Mathematical Foundations for
Computer Graphics
and Computer Vision
Vaclav Skala
http:/herakles.zcu.cz/~skala
skala@kiv.zcu.cz  subject: CGI 2008 — Tutorial
Center of Computer Graphics and Visualization http://herakles.zcu.cz
Department of Computer Science and Engineering  http://www.kiv.zcu.cz
Faculty of Applied Sciences http://www.fav.zcu.cz
University of West Bohemia http://www.zcu.cz

Plzen, Czech Republic

“Real science” in XXI century

8/13/2010 9:55 AM No.slides 72

Motivation

Technology Compaf;liw:ivg:a Gflops
* CPU speed, Quad Core architecture
+ GPU performance, availability

« Matrix-vector operations

* Memory available 4 GB, disk 2 TB

* Numerical representations

Algorithms stability and
robustness

Geometry & Algebra

« From tricks to exact approaches

600
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History of Geometry

« Euclid - synthetic geometry 300 BC

« Descartes - analytic geometry 1637 Main line
* Gauss — complex algebra 1798

* Hamilton — quaternions 1843

* Grassmann — Grasmann Algebra 1844

« Cayley — Matrix Algebra 1854

« Clifford — Clifford algebra 1878

« Gibbs — vector calculus 1881 — used today

* Sylvester — determinants 1878

« Ricci —tensor calculus 1890

« Cartan — differential forms 1908

« Dirac, Pauli — spin algebra 1928

* Hestenes — Space-time algebra 1966 =» Geometry Algebra 1984
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Geometry & Computers

* Mathematically perfect algorithms fail due to instability
e Main issues

— stability, robustness of algorithms

— acceptable speed

— linear speedup — results depends on HW, CPU .... parameters !
* Numerical stability

— limited precision of float / double

— tests A ? B with floats

« if A=Bthen ..... else ..... ; if A=0then ..... else ....
should be forbidden in programming languages

— division operation should be removed or postponed to the last
moment if possible - “blue screens”, system resets
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Geometry & Computers

* Typical examples of instability: % —
— intersection of 2 lines in E3, i 7 I
— point lies on a line in E2 or a plane in E3
Ax+By+C=0 or Ax+By+Cz+D=0 —
— detection if a line intersects a polygon, touches a vertex or
passes through

Typical problem
double x = -1; double p = ....;
while ( x < +1)
{ if x == p) Console.Out.WriteLine(” *** ")
X +=p;
b
if p = 0.1 then no output, if p =0.25 then expected output
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Geometry & Computers

— point inside of a circle given by three points — Delaunay
triangulation — problems with meshing points in regular
rectangular grid.

| OR? | |
I I
If a vertex is
H moved by € H
A .
' Voronoi cell
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Geometry & Computers

* Precision issues — basic rules
o [X] + [Y] = [Xmin+Ymin, Xmax+Ymax]
* [X] - [Y] = [Xmin-Ymax, Xmax-Ymin]
o [X] *[Y] = [min{Xmin*Ymin, Xmin*Ymax, Xmax*Ymin, Xmax*Ymax},
max{Xmin*Ymin, Xmin*Ymax, Xmax*Ymin, Xmax*Ymax}]

e V[X] = [V Xmin, v Xmax]

« Typical example of wrong computational result:
F(x,y)=333.75 y+x° (11x%y-y®-121y*-2) +5.5y° +x/(2y) at
[x,y]=[77617, 33096]
single 6.33 10729, double 1,172...,
exact [-0.82739... 1'34] if interval arithmetic used

[Lecrerc,A.: Should we be concerned about round-off error? ]
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Vectors and Points in Geometry

» Avector v has a magnitude
(length) and direction.
» Normalized vectors have
magnitude 1, e.g. |v|[=1 /
» Zero vector 0 has magnitude
zero, no direction T
» Vectors do not have a location!!

« Vectors and points have only a
similar representation !l
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Vectors and Points in Geometry

Algebraic rules - properties

e VHW =WtV commutative
e u+(v+tw)=(u+v)+w  associative v
e ut0=u additive identity " w

For every v there is a vector —v such
thatv+(-v) =0

u+v+w
e (ab)v=a(bv) associative
e (atb)v =av+bv distributive
o a(v+w) = av+bw distributive -

e lwv=v multiplicative identity scalar multplication
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Vectors and Points in Geometry

Vector representation in R? w
Xo*tX1 = (Xo,Yo)H(X1,Y1) = (Xo+Xy,Yo+Yy) v,
aXo= a(Xo,Yo) = (2%, aYo)

Direct generalization to R®and R" w

Linear combination
V= aVit..tagy,

Ifvi=av t. aVigt @ Vgt +ay,

then v;is linearly dependent — two linearly
dependent vectors v and w are said to be
parallel, e.g. w = av
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Vectors and Points in Geometry

Standard vector basis for R3
e, =(1,0,0), e, = (0,1,0), &5 = (0,0,1)
usually as {i, j, k} , where
i=(1,0,0),j=(0,1,0), k =(0,0,1)
coefficients a,, a,, a;, commonly
represented as x, Y, z

v
Vector v in R3 z —
v =xi+yj +zk e
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Vectors and Points in Geometry

Right handed R3

k

Left handed R3

k

! Be careful — column x row vector notation —
matrices of geometric transformations are transposed
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Vectors and Points in Geometry

Vector length and norm w
Iviz0 Ivl=o®v=0 "/ (7,
lavi=la| [v]

lv+wll< v I+ [[wl

[v]l= (£ v?)¥2 Euclidean norm usually
Pythagorean theorem x2 + y2 = d?

iNR3  x2+y2+22=|v|?2
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Vectors and Points in Geometry

Inner product

<V, W> =<W , V> - symmetry

U+V , W> =<U , W> +<v , W> - additivity
a«w,w>=<av,w =<« ,aw> - homogenity
<V, V> 2 0 - positivity
«v,Vv>w=0<%v=0 -definiteness

w

Euclidean inner product — dot product
o, w>=v . w = ||v] [|w|cosd
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Vectors and Points in Geometry

Cross (vector) product

VXW =-(wXV)—itis not commutative !!
UX(V+W)=uXxv+uxw

VXw
(U+V)XW=UXW+VXW
a(uxv)=(au)xv=ux(av)
ux0=0xu=0 w
vxv=0

\
vxw | = [lv]|lw]sind

The length of the v x w equals to area of parallelogram
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Vectors and Points in Geometry

Cross (vector) product

vxw =det |i | k|
| uX uy uZ |
| VX Vy VZ |

Vector triple product
u X (vxw)=(uw)v - (uv)w

Scalar triple product — equals to the volume
of a parallelopiped

u.(vxw)=Jlull|lvxw]|cosd
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Vectors and Points in Geometry

Algebraic rules:
Vector triple product
ux(vxw)=(uw) - (u.v)w
(UuXVv)Xw=(uw)v - (v.w)u
u.(vxw)=w.(uxv)=v.(w x u)=det [u|v|w]
(axb).(cxd)=det|a’c bTc |
|a™d bTd |
(ax b)x(c xd) =cTabd] — dT[abc]
=bTacd] —a'[bcd]
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Vectors and points in geometry

Outer (tensor) product — result is a MATRIX Q
Q=uvi=ulv
g; = U; v; - will be defined latter

Useful
ab.cd=a"(bOcNd=aTQd
Tip:

CPU and GPU optimization for vector/parallel computation
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Vectors and points in geometry

Useful formula

0 -a a|b
axb=[a b=|a, 0 -alb,
8 A 0 || b

if a=cxd

[4, =(co‘)T -cd
For data visualization
Ox(Oxf)=0(0f)-(0.0)f =
grad (divf)-laplacianf
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Vectors and Points in Geometry

Vectors — movable, no fixed position
Points — no size, position fixed Kk
in the GIVEN coordinate system
Coordinate systems :
« Cartesian — right handed v

. z P
system is used x
e Polar

¢ Spherical
* and many others

[ Confocal Ellipsoidal Coordinates
(http://mathworld.wolfram.com/
ConfocalEllipsoidalCoordinates.html)]
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Vectors and Points in Geometry

An affine space is formed by a vector

space V and set of points W P
Let us define relations N Y
v=P-0
P=0+v
using n basis vectors of V ;

_ P
P=0+a,v;+ayv,+....+ a,v, ”
Coordinate Frame z
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Vectors and Points in Geometry

An affine combinations
P =a,P;+ a,P,+.....+ P,
and a;ta,t....ta=1or a;=1l-a,-.....-.

Convex combination 0 <a,+ a,+.....+ a <1

P =Pgt+ a, (P1- Pp) ...+ & (P~ Py)
if v,=P;- P, then
P=Py+ta;v;..... +a, Vi
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Vectors and Points in Geometry

» Projective extension of the affine space

e Apoint x in E2 is defined with coordinates
X= %(,Y) or as a point x = [x,y,w]"
with homogeneous coordinates
X=x/w Y=yw, w#0

e The point x in E2 is a line (without an origin)
in the projective space P?

e Apoint x in E3 is defined with coordinates
X =(X,Y,Z) or as a point x = [X,y,z,w]",
with homogeneous coordinates
X=xlw Y=ylw, Z=zlw w#0

e The line in E2is a plane (without an origin)
in the projective space P?
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Vectors and Points in Geometry

Vector representation V=(Vy,Vy,Vv,:0)
Point representation P=(Py,P,,P,:1)
Many libraries do not distinguish between points and
vectors and treat them in the same manner
I BE CAREFUL !!

Often used:
V=P —Py=(Pyg Py, Py i1)-(Py, Py, Pyp:l)=
(le_PxovPyl_PyOvle_PZO:O)z(vaVysz:O)

"' Do not make it on CPU/GPU —result (v, , vy, Vv, €)
thatis a point (v, / €, v, /e, v,/ €) in E®

8/13/2010 9:55 AM No.slides 72 26

Vectors and Points in Geometry

How to handle vectors? [X, V - Euclidean , x, v — homogeneous]

T
V=X, X, :[i_&,ﬁ_hvﬁ_ﬁ}
W Wo W Wy Wy W
T T T
V=[x W] = [XeiWo] =W Wi g W]
*Result is a vector with homogeneous coordinate “hiding” the division
operation
*Vectors and points have “similar” representations, b ut different
interpretation
«if the vector length is not important — homogeneous coordinate value
can be ignored [one division is saved .
9 ; ] [xl:Dl]T—[xD:Dle:[x :DO}

estability of computation —
swe do not need to solve instabilit;

Y e.g. (X X)=(w/e v /¢)
wheres -~ 0
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Vectors and Points in Geometry

Projective extensions
Ak 3 by}_ 1. RV T |
AB=|2*=>* = |=——la:w, || b:w, |=——ab
[Wawb W, W, wawb[ J{0:ve] W,
S [ S
i j k a, 1 i j ok
AB=|A A A= 2 Bl la g =
B. B B Wy Wy Wy Wa b, by by
b by b
W W W
1 1 i j ok
: b: =
o b= a2y a,
b, b, by
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Vectors and Points in Geometry

Geometric product

AB =A.B +A B BA =B.A +B [A =AB -A B
It can be seen

A.B:%(AB +BA) AB :%(AB -BA)

Result is a scalar and bivector il E
In the case of £ the operatdr is equivalentto
Extension to projective case is analogical
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Vectors and Points in Geometry

Geometric product
[a:w,][b:w,]=[a:w,] [b:w,]+[aw,]x[ b:w,] =

ﬁ{a.m ax i =[a.b+ ax bww]

a

WOow'!

It means that we do not need to use division
operation !
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Vectors and Matrices

Vector — any vector in n-dimensional vector space V
can be represented as

where {v, v, ,..., Vv, } is a basis vector of V

Notation
Vi
column row
v=| 2 vy v, Vv
v 1 2 n
VH
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Vectors and Matrices

Matrix — square matrix n=m
&1 -
Anm = [a] A=l .
am - @um
Special cases

m =1 - column matrix — vector
(used in the right handed coordinate system)

n=1 -row matrix - vector
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Vectors and Matrices

Algebraic rules Transpose of a matrix A is

A+B=B+A amatrix B = AT

A+(B+C)=(A+B)+C where: by = a;

A+0=A

A+(-A)=0 Additional rules

a(A +B) = aA + Ab (A=A

(a+b)A = aA + bA ATA =1

1.A=A (A-l)T = (AT)-l =AT (n X n)
(aA)T = aAT

(A+B)T = AT+ BT
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Vectors and Matrices

Matrix multiplication p
C=AB Gk = Z 3y
k=1
A=[a,] i=1,..,n, k=1,...,p
B=[by] k=1,...p, j=1,...m
C=[Cii] i=1,...n, j=1,....m
NOTE! How to compute C?
AB#BA B
A c
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Vectors and Matrices

A(BC) = (AB)C a(BC) = (aB)C

AB +C)=AB+AC (A+B)C=AC+BC
(AB)T=BTAT

Block matrices

A|BIJ[E| F]_[AE +BG | AF +BH
clpb|lcg|H]| |CE+DG | CF+DH
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Lines and Line Segments

Lines in E? xLop
two points define a line p

Xo

« implicit description
ax+by+d =0

a"x+d =0
e parametric description
X(t) = Xo + (x1=X)t

t0(-o,0), resp.tO <OJ>
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Lines and Line Segments

Lines in E? X2
 two points define

aline p “
e 2 equations for 3

parameters — ax; +by, +d =0

a,b,d ax, +by,+d =0

system, i.e. one

¢ linear homogeneous a
9 [ X3 Y1 1 } {
parametric solution 2

Yo 1
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Lines and Line Segments

a;x+byy+d; =0

A point X as an a,x+b,y+d, =0

intersection of two lines

N M
« system of linear a, by |ly -d,
equations must be
solved
* numerical stability of
a solution - intersection >
x collinearity P,

Ax =b
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Points and Planes in E3

* Apoint x as an a;x+byy+c,z+d, =0
intersection of three  a,x+ b,y +c,z+d, =0
planes in E3 azx+byy+cyz+dy=0

» system of linear
equations must be a, by ¢y ] x -d;
solved a, by cy||ly|=|-d;

« numerical stability 3 by caflz] [-ds
of the solution Ax =b
if |det A| < € then
“singular case"??

What is € value ??
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Points and Planes in E3

» Three points define a ax+by+cz+d =0
plane p a"x+d=0
* Homogeneous system g +ay, +az +d =0

must be solved ax, +ay,+az,+d =0

» Non unique solution axg+ay; +azg+d =0
a

X B ozl b 0

X Yo Z, 1 c =0

X z; 1 0

5 Y3 Z3 d

Ax =0
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Points and Planes in E3
» A parametric form for the plane p
X(u,v) = X3 + (X, = xg)u+ (x3-x,)v

u,vO (- ,0)

Triangle:0< Ju+v|<1&0<uyv<l X

Xq %3
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Interpolation

* Linear interpolation - formulation
— Parametric
— Implicit form

¢ Quadric/cubic interpolation — splines etc.
[not discussed here]

¢ Radial basis functions RBF - multidimensional
N
f(X)=§Aif(\\x—x‘\\)+ p(x)
usually p(x)=a'x+d
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Interpolation

fll fJn X Y1 4 1 /11 hl

> L.

n fn % Yo 2z 1A |h

X, X 0 0 0 Ofaj|=|0

N : b 0

zZ ..z, c 0

11 1 0 0 0 d 0]
where: f; =f (HxI —XIH)

f(r)=r’lg(r) etc.
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RBF Interpolation

W,

Corrupted image 30% Reconstructed image
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RBF Interpolation

.’
l ‘

Corrupted image 90%

Reconstructed image
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Principle of Duality

« Any theorems remain true in E2 when we

interchange words “point” and “line”, “lie on” and
“pass through”, “join” and “intersection” etc.

» Points and planes are dual in ES etc.
(not points and lines!)

It means that intersection computation of two
lines and a line given by two points should be
same if we use the principle of duality.
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Principle of Duality

e InE?
— aline p is given by two points
(how to compute 3 coefficients [a,b,d]™ of the line ax+by+d=0 ?)
— apoint x as an intersection of two lines
e InE®
— aplane p is given by three points
(how to compute 4 coefficients [a,b,c,d]" of the plane
ax+by+cz+d=0 ?)
— apoint x as an intersection of three planes

Dual problems — but computations are not “symmetrical”
Stability and robustness??

WHAT IS WRONG ??
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Principle of Duality

ax+by+d=0
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Computation in Projective Space

Intersect!on p0|_nt X glveTn aX +by +d, =0
by two lines p,=[a,;,b;,d,] a,X +b,Y +d, =0
d po=[ay,by,d,]"
and p,=[a,b,,d; AX = -d I*&#0
X =P1XPz a;x +byy+d;w=0

a,x+b,y+d,w =0
Bx =0 ><:[><,y,w]T
) ) K
I ! a b, d;
pixp, =detja; by d, B =
a, b, d,
a, b, d,
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Computation in Projective Space

Lines in E?
. aline p = [ab,d] Tis defined o P
by points
X1=[Xq, Y1, Wyl “
X2=[Xa, Yo, Wyl ik
D =X, XX, X XX, =defl x; y; w,;
X Yo W

* we do not need to solve linear equations
and no division operation is needed!

* stability evaluation AFTER computation
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Computation in Projective Space

ik
.
X XX, =det X, y; w; a=[a b d]
X Y2 W
It means
a b d
a (% xx,)=0 defx y; w|=0
X Y2 W,
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Computation in Projective Space

In E2

* Aline p can be determined by cross product of two
points x, and x,

* Anintersection x point can be determined by cross
product of two lines p, and p,

+ If x; or x, in homogeneous coordinates, e.g. w; # 1
no division is needed

How the E® case is handled?
* Apointis dual to a plane p

p=[ab,c.d]’
* There is no “direct duality” for a line in E3
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Computation in Projective Space
i ok

%o W
Z3 Wy

» Cross product definition

* Aplane p is determined
as a cross product of X3 Y3

three given points ax+by+cz+dw=0 a'x=0

] i j ok
Due to the duality
. . . _|& ¢ d;
* Anintersection point x of PLXPyXp3= b d
three planes is determined 2 €2 02
as a cross product of three a; by c; dg

given planes
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Computation in Projective Space

» No division operation!

« An “intersection of parallel lines” can be
computed - it leads to [x,y:0]", resp. [x,y:€]"
—a point in, resp.close to infinity

» More robust computations in general
no IF clauses (conditions) are needed

¢ Substantial speed-up on CPU or GPU can be
expected due to vector-vector operations
support
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Computation in Projective Space

Aline in E3
¢ parametric form

%o ¢ as an intersection of
two planes

* Pliicker coordinates
X(t) =X + (X=Xt

t0(-em)
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Computation in Projective Space

y
P Plicker coordinates

X1

p=[-xa) s(xexs) |

[mT v T sometimes afw v]"
X

T .
x=[x.y.zw] =12
L =xX] -XXp tensor product — matrix

‘D:[l41 142 |43]T V:[l 23 a1 |1§T

2
()= 22 vor q(r):{”“”“’z’”"’w

ol
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Computation in Projective Space

Plicker coordinates

« aline given by two planes
—due to DUALITY

a(r) =2 +vr
M

"’:[Lu l4 |43:|T V:[|z3 I3 |12T

L =aq@] —a;ay tensor product - matrix

a=[a.h.q.4] i=12
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Computation in Projective Space

* Geometric transformations

. ik
— points
p=x;xx;=det x; y; W
X Y2 W,
X =QXx
p'=? but

QX x QX, =(Q_1)T X1 XX

8/13/2010 9:55 AM No.slides 72 58

Computation in Projective Space

 Translation
— distance given in E2

10A
x'=|0 1 Bjx
— distance given in P2 00 1

y

w 0 a b
X ' a
! x'=|0 w blx (A,B)=(—,—] w# 0
w w

Bl x, 0 0 w

if A or B are fractions, we can avoid division !
" X
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Computation in Projective Space

« Rotation cosp - sinp
x'=|sing cosp X
0 0 1
A -B 0
x'=|B A 0]x
0 0 C
A . B
cosp=— sip=—
4 C " C
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Computation in Projective Space

* Window-Viewport

Computation in Projective Space

Fundamental geometric transformations

y t Window y _ 10 -Wxy 10 -Vx — translation, rotation, reflection, shearing, scaling,
We View oy, =001 AW Tp=10 1 W, projection from E3 to E2
|:| 00 1 0o 1 — can be performed without division operation and if
AV AWK 0 0 parameters are given as fractions, matrices can be
Va = 0  Aw/Awy 0 easily modified for parameters given in homogeneous
| Wa | 0 0 1 representation
X X Q=T,ST,
AVXAWY 0 0 No division operation needed !!
S'= 0 AVYAW 0 Q'=T,S'T,
0 0 AWKAWY No division operation needed !!
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Computation in Projective Space Interpolation
. . Linear parametrization
Rotation around general axis P
X(t) =X +(X ;=X o)t t0(=o0,00)
T(v.)= v|cos® +w sing Non-linear (monotonous) parametrizatior \
T(v) =T(vy) + T(vy) X(t) =Xg +(X;X)t t0(—o0,00) -
X(t) =X +(X;=X)t  Y(t) = Yo+ (Y Yot .
() =75+ (27t W(t) = wWo+ (W -wgt
T=I C05¢ +( - C0¢) (I’l Un ) « It means that we can interpolate using m
. _ homogeneous coordinates without a need
+(I’l XV)SII’]¢ HnH =1 of “normalization” to EX!! \\

VLCOSQ Vi nOn=nn" tensor product-matri
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« Homogeneous coordinate w = 0
«In many algorithms, we need *
“monotonous” parameterization, only ! :

om 10 20 30 4w S0 6@ 700
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Interpolation

Linear parametrization

X(t) =X +(X ;X QU+ X ;X Qv u,vO(—o0,e0)
Non-linear (monotonous) parametrization

X(t) = Xg +(X1=X)u + (X ;=X gu
X(t) =X + (X3~ Xg)u + (X =XV
() = Yo+ (Y1=Yo)u +(y 2=y oV
2(t) = 75 + (217 Zg)u +(z ;= Zglv
W(t) =Wy + (W1—Wo)u + (W =WV

u,vO(=e0,00)

*Homogeneous coordinate w = 0
« In many algorithms, we need
“monotonous” parameterization, only !
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Barycentric coordinates
Let us consider a triangle with vertices X,, X,, X3,
A position of any point X[£JE2 can be expressed as
%

‘ XB
Linear system must be solved

If points x; are given as [x;, ¥;, z: w; ]"and w; 2 0
then x; must be “normalized”

aX;+taX,+aX,;=X
aYytaY,tays=yY
additional condition
a+a,+tay=1 O<gc<l

g =B i=1,..3
P X/
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Barycentric coordinates

It can be modified to:

By X; +b,X 5 +bX 5+b X =0
byY; +byY,+byYs+by =0
b +b, +b;+b, =0

b =-ab, i=1..,3 bz 0

b:ganW
T
b:[b_l.yb21b3yb4:|
Rewriting & =| X1, Xy, X5, X T
Xlxzxsxg [123T]
VY, Y, Y =0 nEMYYY]

11 o1 1> w=[111}"
by
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Barycentric coordinates

ifw,>1
bl b=g><qxw
.
X X Xl b =[ly,b,,bs,b,]
i Y2 Y3 Y b, =0 _ T
Wow, W, w & =[x, %, %3, %]
by _ T
"_[Y1'y2’Y3'y:|
-
w =W, Wy, wa,w]
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Barycentric coordinates

ifw;20

b :g XN xXwW

b =[by,by,bg b, ]

g:[xl,xz,xs,x]T
.

n=[¥1.Y2.Y3Y]

w =[Wl,w2,w3,w]T

0< (b :wowaw) <1
0< (b, tweww) <1
0< (—by :wyww) <1
It means that we can compute

barycentric coordinates without
division operation

Simple modification for a position
in the tetrahedron [4]
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Length, Area and Volume

Length, area and volume computation in projective space
if an elementis given by points in homogeneous coordinates

Line segment length
p=xxx, p=[abd] n=[ab]

)

Triangle area
p=xxx,xx5 p=[abcd]’ n=[abc]

—|(/nTh -
S= ( n'n .2V\{LW2W3)
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Length, Area and Volume

Tetrahedron volume

p=x. %X, xX3xx, p=[abcde n=[abcd]
(\/ n'n 26WlW2W3W4)
General formula

o =[\/ﬂ:(k—1)!|j\/\€}

V =

k = number of end-poin’

K
- _ n
n= = n:(k—l)!QkI_vaI
vn'n =
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X() =Xo+ X X gt t0(—o0,c0)
AT™X+d=0  ax+by+cz+d=0
A=[abc’  S=X-X,

Intersection Computation in
Projective Space

S X1 P
¢ Linear interpolation&

%o parameterization
very often used

« Intersection of a line
and a plane

* Robustness
problems if ATS —0

{=_ATXo+d
A'S
?7?? How to avoid an instability ???
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Intersection Computation in
Projective Space

X(1) =X+ (XX}t t0(-o0,0) « Anintersection of a plane

a'x=0 ax+by+cz+d=0 with a line in E2 can be

a=[ab,c,d]" S= X,-X, computed efficiently [6]
_a'x « Comparison Qperations
T must be modified !1!

* Cyrus-Beck line clipping
algorithm 10-25% faster

r=-a'x, r,=as
t=[r:z,] if 7, <Othent =t
TEST

if t>tthen.....

if 7% Ty, > Tyw* Tmin then.... condition 72 0

8/13/2010 9:55 AM No.slides 72 73

Line clipping in E2 algorithms

Intersection Computation in
Projective Space
procedure CLIP_L; {details in [3]}

{Xa , Xg — in homogeneous coordinates }
{The EXIT ends the procedure }

Cohen-Sutherland
Liang-Barsky

Hodgman {input : xa , xg 5 xa=XaYall” P = [ab,C]"}
Skala — modification of begin
Clip_L for line segments {1} P = Xa X Xg; { axtby+c =0}
{2} for k:=0to N-1 do {X,=[X,Y1]"}
X3 X2 {3} if p™x, 2 0then c =1
else ¢,:=0;
/XDB/ {4} if ¢ =[0000]" or ¢ =[1111]"
then EXIT;
p {5} i:= TAB1[c]; j:=TAB2[c];
XA {6} XA'= PX€; Xgi= PXe€;
{7} DRAW (Xa; Xg ) {e;—i-th edge }
Xo X1 end {CLIP_L};
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Intersection Computation in
Projective Space

Iterative computations
— values are represented as fractions with floats

— exponents grow — need of “exponents normalization”
- not available on current CPUs
- necessity of explicit CALL

— solution - see PLib for .NET [8]

Cg / HLSL and GPU Computing

GPU (Graphical Processing Unit) -optimized for matrix-vector,
vector-vector operation — especially for [x,y,z,w]

Native arithmetic operations with homogeneous coordinates —
without exponent “normalization”

Programmable HW — parallel processing

vertex connectivity

vertices| \grtex primitive assembly
transformation & rasterization

fragments
y

fragment texturing

pixel positions

raster
operations

Pixel updates colored fragments & coloring
Cg/ HLSL and GPU Computing Conclusion

» 4D cross product can be implemented in Cg/HLSL
on GPU (not optimal implementation) as:

float4 cross_4D(float4 x1, float4 x2, float4 x3)
{float4 a;
a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw));
a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw));
a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw));
a.w=-dot(x1.xyz, cross(x2.xyz, X3.xyz));
return a;

8/13/2010 9:55 AM No.slides 72 7
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Fundamentals of computation in projective space have
been introduced

Proposed approach helps to improve robustness of
algorithms, but it does not give the ultimate solution -
limited numerical precision

Homogeneous coordinate w must be non-negative
(simplification comparison operations)

Comparison operations are a little bit complicated — but
tests rely on separation functions — higher robustness
Due to GPU and CPU architecture algorithms might be
significantly faster even in SW implementation

No.slides 72 78
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Conclusion

« A new data type for programming languages —
float_projective, double_projective should be
considered

— perhaps as a native representation
— it enables more robust numerical algorithms
— unfortunately increases a data bus traffic

operation “exponent normalization” should be supported
on CPU/GPU in HW — significantly slow in SW

— experimental library PLib is available [8]
» Geometry algebra applications in CG & CV ??
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Thank you for your attention

Questions ??

Contact
Vaclav Skala
skala@kiv.zcu.cz  subj. CGI2008 - Tutorial

Center of Computer Graphics and Visualization hitp:/herakles.zcu.cz
Department of Informatics and Computer Science  http://www.kiv.zcu.cz
Faculty of Applied Sciences http://www.fav.zcu.cz
University of West Bohemia  htip://www.zcu.cz
Univerzitni 8
CZ 306 14 Plzen
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