorithms

http://www.VaclavSkala.eu Vaclav Skala skala@kiv.zcu.cz

University of West Bohemia
Faculty of Applied Sciences

Plzen, Czech Republic

 VŠB-Technical University Ostrava
Faculty of Electrical Engineering and Computer Science
Ostrava, Czech Republic

1 2 1 1 1

2 2 2

[, :]Tx y w a b c
x y w

= × = =
i j k

p x x

1 2 1 1 1

2 2 2

[, :]Ta b c x y w
a b c

= × = =
i j k

x p p

code TAB1 TAB2 code TAB1 TAB2

0000 -1 -1 1111 -1 -1
0001 3 0 1110 0 3
0010 0 1 1101 1 0
0011 3 1 1100 1 3
0100 1 2 1011 2 1
0101 N/A N/A 1010 N/A N/A
0110 0 2 1001 2 0
0111 3 2 1000 2 3

Plzen, Czech Republic, 2012-10-07

