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ABSTRACT: This paper presents solution of some selected problems that can be easily solved in 
the projective space. Projective space and homogeneous coordinates are mostly used in computer 
graphics and used especially for geometric transformations. Nevertheless the projective formulation 
offers an elegant solution to several geometrical problems, too. If the principle of duality is used, 
quite surprising solutions can be found and new useful theorems can be generated as well, e.g. an 
equation of a line in E3 as an intersection of two planes, computation of barycentric coordinates etc. 
The projective extension of the Euclidean space also offers higher computational stability as it 
avoids division operation in general. In this paper we will show that a solution of a system of linear 
equations is equivalent to the extended cross (outer) product and how this can be used for solving 
geometrical problems. As the duality between points and lines in E2 or between points and planes in 
E3 is known, many geometrical algorithms can be easily converted to the dual representation, solved 
in the dual space and the result can be converted back to the projective or Euclidean space, e.g. 
point-in-polygon test is dual to a test if a line intersect a polygon. The presented approach offers 
higher robustness and it is convenient for matrix-vector supporting hardware namely for the GPU 
implementation. 
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1. INTRODUCTION 
Homogeneous coordinates are mostly used in computer graphics for representation of geometric 
transformations like translation, rotation etc. and for projection operations. In many cases 
homogeneous coordinates are only seen as a “mathematical tool” that makes a simple description of 
geometric transformations possible. Nevertheless there are many invisible impacts on the algorithm 
design that leads to new, faster and robust algorithms convenient for GPU implementation. 

The principle of duality is not usually explored at the technical universities, but it helps a lot in 
development of new algorithms [1], especially related to computer graphics, computer vision and 
geometry as well. Let us consider a simple case in E2, e.g. a line and a point. It is known that a line 
and a point are dual. It means that 𝑨𝑇𝑿 =  0 is valid for all points 𝑿 = [𝑋,𝑌: 1]𝑇of the line given 
by the vector 𝑨 = [𝐴,𝐵:𝐶]𝑇 , i.e. satisfying 𝐴𝑋 + 𝐵𝑌 + 𝐶 = 0. Because of the principle of duality 
the meaning of 𝑿 and 𝑨 symbols can be exchanged. As the equation 𝑨𝑇𝑿 =  0 is implicit, it 
can be multiplied by any 𝑤 ≠ 0 and the geometrical entity remains. It means that a line 𝑝 is 
defined by the equation 𝒂𝑇𝒙 =  0 , where, 𝒙 = [𝑥,𝑦:𝑤]𝑇,  𝑋 = 𝑥

𝑤
  and 𝑌 = 𝑦

𝑤
  [6]. A line 𝑝 

given by two points can be determined as 𝒂 = 𝒙1 × 𝒙2 and due to the principle of duality, we can 
determine an intersection of two lines as 𝒙 = 𝒂1 × 𝒂2 .  

𝒂 = 𝒙1 × 𝒙2 = 𝑑𝑒𝑡 �
𝑎 𝑏 𝑐
𝑥1 𝑦1 𝑤1
𝑥2 𝑦2 𝑤2

� 

Similarly for a plane 𝜌 computation given by three points we can write 𝝆 = 𝒙1 × 𝒙2 × 𝒙3 and 
using principle of duality an intersection pintt 𝑥 of three planes is given as 𝒙 = 𝝆1 × 𝝆2 × 𝝆3 . 
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We can see that “normalized” vectors are usually  

 𝒂 = [𝑎,𝑏:𝑐]𝑇

√𝑎2+𝑏2
 and  𝒙 = [𝑥,𝑦:𝑤]𝑇

𝑤
. The distance 𝑑  of the point 𝒙 from the line 𝑝 can be easily 

expressed as  𝑑 = (𝑎𝑥 + 𝑏𝑦 + 𝑐𝑤)/�𝑤√𝑎2 + 𝑏2� .  
In some cases we do need “normalized” vectors for computation, but not in all. Let us consider 

well known barycentric coordinates.  

2. GEOMETRIC TRANSFORMATIONS 
Geometric transformations in computer graphics and computer vision are mostly based on 
transformations of points. Nevertheless in many cases we have a line given by two points in E2 or a 
plane given by three points in E3. The question is how the line or the plane will change if 
a geometric transformation is applied on those points.  

We need to determine a transformation matrix 𝑸 for a line 𝒂′ , if geometric transformation 𝑻 is 
applied on points.  

𝒂′ = 𝑸(𝒙1 × 𝒙2) = (𝑻𝒙1) × (𝑻𝒙2) = (𝑻−1)𝑇(𝒙1 × 𝒙2)/𝑑𝑒𝑡(𝑻) 
 
It means that 𝑸 = (𝑻−1)𝑇/𝑑𝑒𝑡(𝑻) .  

For the standard geometric transformations rotation and translation det(𝑻) = 1 and matrix 𝑸 
is simple. Nevertheless the matrix 𝑸 can be determined for a general transformation. It should be 
noted that e.g. a rotation can be “rewritten” in projective notation as 

𝒙′ = 𝑹(𝜑) 𝒙 = �
cos (𝜑) −sin (𝜑) 0
sin (𝜑) cos (𝜑) 0

0 0 1
� 𝒙    𝒙′ = 𝑹′(𝜑) 𝒙 = �

𝑎 −𝑏 0
𝑏 𝑎 0
0 0 𝑐

� 

where: cos(𝜑) = 𝑎/𝑐 and sin(𝜑) = 𝑏/𝑐 . In this case det(𝑻) ≠ 1 of course. 
It can be seen that for the case of E3 a similar approach can be taken as well. As a result of this 

approach is that we can solve a problem: Given a line p and a geometric transformation T. How the 
coefficients of a line are changed? Similarly for a plane in E3 and dual problems a solution is 
simple. 

3. PLÜCKER COORDINATES 
Plücker coordinates are not known in computer graphics community. Nevertheless they offer a nice 
tool especially in the context of duality. The Plücker coordinates are used for a computation of a 
line in E3 in the parametric form if given by two points in homogeneous coordinates. Due to the 
principle of duality we can easily derive a solution for an intersection of two as points and planes 
are dual in E3. 
Let X2 – X1 = ω and X1 × X2 = v. A point on the line q(t) = q1 + ω t  is defined as:  

( ) tt ω
ω
ω vq +

×
= 2     or   as ( ) [ ]22 : ωωωω vq tt +×=  if projective notation is used. 

Let us consider two points in the homogeneous coordinates: x1 = [x1, y1, z1, w1]T ,  
x2 = [x2, y2, z2, w2]T. The Plücker coordinates lij are defined as follows:  

TT
1221 xxxxL −=  

l41 = w1x2 – w2x1 
l42 = w1y2 – w2y1 
l43 = w1z2 – w2z1 

l23 = y1z2 – y2z1 
l31 = z1x2 – z2x1 
l12 = x1y2 – x2y1 

ω = [l41 , l42 , l43 ]T   
v = [l23 , l31 , l12 ]T    

)(
1

)(
2

)(
2

)(
1

jiji
ijl xxxx −=  
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Two vectors ω and v are defined as X2 – X1 = ω, X1 × X2 = v ,where: Xi = [xi, yi, zi]T/wi are points 
in the Euclidean space and for a general case wi ≠ 1 when xi are not ideal points, i.e. wi ≠ 0, we get: 

( )
( )

( )434241

211221122112

1212

,,
,,

lll
wzwzwywywxwx

ww

=
−−−

=−= XXω

 

( )
( )

( )

2 1 1 2

1 2 2 1 1 2 2 1 1 2 1 2

23 31 12

×

, ,

, ,

w w

y z y z z x z x x y y x

l l l

= =

− − − =

v X X

 
It means that ω represents the “directional vector”, while v represents the “positional vector”. The 
equations above show the relation between vectors ω and v and the Plücker coordinates lij. In 1871 
Klein [2] derived that ωT v = 0, i.e. in the Plücker coordinates: l23* l41 + l31 * l42 + l12* l43  = 0.  
If q is a point on a line q(t) = q1 + ω t  given by the Plücker coordinates, it must satisfy the 
equation vqω =× . A line given by two points in homogeneous coordinates is determined as: 

( ) tt ω
ω
ω vq +

×
= 2 .  

Due to the principle of duality in E3 we can exchange “point” and “plane” and therefore the same 
formula can be applied for an intersection computation of two planes as TT

1221 ρρρρL −= ,. Now, 

the line p is given as ( ) tt ω
ω
ω vq +

×
= 2 , where ω = [l41 , l42 , l43 ]T  v = [l23 , l31 , l12 ]T.  

Homogeneous coordinates can be used also for barycentric coordinates computation [5] and some 
additional hints can be found in [3], [6-8].  

4. BARYCENTRIC COORDINATES 
Barycentric coordinates of a point 𝒙 = [𝑥,𝑦:𝑤]𝑇 in the triangle given by points 𝒙1,𝒙2,𝒙3 in E2 
can be computed directly using homogeneous coordinates as 𝒙 � × 𝒚 � × 𝒘�  ,  
where: 𝒙 � = [𝑥1, 𝑥2, 𝑥3, 𝑥]𝑇 ,  𝒚 � = [𝑦1,𝑦2,𝑦3,𝑦]𝑇,  𝒙 � = [𝑤1,𝑤2,𝑤3,𝑤]𝑇 

𝒙 � × 𝒚 � × 𝒘� = 𝑑𝑒𝑡 �

𝒊 𝒋 𝒌 𝒍
𝑥1 𝑥2 𝑥3 𝑥
𝑦1 𝑦2 𝑦3 𝑦
𝑤1 𝑤2 𝑤3 𝑤

� = [𝜉1 𝜉2 𝜉3 𝜉𝑤]𝑇 

where:  𝜆𝑖 = −𝜉𝑖 𝜉𝑤⁄ , 𝑖 = 1, … ,3, [Ska08a]. 
 

The area 𝑃 of a triangle given by three points in E2 can be easily computed as 
 1
2
𝒙1𝑇 . (𝒙2 × 𝒙3) (𝑤1𝑤2𝑤3)� .  

𝑃 =
1
2
𝒙1𝑇 . (𝒙2 × 𝒙3) (𝑤1𝑤2𝑤3)⁄ = 𝑑𝑒𝑡 �

𝑥1 𝑥2 𝑥3
𝑦1 𝑦2 𝑦3
𝑤1 𝑤2 𝑤3

� (𝑤1𝑤2𝑤3)�  

Similarly a volume of a tetrahedron given by four points in E3 can be computed as 
1
6
𝒙1𝑇 . (𝒙2 × 𝒙3 × 𝒙4) (𝑤1𝑤2𝑤3𝑤4)� . 

It means that the projective formulation is simple and matrix-vector GPU architecture supports 
fast computations without using division operation, as the result can be represented by 
homogeneous coordinates, in general. 

As the principle of duality is valid, one could ask: What is a “dual” value 𝐺 to a computation 
of the area 𝑃 if the triangle is given by three lines in the “normalized” form, e.g.  𝒂1𝑇 . (𝒂2 × 𝒂3) 
instead of three points? 
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𝐺 = 𝒂𝟏𝑻. (𝒂𝟐 × 𝒂𝟑) = 𝑑𝑒𝑡 �
𝑎1 𝑎2 𝑎3
𝑏1 𝑏2 𝑏3
𝑐1 𝑐2 𝑐3

� = 𝑑𝑒𝑡 �
𝑐𝑜𝑠𝛼1 𝑐𝑜𝑠𝛼2 𝑐𝑜𝑠𝛼3
𝑠𝑖𝑛𝛼1 𝑠𝑖𝑛𝛼2 𝑠𝑖𝑛𝛼3
𝑑1 𝑑2 𝑑3

� 

It can be seen that we can apply some transformations so that one vertex of the given triangle is in 
the origin and the line 𝒂1 is on the axis 𝑥, the edge 𝒂2  passes the origin and line 𝒂3 is in the 
general position. 

𝐺 = (𝑻𝒂1)𝑇(𝑻−1)𝑇(𝒂2 × 𝒂3)/𝑑𝑒𝑡(𝑻) =   𝒂1𝑇𝑻𝑇(𝑻−1)𝑇(𝒂2 × 𝒂3)/𝑑𝑒𝑡(𝑻) = 𝒂1𝑇(𝒂2 × 𝒂3)/𝑑𝑒𝑡(𝑻) 

As for the “standard” transformations det(𝑻) = 1 and we can write: 

𝐺 = 𝑑𝑒𝑡 �
1 𝑐𝑜𝑠𝛼2 𝑐𝑜𝑠𝛼3
0 𝑠𝑖𝑛𝛼2 𝑠𝑖𝑛𝛼3
0 0 𝑑3

� = 𝑑3𝑠𝑖𝑛𝛼2 = 𝑑3. 𝑎 (2𝑅)⁄ = 𝑃/𝑅 

It can be seen that 𝐺 = 𝑑3𝑠𝑖𝑛𝛼2 = 𝑃/𝑅 , where: a is the length of the line segment on a3 and 𝑅 is 
a radius of the circumscribing circle. It can be seen that the value 𝐺 can be used as criterion for 
a quality triangular meshes. 

Of course, we have to prove that the proposed transformation of the given triangle is invariant 
to the 𝐺 value. As 𝑑𝑒𝑡(𝑻) = 1 for translation and rotation operations, those transformations are 
invariant and value 𝐺 is not changed by those transformations. The value 𝐺 has a property of a 
distance, i.e. it is in measured in [m], in general.  

In geometric modeling a skewnees factor 𝑆 is used for quality evaluation of triangular meshes 
𝑆 = 1 − 2𝑟 𝑅⁄  

where 𝑟 is a radius of the inscribed circle. 
It seems to that the value G can be used for an effective evaluation for quality of triangular 

meshes in E2 or tetrahedron meshes in E3. 

5. IMPLEMENTATION ASPECTS 
What is very important for today’s applicability is the robustness and speed of computations. It 
means that also numerical methods should consider implementation aspects as well. The cross 
product is defined directly in Gg/HLSL on GPU. The cross product in 4D can be easily 
implemented in Cg/HLSL on GPU as follows: 
 
float4 cross_4D(float4 x1, float4 x2, float4 x3)  
{ 
 float4 a; 
 a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw)); 
 a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw)); 
 // or a.y=dot(x1.xzw, cross(x3.xzw, x2.xzw)); 
 a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw)); 
 a.w=-dot(x1.xyz, cross(x2.xyz, x3.xyz)); 
 // or a.w=dot(x1.xyz, cross(x3.xyz, x2.xyz)); 
 
 return a; 
} 
 
or more compactly 
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float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{ 
 return ( dot(x1.yzw, cross(x2.yzw, x3.yzw)),  
 -dot(x1.xzw, cross(x2.xzw, x3.xzw)),  
 dot(x1.xyw, cross(x2.xyw, x3.xyw)), 
 -dot(x1.xyz, cross(x2.xyz, x3.xyz)) ); 
} 
 

CONCLUSIONS 
We have shown how the projective representation can be used in geometry and computer graphics 
and how some “simple” problems can be easily solved. Nevertheless it should be noticed that we do 
not have a “distance” as we are used to have in the Euclidean space. On the other hand it is possible 
to use principle of duality to explore new theorems or to solve known problems in a different way. 
Also computational support by the GPU architecture is very important. There are several questions 
still to be answered especially: 

• What is a dual term for the barycentric coordinates?  
• What is a geometrical meaning for G in E3, i.e. for a tetrahedron?  
• Can be value G used for quality evaluation of tetrahedron meshes? 

As the GPU is based on matrix-vector architecture, the presented approaches seems to be 
perspective also for other fundamental algorithms in computer graphics. 
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