
   

New Hash Function Construction for  
Textual and Geometric Data Retrieval 

 

 Václav Skala, Jan Hrádek, Martin Kuchař 
University of West Bohemia 

Department of Computer Science and Engineering 
CZ 306 14 Plzen, Czech Republic 

skala@kiv.zcu.cz 
 

 
 
 

ABSTRACT 
Techniques based on hashing are heavily used in many 
applications, e.g. information retrieval, geometry processing, 
chemical and medical applications etc. and even in cryptography. 
Traditionally the hash functions are considered in a form of 
h(v) = f(v) mod m, where m is considered as a prime number and 
f(v) is a function over the element v, which is generally of 
„unlimited“ dimensionality and/or of „unlimited“ range of values. 

In this paper a new approach for a hash function construction is 
presented which offers unique properties for textual and geometric 
data. Textual data have a limited range of values (the alphabet 
size) and „unlimited“ dimensionality (the string length), while 
geometric data have „unlimited“ range of values (usually 
(-∞, ∞) ), but limited dimensionality (usually 2 or 3). 

Construction of the hash function differs for textual and geometric 
data and the proposed hash construction has been verified on 
non-trivial data sets. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis and 
Indexing; H.3.3 [Information Storage and Retrieval]: Information 
Search and Retrieval; [Theory of Computation] Miscelaneous 

General Terms 
Your general terms must be any of the following 16 designated 
terms: Algorithms, Performance, Experimentation, Verification, 
Theory. 

Keywords 
Hash function, textual data, geometrical data, indexing, data 
retrieval,  

 

1. INTRODUCTION 
Hashing techniques are very popular and used in many 
applications. Their main advantage is a fast retrieval, in the ideal 
case with O(1) complexity. Unfortunately, in text processing a 
geometrical data processing is quite different as hash functions 
can form long buckets that cause unacceptable run-time in real 
situations. In geometric data processing we need to process 106 – 
108 of points consisting usually of three, i.e. < x, y, z> 
coordinates, or more coordinates. The situation is even more 
complicated by the fact that range of values for each coordinate is 
generally “unlimited”, i.e. the interval ( -∞, ∞ ) has to be 
considered.  In the text processing case, the dimensionality is 
“unlimited”, i.e. a string can be very long, e.g. the titin protein is 

described by the word Methionyl-
threonylthreonylglutaminylarginyl...isoleucine which consist of 
189,819 characters, but the range of values for each dimension is 
limited to the size of the actual alphabet. 

It can be seen that there are significantly different requirements 
from those two applications to the hash function construction and 
hashing method in general. 

In the following text we explain how the hash function is 
constructed in general and then how the hash function is 
constructed for textual and geometric data. Experiments are 
described and obtained results are evaluated. 

2. HASHING TECHNIQUE 
Hashing technique is based on an idea, that there is a hash 
function h(v) which gives a unique address to a table for the given 
primitive v with an acceptable “sparsicity” of the table. This is the 
idea of perfect hashing [1] or nearly perfect hashing [9], which is 
not usable for larger data sets. In practical use hash functions [3-
4], [6-7] do not return unique addresses for different primitives. It 
results to buckets, which might be pretty long and lead to 
unacceptable results in indexing and retrieving items from data 
sets.  

There are actually two problems that should be resolved if the 
hash function is to be designed, i.e.: 

• We should avoid the overflow operation in hash function 
computation. It is quite severe requirement which is quite 
hard to implement in general case. 

• We should use the whole size of the table and reduce the 
bucket/cluster lengths as much as possible. The maximal and 
average cluster length should be as low as possible (cluster is 
usually implemented as a list of primitives for the cases when 
the hash function gives the same value). 

• The hash function must be as simple as possible in order to 
have very fast evaluation. 

There are several additional requirements that differs from 
application to application, e.g. distributed hashing etc. 

In the following we show the approach taken on geometrical data 
case first and then how construction of the hash function hould be 
made for textual data. 
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3. HASH FUNCTION CONSTRUCTION 
3.1 Geometric case 
Let us consider the geometrical case first. In this case the 
dimensionality of the given item is given, usually 2 (<x,y>) or 3 
(<x,y,z>), but the range of values is “unlimited”.  

Let us consider recommended hash function for geometrical 
purposes [2]. 

The original hash function was defined as 

ݔ݁݀݊ܫ ൌ ݐ݊݅ ቆ3
|ܺ|ሺݐ݊݅ כ ܳሻ

ܳ ൅ 5
|ܻ|ሺݐ݊݅ כ ܳሻ

ܳ

൅ 7
|ܼ|ሺݐ݊݅ כ ܳሻ

ܳ
൰  ݉ ࢊ࢕࢓

where: int is the conversion to integer - the fraction part of the 
float is removed, Q defines sensitivity - number of valid decimal 
digits (numerical error elimination) - for 3 decimal digits set  
Q = 1000.0, m  is the size of the hash table that is determined as 
described later, but generally as 2k for fast evaluation of the 
modulo and division operations, X, Y, Z are co-ordinates of a 
vertex.  

It should be noted that in the graphical data case the number of 
processed primitives, e.g. points, can easily reach 106 – 108. 

The hash function shown above uses very simple formula that is 
recommended in many publications for small or medium data sets. 
Nevertheless when the property of the hash function was 
experimentally verified for elimination of duplicities of points, it 
has not proved good properties for larger data sets, see Tab.1. and 
Fig.1 - 2. Fig.3 - 4 presents rendered data sets. The experiments 
proved that the function has relatively stable properties nearly 
without significant influence of the coefficient Q. 

Table 1. Typical characteristic of the original hash function 
File Number of 

triangles 
Original 

number of 
vertices 

Final 
number of 

vertices 

Maximal 
cluster 
length 

CTHead.stl 555 411 1 666 233 278 856 356 

Gener.stl 500 000 1 500 000 50 002 577 

Teapot.stl 159 600 478 800 80 202 110 

 
Figure 1.  Number of clusters for precision Q=7 decimal 

points for Teapot data set 
One disadvantage of this hash function is that the coefficient Q 
depends on the data and can lead to mixing some vertices 
together. The second disadvantage is that the argument of the hash 
function can easily overflow. 

Figure 2.  Number of clusters for precision Q=9 decimal points 
for Teapot data set 

 
 

 Figure 3. Teapot data set Figure 4. CT Head data set 

Data analysis proved that 
• it is not reasonable to remove the fraction part from the 

co-ordinate value as it helps us to distinguish co-ordinates 
better, 

• it is necessary to remove all coefficients that depends on data 
set somehow – it increases the application stability 

• the available memory has to be used as much as possible to 
get larger hash table, 

• the hash function should not be static one - it should be 
dynamic according to currently available memory, but 
generally the size of the hash table can be fixed. 

Taking into account required properties of the hash function, 
several functions have been derived in the general form.  

ݔ݁݀݊ܫ ൌ ܺߙ൫ሺݐ݊݅ ൅ ܻߚ ൅ ሻܼߛ כ  ݉ ࢊ࢕࢓ ൯ܥ

Where: α, β and γ are coefficients of the hash function, e.g. 
3, 5 and 7 (not necessarily integer numbers), C coefficient is a 
scaling coefficient set so that the full range of integer values is 
used, i.e. maximum range of the interval  <0, 232-1> or 
<0, 264-1>   is used. In the following we consider the interval 
<0, 232-1> only. 
For a simplicity assume that all co-ordinates X are from the 
< 0 , Xmax > interval, similarly for others. Then we can compute 
maximal value ξ that can be obtained from the formula as 

ξ  =  α * Xmax  +  β * Ymax +  γ * Zmax 
Because the overflow operation must be avoided and also we must 
use the whole size of the table, the C coefficient must be 
determined as 

C = min { C1 , C2 } 
where: C1 * ξ  <=  232 – 1    C2 = 232 - 2k 
In order to get a maximal flexibility of the hash function we must 
use the whole address space interval (in our case <0, 232 – 1>), 
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influence of C1 coefficient, and maximum of available memory, 
influence of C2 coefficient. 

So far we have dealt with the hash function property 
regardless to the length of the hash table.  It must depend on the 
size of data we are going to process.  

It is well known that the length of the table and estimated 
length of a cluster is in relation with the load factor α, see [2] for 
details. If we consider the load factor α = 0,5 we can expect 
cluster length about 2,5. 

The length m of the hash table can be expressed as 
α/Nm ≥  

where: load factor - α = 0,5 used; the lower value should be used 
the better spread out, N – number of points. 

In practice the value m is chosen as 2k in order to be able to use 
the logical and operator instead of modulo as this solution is 
much faster. 

Nevertheless in some cases the co-ordinate range is not 
known. In this case the hash function can be easily modified so 
that co-ordinates are transformed by the function [Pasko95a]: 

5,0*1' ⎟
⎟
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⎛
+

+
=

kx
xx  

where: k is a parameter, 0 ൏ ݇ ൏ ∞. 

This function transforms the interval of x ∈ ( - ∞ , ∞ ) to the 
interval x' ∈  ( 0 , 1 ). This transformation preserves the stability 
of the hash function behavior and it is applied for the y and z 
co-ordinates as well. The hash function is then constructed 
similarly as if xmax = 1, now. 
The hash function is to be very fast. The formula for ξ is generally 
for float representation there is no need to convert values to 
integers.  
Experiments proved that if coefficients of the hash function α, β, γ 

are “irrational”, e.g. )e,( 2,π , the length of clusters is 
significantly shorten. Distribution of cluster length for different 
data sets is shown at Fig.5 and Fig.6. Fig.7 show that if the table is 
made longer, no significant changes on distribution of length of 
clusters happens, see Appendix for more detailed information. 

 

Figure 5. Number of clusters for CT Head )e,(γ)β,( 2,, πα =  

 
Figure 6. Proposed hash function property for Teapot.stl data  

Figure 7. Proposed hash function property for  CT Head if the 
table is longer 4-times 

 

It can be seen that the proposed approach offers better distribution 
of data, generally shorter clusters and also faster hash function 
computation. It is independent from a user choice of “magic” 
parameter Q. Other non-trivial geometrical data set have shown a 
similar behavior of the hash function. 

3.2 Textual data 
Textual data are quite different from geometrical data. There are 
several approaches published in many books. Traditionally the 
hash functions are considered in a form of h(v) = f(v) mod m, 
where m is considered as a prime number and f(v) is a function 
over a string of characters v. It seems to be quite simple, but the 
mod operation with a prime is quite a time-consuming. 

Let us consider a string of a length L as a L-dimensional vector, 
where each dimension has just one character and therefore a 
limited set of values given by the alphabet. It should be noted that 
a string can be very long; the longest word has 189 819 
characters! 

It means that we have the case with “unlimited” dimensionality, 
but “limited” set of value at each dimension. The fundamental 
requirement for any hash function is that a possibility of an 
overflow in computation has to be avoided in principal. It means 
that we have to be able to determine a maximal value of the 
function f(v) , i.e. the value before mod operation is applied. 

Considering a simple polynomial function in the form: 

݄ሺ࢞ሻ ൌ ൭ܥ כ ෍  ௜ݔ௜ݍ
௅

௜ୀଵ

൱    ݉ ࢊ࢕࢓ 

We can select a value q∈(0.1) so the sum above is convergent.  
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The maximal value of  f(x) can be easily determined as 

݄௠௔௫ ൌ ൭ܥ כ ෍  ௜߮௜ݍ
௅

௜ୀଵ

൱  ݉ ࢊ࢕࢓

Where ߮௜ is generally the highest value representing the last 
character in the given alphabet on the i-th position of the given 
string (string can consists of different alphabets on each string 
position). In majority of cases, the ߮௜ will be the same and 
representing ‘Z’ character. 

Now we have to determine the constant C so that ݄௠௔௫ value will 
be again from the interval <0, 232-1> or <0, 264-1> . 

To be able to compare different hash functions for textual data it 
is necessary to introduce some general criteria.  
Let us assume that there are already N items stored in the data 
structure and I is the cluster length. Three basic situations can 
occur when a new item, i.e. a string, is inserted to the structure: 
1. The item is not stored in the data structure and the appropriate 

cluster is empty. The item is inserted to this cluster.  The cost 
of this operation for all such items can be expressed as  

   01 =Q  

2. The item is not stored in the data structure so the whole 
cluster is to be searched and the item is to be inserted to an 
appropriate cluster.  The cost of this operation for all such 
items can be expressed as (because the cluster of the length I 
must be searched for all items in this cluster I-times, value I is 

powered by two) ∑
=

=
mI

I
ICIQ

1

2
2   

3. The item is stored already in the data structure so the 
corresponding cluster is to be searched and the item is not 
inserted to the appropriate cluster.  Because only half of the 
cluster is to be searched on average, the cost of this operation 
for all such items can be expressed as 

   ∑
=

=
mI

I
ICIQ

1

2
3 2

1  

 It is necessary to point out that the cost of the hash function 
evaluation has not been considered, as it is the same for all cases. 
The cost of item insertion to a cluster was omitted as the item is 
inserted to the front of the bucket. The final criterion can be 

expressed as  ∑
=

=++=
mI

I
ICIQQQQ

1

2
321  

2
3  

Empty clusters are not considered by this criterion because the 
hash table length m depends on the number of items stored.  It can 
be seen that the criterion Q depends on the number of items. We 
used a relative criterion Q’ to evaluate properties of hash 
functions for different data sets with different sizes defined as  

 
N
QQ ='  

 Several experiments with coefficients α, β, γ  for the hash 
function were made recently. These coefficients were taken as 
decimal numbers and hash function behavior was tested for large 
data sets with very good results being obtained for geometrical 
applications. These results encouraged us to apply the hash 
functions to large dictionaries. In this paper two dictionaries, 

Czech and English, were used [5]. The proposed approach was 
also experimentally proved on French, German, Hebrew and 
Russian dictionaries as well. 
There were several significant results from the previous 
experiments with large geometrical data sets. The most important 
assumptions of our approach have been: 

• large available memory for applications is considered, 
• the load factor f (will be defined later in this paper) should 

be smaller than or equal to 0.5, 
• the hash function value should be in the interval of 

< 0; 232-1 > before the modulo operation is used to get a 
better spread for all considered items, 

• the expected number of items to be stored is in the range  
< 105; 107 > or higher, 

• hash functions used for strings must be different from 
hash function used in geometrical applications, because 
strings can have various length, i.e. non-constant 
dimensionality, and characters are taken from a discrete 
value set, 

• non-uniform distribution of characters in dictionaries will 
not    be considered in order to obtain reasonable 
generality and simplicity.  

Both hash functions were tested using Czech and English ISPELL 
dictionaries [5]. The data sets for both languages were taken from 
the ispell package for spell checking. The Czech dictionary 
contains approx. 2.5 * 106 words and the English dictionary 
contains approx. 1.3 * 105 words. Several experiments were made 
including slight modifications for the Czech language.  

 
Figure 8. Relative criterion Q’ for Czech dictionary 

(Ia : min. 1.15, Im : min. 6) 
Ia  is an average cluster length, Im  is a maximum cluster length 
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Figure 9. Relative criterion Q’ for English dictionary 

(Ia : min 1.13, Im : min 4) 
The properties of the hash function are very poor at the interval 
(0; 0.3). This behavior is caused by the non-uniform frequency of 
characters in words. The “perfect” overlapping of some words 
causes the peaks for the multipliers of 0.125. For example: the 
strings “ab”, ”aac”, “aaae”, … will have exactly the same value.   
 To improve the properties of the hash function and reduce 
overlapping the coefficient q should be an irrational number. 
However it is not possible to store an irrational number on the 
computer in the usual way. Thus in the actual implementation the 
irrational coefficient q is approximated using the closest available 
number on a computer with 64 bit double type. In this instance 17 
decimal places were used for the representation of q. The 
experiments were repeated again for “irrational” values of q in the 
interval q∈(0,4; 0,9). Results of this experiment are presented in 
Fig.10 - 11. 
 It can be seen from the graphs that the properties of the hash 
function were improved and the relative criterion Q’ has lower 
value.

 
Figure 10. Relative criterion Q’ for Czech dictionary 

Figure 11. Relative criterion Q’ for English 
 

Varying the size of the hash table  
Some small improvement can be expected if the size of the hash 
table is increased and dramatic changes in behavior can be 
expected if the hash table is shorter than a half of the designed 
length. Such behavior has been proved in another experiments, 
see FIG. 6-7; the mark “X” is used for comparison only. 
Note that the table sizes were changed accordingly of the hash 
table varied in interval <1,048,576; 33,554,432> for the Czech 
dictionary and <65,536; 2,097,152> for the English dictionary. 

 
Figure 12. Relative criterion Q’ for Czech dictionary when 

varying size of the hash table 
(Ia : 1.02-2.58, Im : 4-12) 

 
Figure 13. Relative criterion Q’ for English dictionary when 

varying size of the hash table (Ia : 1.02-2.36, Im : 3-10) 
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Additional experiments 
Conclusions drawn from recent experiments were also supported 
by additional experiments with other languages. In Tab.3 are the 
general properties of the dictionaries of the selected languages we 
used. 
 

Table 2. The general properties of additional languages 
Language M N Table length 

French 285 992 220 291 524 288
German 309 838 294 899 1 048 576
Hebrew 10 669 10 669 32 768
Russian 963 212 956 715 2 097 152

M – number of words in the data set, N number of unique words 
The selected dictionaries were tested using the same hash 
functions as the Czech and English dictionaries. The Russian 
dictionary was processed like the Czech dictionary (both of them 
are Slavonic languages), i.e. the words are processed from the 
end. The hash function that processed words from the beginning 
was used for the other dictionaries. The results obtained are 
presented in Tab. 3. 

Table 3. The properties of proposed hash function for 
additional languages 

Language Ia Im Q’ 

French 1,22 5-7 ~0,707 
German 1,15 5-8 ~0,638 
Hebrew 1,16 4-6 ~0,652 
Russian 1,24 6-8 ~0,726 

Ia  is an average cluster length, Im  is a maximum cluster length 
 
It is obvious from TABLE 3 that the behavior of the proposed hash 
function with other languages is similar to that with Czech and 
English dictionaries. 

4. CONCLUSION 
A new approach to hashing function construction for textual and 
geometric data was presented with experimental results obtained. 
The approach was tested on non-trivial data sets – geometrical and 
textual. Results proved that the hash function described can be 
effectively used for elimination of duplicities in large textual or 
geometrical data collections.  
The proposed approach can be used in many areas, especially in 
WEB indexing techniques and time critical textual and 
geometrical applications. 
 

Due to use of mod operation, if the hash table already constructed 
needs to be shorten, it is is possible to easily modify the hash table 
for the ½ of its length. 
The advantages of the proposed approach are: 

• Uses floating point representation that leads to higher 
stability and robustness is increased significantly 

• Simple implementation and fast function evaluation as CPU 
processors are optimized to FFP operations 

Significantly new information is that it irrational numbers for hash 
function coefficients are used, generally much better cluster 
length distribution is obtained. 
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