

New Hash Function Construction for
Textual and Geometric Data Retrieval

 Václav Skala, Jan Hrádek, Martin Kuchař
University of West Bohemia

Department of Computer Science and Engineering
CZ 306 14 Plzen, Czech Republic

skala@kiv.zcu.cz

ABSTRACT
Techniques based on hashing are heavily used in many
applications, e.g. information retrieval, geometry processing,
chemical and medical applications etc. and even in cryptography.
Traditionally the hash functions are considered in a form of
h(v) = f(v) mod m, where m is considered as a prime number and
f(v) is a function over the element v, which is generally of
„unlimited“ dimensionality and/or of „unlimited“ range of values.

In this paper a new approach for a hash function construction is
presented which offers unique properties for textual and geometric
data. Textual data have a limited range of values (the alphabet
size) and „unlimited“ dimensionality (the string length), while
geometric data have „unlimited“ range of values (usually
(-∞, ∞)), but limited dimensionality (usually 2 or 3).

Construction of the hash function differs for textual and geometric
data and the proposed hash construction has been verified on
non-trivial data sets.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis and
Indexing; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; [Theory of Computation] Miscelaneous

General Terms
Your general terms must be any of the following 16 designated
terms: Algorithms, Performance, Experimentation, Verification,
Theory.

Keywords
Hash function, textual data, geometrical data, indexing, data
retrieval,

1. INTRODUCTION
Hashing techniques are very popular and used in many
applications. Their main advantage is a fast retrieval, in the ideal
case with O(1) complexity. Unfortunately, in text processing a
geometrical data processing is quite different as hash functions
can form long buckets that cause unacceptable run-time in real
situations. In geometric data processing we need to process 106 –
108 of points consisting usually of three, i.e. < x, y, z>
coordinates, or more coordinates. The situation is even more
complicated by the fact that range of values for each coordinate is
generally “unlimited”, i.e. the interval (-∞, ∞) has to be
considered. In the text processing case, the dimensionality is
“unlimited”, i.e. a string can be very long, e.g. the titin protein is

described by the word Methionyl-
threonylthreonylglutaminylarginyl...isoleucine which consist of
189,819 characters, but the range of values for each dimension is
limited to the size of the actual alphabet.

It can be seen that there are significantly different requirements
from those two applications to the hash function construction and
hashing method in general.

In the following text we explain how the hash function is
constructed in general and then how the hash function is
constructed for textual and geometric data. Experiments are
described and obtained results are evaluated.

2. HASHING TECHNIQUE
Hashing technique is based on an idea, that there is a hash
function h(v) which gives a unique address to a table for the given
primitive v with an acceptable “sparsicity” of the table. This is the
idea of perfect hashing [1] or nearly perfect hashing [9], which is
not usable for larger data sets. In practical use hash functions [3-
4], [6-7] do not return unique addresses for different primitives. It
results to buckets, which might be pretty long and lead to
unacceptable results in indexing and retrieving items from data
sets.

There are actually two problems that should be resolved if the
hash function is to be designed, i.e.:

• We should avoid the overflow operation in hash function
computation. It is quite severe requirement which is quite
hard to implement in general case.

• We should use the whole size of the table and reduce the
bucket/cluster lengths as much as possible. The maximal and
average cluster length should be as low as possible (cluster is
usually implemented as a list of primitives for the cases when
the hash function gives the same value).

• The hash function must be as simple as possible in order to
have very fast evaluation.

There are several additional requirements that differs from
application to application, e.g. distributed hashing etc.

In the following we show the approach taken on geometrical data
case first and then how construction of the hash function hould be
made for textual data.

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

3. HASH FUNCTION CONSTRUCTION
3.1 Geometric case
Let us consider the geometrical case first. In this case the
dimensionality of the given item is given, usually 2 (<x,y>) or 3
(<x,y,z>), but the range of values is “unlimited”.

Let us consider recommended hash function for geometrical
purposes [2].

The original hash function was defined as

ݔ݁݀݊ܫ ൌ ݐ݊݅ ቆ3
|ܺ|ሺݐ݊݅ כ ܳሻ

ܳ 5
|ܻ|ሺݐ݊݅ כ ܳሻ

ܳ

 7
|ܼ|ሺݐ݊݅ כ ܳሻ

ܳ
൰ ݉ ࢊ

where: int is the conversion to integer - the fraction part of the
float is removed, Q defines sensitivity - number of valid decimal
digits (numerical error elimination) - for 3 decimal digits set
Q = 1000.0, m is the size of the hash table that is determined as
described later, but generally as 2k for fast evaluation of the
modulo and division operations, X, Y, Z are co-ordinates of a
vertex.

It should be noted that in the graphical data case the number of
processed primitives, e.g. points, can easily reach 106 – 108.

The hash function shown above uses very simple formula that is
recommended in many publications for small or medium data sets.
Nevertheless when the property of the hash function was
experimentally verified for elimination of duplicities of points, it
has not proved good properties for larger data sets, see Tab.1. and
Fig.1 - 2. Fig.3 - 4 presents rendered data sets. The experiments
proved that the function has relatively stable properties nearly
without significant influence of the coefficient Q.

Table 1. Typical characteristic of the original hash function
File Number of

triangles
Original

number of
vertices

Final
number of

vertices

Maximal
cluster
length

CTHead.stl 555 411 1 666 233 278 856 356

Gener.stl 500 000 1 500 000 50 002 577

Teapot.stl 159 600 478 800 80 202 110

Figure 1. Number of clusters for precision Q=7 decimal

points for Teapot data set
One disadvantage of this hash function is that the coefficient Q
depends on the data and can lead to mixing some vertices
together. The second disadvantage is that the argument of the hash
function can easily overflow.

Figure 2. Number of clusters for precision Q=9 decimal points
for Teapot data set

 Figure 3. Teapot data set Figure 4. CT Head data set

Data analysis proved that
• it is not reasonable to remove the fraction part from the

co-ordinate value as it helps us to distinguish co-ordinates
better,

• it is necessary to remove all coefficients that depends on data
set somehow – it increases the application stability

• the available memory has to be used as much as possible to
get larger hash table,

• the hash function should not be static one - it should be
dynamic according to currently available memory, but
generally the size of the hash table can be fixed.

Taking into account required properties of the hash function,
several functions have been derived in the general form.

ݔ݁݀݊ܫ ൌ ܺߙ൫ሺݐ݊݅ ܻߚ ሻܼߛ כ ݉ ࢊ ൯ܥ

Where: α, β and γ are coefficients of the hash function, e.g.
3, 5 and 7 (not necessarily integer numbers), C coefficient is a
scaling coefficient set so that the full range of integer values is
used, i.e. maximum range of the interval <0, 232-1> or
<0, 264-1> is used. In the following we consider the interval
<0, 232-1> only.
For a simplicity assume that all co-ordinates X are from the
< 0 , Xmax > interval, similarly for others. Then we can compute
maximal value ξ that can be obtained from the formula as

ξ = α * Xmax + β * Ymax + γ * Zmax
Because the overflow operation must be avoided and also we must
use the whole size of the table, the C coefficient must be
determined as

C = min { C1 , C2 }
where: C1 * ξ <= 232 – 1 C2 = 232 - 2k
In order to get a maximal flexibility of the hash function we must
use the whole address space interval (in our case <0, 232 – 1>),

0
10
20
30
40
50
60

0 20 40 60 80 100 120
Cluster size

0
10
20
30
40
50
60

0 20 40 60 80 100 120
Cluster size

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

influence of C1 coefficient, and maximum of available memory,
influence of C2 coefficient.

So far we have dealt with the hash function property
regardless to the length of the hash table. It must depend on the
size of data we are going to process.

It is well known that the length of the table and estimated
length of a cluster is in relation with the load factor α, see [2] for
details. If we consider the load factor α = 0,5 we can expect
cluster length about 2,5.

The length m of the hash table can be expressed as
α/Nm ≥

where: load factor - α = 0,5 used; the lower value should be used
the better spread out, N – number of points.

In practice the value m is chosen as 2k in order to be able to use
the logical and operator instead of modulo as this solution is
much faster.

Nevertheless in some cases the co-ordinate range is not
known. In this case the hash function can be easily modified so
that co-ordinates are transformed by the function [Pasko95a]:

5,0*1' ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
=

kx
xx

where: k is a parameter, 0 ൏ ݇ ൏ ∞.

This function transforms the interval of x ∈ (- ∞ , ∞) to the
interval x' ∈ (0 , 1). This transformation preserves the stability
of the hash function behavior and it is applied for the y and z
co-ordinates as well. The hash function is then constructed
similarly as if xmax = 1, now.
The hash function is to be very fast. The formula for ξ is generally
for float representation there is no need to convert values to
integers.
Experiments proved that if coefficients of the hash function α, β, γ

are “irrational”, e.g.)e,(2,π , the length of clusters is
significantly shorten. Distribution of cluster length for different
data sets is shown at Fig.5 and Fig.6. Fig.7 show that if the table is
made longer, no significant changes on distribution of length of
clusters happens, see Appendix for more detailed information.

Figure 5. Number of clusters for CT Head)e,(γ)β,(2,, πα =

Figure 6. Proposed hash function property for Teapot.stl data

Figure 7. Proposed hash function property for CT Head if the
table is longer 4-times

It can be seen that the proposed approach offers better distribution
of data, generally shorter clusters and also faster hash function
computation. It is independent from a user choice of “magic”
parameter Q. Other non-trivial geometrical data set have shown a
similar behavior of the hash function.

3.2 Textual data
Textual data are quite different from geometrical data. There are
several approaches published in many books. Traditionally the
hash functions are considered in a form of h(v) = f(v) mod m,
where m is considered as a prime number and f(v) is a function
over a string of characters v. It seems to be quite simple, but the
mod operation with a prime is quite a time-consuming.

Let us consider a string of a length L as a L-dimensional vector,
where each dimension has just one character and therefore a
limited set of values given by the alphabet. It should be noted that
a string can be very long; the longest word has 189 819
characters!

It means that we have the case with “unlimited” dimensionality,
but “limited” set of value at each dimension. The fundamental
requirement for any hash function is that a possibility of an
overflow in computation has to be avoided in principal. It means
that we have to be able to determine a maximal value of the
function f(v) , i.e. the value before mod operation is applied.

Considering a simple polynomial function in the form:

݄ሺ࢞ሻ ൌ ൭ܥ כ ݔݍ

ୀଵ

൱ ݉ ࢊ

We can select a value q∈(0.1) so the sum above is convergent.

806937

6
1

10
100

1000
10000

100000
1000000

0 2 4 6 8
Cluster size

192968

1
10

100
1000

10000
100000

1000000

0 1 2 3 4 5 6
Cluster size

3928781

31
10

100
1000

10000
100000

1000000
10000000

0 2 4 6 8
Cluster size

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

The maximal value of f(x) can be easily determined as

݄௫ ൌ ൭ܥ כ ߮ݍ

ୀଵ

൱ ݉ ࢊ

Where ߮ is generally the highest value representing the last
character in the given alphabet on the i-th position of the given
string (string can consists of different alphabets on each string
position). In majority of cases, the ߮ will be the same and
representing ‘Z’ character.

Now we have to determine the constant C so that ݄௫ value will
be again from the interval <0, 232-1> or <0, 264-1> .

To be able to compare different hash functions for textual data it
is necessary to introduce some general criteria.
Let us assume that there are already N items stored in the data
structure and I is the cluster length. Three basic situations can
occur when a new item, i.e. a string, is inserted to the structure:
1. The item is not stored in the data structure and the appropriate

cluster is empty. The item is inserted to this cluster. The cost
of this operation for all such items can be expressed as

 01 =Q

2. The item is not stored in the data structure so the whole
cluster is to be searched and the item is to be inserted to an
appropriate cluster. The cost of this operation for all such
items can be expressed as (because the cluster of the length I
must be searched for all items in this cluster I-times, value I is

powered by two) ∑
=

=
mI

I
ICIQ

1

2
2

3. The item is stored already in the data structure so the
corresponding cluster is to be searched and the item is not
inserted to the appropriate cluster. Because only half of the
cluster is to be searched on average, the cost of this operation
for all such items can be expressed as

 ∑
=

=
mI

I
ICIQ

1

2
3 2

1

 It is necessary to point out that the cost of the hash function
evaluation has not been considered, as it is the same for all cases.
The cost of item insertion to a cluster was omitted as the item is
inserted to the front of the bucket. The final criterion can be

expressed as ∑
=

=++=
mI

I
ICIQQQQ

1

2
321

2
3

Empty clusters are not considered by this criterion because the
hash table length m depends on the number of items stored. It can
be seen that the criterion Q depends on the number of items. We
used a relative criterion Q’ to evaluate properties of hash
functions for different data sets with different sizes defined as

N
QQ ='

 Several experiments with coefficients α, β, γ for the hash
function were made recently. These coefficients were taken as
decimal numbers and hash function behavior was tested for large
data sets with very good results being obtained for geometrical
applications. These results encouraged us to apply the hash
functions to large dictionaries. In this paper two dictionaries,

Czech and English, were used [5]. The proposed approach was
also experimentally proved on French, German, Hebrew and
Russian dictionaries as well.
There were several significant results from the previous
experiments with large geometrical data sets. The most important
assumptions of our approach have been:

• large available memory for applications is considered,
• the load factor f (will be defined later in this paper) should

be smaller than or equal to 0.5,
• the hash function value should be in the interval of

< 0; 232-1 > before the modulo operation is used to get a
better spread for all considered items,

• the expected number of items to be stored is in the range
< 105; 107 > or higher,

• hash functions used for strings must be different from
hash function used in geometrical applications, because
strings can have various length, i.e. non-constant
dimensionality, and characters are taken from a discrete
value set,

• non-uniform distribution of characters in dictionaries will
not be considered in order to obtain reasonable
generality and simplicity.

Both hash functions were tested using Czech and English ISPELL
dictionaries [5]. The data sets for both languages were taken from
the ispell package for spell checking. The Czech dictionary
contains approx. 2.5 * 106 words and the English dictionary
contains approx. 1.3 * 105 words. Several experiments were made
including slight modifications for the Czech language.

Figure 8. Relative criterion Q’ for Czech dictionary

(Ia : min. 1.15, Im : min. 6)
Ia is an average cluster length, Im is a maximum cluster length

1

10

100

1000

10000

0 0,2 0,4 0,6 0,8 1q

Czech dictionary (end)

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

Figure 9. Relative criterion Q’ for English dictionary

(Ia : min 1.13, Im : min 4)
The properties of the hash function are very poor at the interval
(0; 0.3). This behavior is caused by the non-uniform frequency of
characters in words. The “perfect” overlapping of some words
causes the peaks for the multipliers of 0.125. For example: the
strings “ab”, ”aac”, “aaae”, … will have exactly the same value.
 To improve the properties of the hash function and reduce
overlapping the coefficient q should be an irrational number.
However it is not possible to store an irrational number on the
computer in the usual way. Thus in the actual implementation the
irrational coefficient q is approximated using the closest available
number on a computer with 64 bit double type. In this instance 17
decimal places were used for the representation of q. The
experiments were repeated again for “irrational” values of q in the
interval q∈(0,4; 0,9). Results of this experiment are presented in
Fig.10 - 11.
 It can be seen from the graphs that the properties of the hash
function were improved and the relative criterion Q’ has lower
value.

Figure 10. Relative criterion Q’ for Czech dictionary

Figure 11. Relative criterion Q’ for English

Varying the size of the hash table
Some small improvement can be expected if the size of the hash
table is increased and dramatic changes in behavior can be
expected if the hash table is shorter than a half of the designed
length. Such behavior has been proved in another experiments,
see FIG. 6-7; the mark “X” is used for comparison only.
Note that the table sizes were changed accordingly of the hash
table varied in interval <1,048,576; 33,554,432> for the Czech
dictionary and <65,536; 2,097,152> for the English dictionary.

Figure 12. Relative criterion Q’ for Czech dictionary when

varying size of the hash table
(Ia : 1.02-2.58, Im : 4-12)

Figure 13. Relative criterion Q’ for English dictionary when

varying size of the hash table (Ia : 1.02-2.36, Im : 3-10)

1

10

100

1000

10000

0 0,5 1
q

English dictionary (start)

0,6445

0,645

0,6455

0,646

0,6465

0,647

0,6475

0,4 0,5 0,6 0,7 0,8 0,9q

Czech dictionary (end)

0,629
0,63

0,631
0,632
0,633
0,634
0,635
0,636
0,637
0,638

0,4 0,5 0,6 0,7 0,8 0,9
q

English dictionary (start)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 1 2 3 4
multiple of the length of the hash table

Czech dictionary (end)

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 1 2 3 4
multiple of the length of the hash table

English dictionary (start)

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

Additional experiments
Conclusions drawn from recent experiments were also supported
by additional experiments with other languages. In Tab.3 are the
general properties of the dictionaries of the selected languages we
used.

Table 2. The general properties of additional languages
Language M N Table length

French 285 992 220 291 524 288
German 309 838 294 899 1 048 576
Hebrew 10 669 10 669 32 768
Russian 963 212 956 715 2 097 152

M – number of words in the data set, N number of unique words
The selected dictionaries were tested using the same hash
functions as the Czech and English dictionaries. The Russian
dictionary was processed like the Czech dictionary (both of them
are Slavonic languages), i.e. the words are processed from the
end. The hash function that processed words from the beginning
was used for the other dictionaries. The results obtained are
presented in Tab. 3.

Table 3. The properties of proposed hash function for
additional languages

Language Ia Im Q’

French 1,22 5-7 ~0,707
German 1,15 5-8 ~0,638
Hebrew 1,16 4-6 ~0,652
Russian 1,24 6-8 ~0,726

Ia is an average cluster length, Im is a maximum cluster length

It is obvious from TABLE 3 that the behavior of the proposed hash
function with other languages is similar to that with Czech and
English dictionaries.

4. CONCLUSION
A new approach to hashing function construction for textual and
geometric data was presented with experimental results obtained.
The approach was tested on non-trivial data sets – geometrical and
textual. Results proved that the hash function described can be
effectively used for elimination of duplicities in large textual or
geometrical data collections.
The proposed approach can be used in many areas, especially in
WEB indexing techniques and time critical textual and
geometrical applications.

Due to use of mod operation, if the hash table already constructed
needs to be shorten, it is is possible to easily modify the hash table
for the ½ of its length.
The advantages of the proposed approach are:

• Uses floating point representation that leads to higher
stability and robustness is increased significantly

• Simple implementation and fast function evaluation as CPU
processors are optimized to FFP operations

Significantly new information is that it irrational numbers for hash
function coefficients are used, generally much better cluster
length distribution is obtained.

5. ACKNOWLEDGMENTS
The author would like to thank to all who contributed to this
work, especially Martin Kuchar and Jan Hradek for experimental
verification, to anonymous reviewers for their comments that
improved the manuscript significantly. This research was
supported by the MSMT CR project LC 06008.

6. REFERENCES
 [1] Gettys, T. (2001) : Generating perfect hash function, Dr.

Dobb's Journal, Vol. 26. No.2, pp.151-155.
[2] Glassner,A. (1994): "Building Vertex Normals from an

Unstructured Polygon List", Graphics Gems, IV,
pp.60 - 73. Academic Press, Inc., Cambridge.

[3] Horowitz,E., Sahni,S.: Fundamentals of Data Structures,
Pitman Publ.Inc., 1976

[4] Morris,J., Hash Tables:
http://swww.ee.uwa.edu.au/~plsd210/ds/hash_tables.html

[5] SPELL Dictionaries, http://ficus-
www.cs.ucla.edu/geoff/ispell-dictionaries.html

[6] Knuth,D.,E. (1969-90) The Art of Computer Programming,
vol. 3, Searching and sorting, Addison-Wesley.

[7] Korfhage,R.,R., Gibbs,N.E. (1987) : Principles of Data
Structures and Algorithms with Pascal, Wm.C.Brown
Publishers

[8] Mughal,M.S., Nawaz,M., Ahmad,F., Shahzad,S.,
Bhatti,A.K.,k Mohsin,S: 3D Hash Function for Fast Image
Indexing and Retrieval, Computer Graphics, Imaging and
Visualization 2007, IEEE 0-7695-2928-3/07

[9] Stein,B.: Principles of Hash-based Text Retrieval,
ACM SIGIR 07, pp. 527-534, 2007

[10] Wipke,W.T., Krishnan,S., Ouchi,G.I.: Hash Function for

Rapid Storage and Retrieval of Chemical Structures,
J.Chem.Inf.Compu.Sci, Voll18., No.1, pp.32-37, 1978

APPENDIX

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

1

14

16

Figure A

0

2

4

6

8

10

12

4

6

7

12 12

.1. Maximal bu

Parameters: (α

12

28
8

81
3

13
88

26
81

ucket length dep

,,(),, eπγβα =

26
81

38
44

40
96

51
76

Influ

pendence on the

)2, , T is the

14
85

8

14
85

8

16
64

6

20
55

3

uence of the t

e number of ver

recommended

62
30

4

27
80

79

33
20

36

49
77

60

table length f

rtices and the h

table length

55
44

00

66
92

66

86
82

56

10
00

00
0

for different d

hash table length

4

10
00

00
0

16
05

60
8

22
64

54
4

data length

h

4*T

4*T

2*T

T

T/2

T/4

Latest Trends on Computers, Vol.2, pp.483-489, ISBN 978-960-474-213-4, ISSN 1792-4251, CSCC conference, Corfu, Greece, 2010

