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“Real science” in XXI century
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Motivation

Technology
• CPU speed, Quad Core architecture

• GPU performance, availability
• Matrix-vector operations

• Memory available 4 GB, disk 2 TB
• Numerical representations

Algorithms stability and 
robustness

Geometry & Algebra
• From tricks to exact approaches
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History of Geometry
• Euclid  - synthetic geometry 300 BC
• Descartes - analytic geometry 1637
• Gauss – complex algebra 1798

• Hamilton – quaternions 1843
• Grassmann – Grasmann Algebra 1844

• Cayley – Matrix Algebra 1854
• Clifford – Clifford algebra 1878
• Gibbs – vector calculus 1881 – used today
• Sylvester – determinants 1878
• Ricci – tensor calculus 1890

• Cartan – differential forms 1908
• Dirac, Pauli – spin algebra 1928
• Hestenes – Space-time algebra 1966  � Geometry Algebra 1984

Main line
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Geometry & Computers
• Mathematically perfect algorithms fail due to instability
• Main issues

– stability, robustness of algorithms

– acceptable speed
– linear speedup – results depends on HW, CPU …. parameters !

• Numerical stability
– limited precision of float / double
– tests  A ? B with float s

• if A = B then ….. else …..   ;   if A = 0 then ….. else ….
should be forbidden in programming languages

– division operation should be removed or postponed to the last 
moment if possible - “blue screens”, system resets
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Geometry & Computers
• Typical examples of instability:

– intersection of 2 lines in E3, 
– point lies on a line in E2 or a plane in E3

Ax + By + C = 0     or Ax + By + Cz + D = 0
– detection if a line intersects a polygon, touches a vertex or 

passes through

Typical problem  
double x = -1; double p =  ….;

while ( x < +1) 

{ if x == p) Console.Out.WriteLine(” *** ”)

x += p;

}

if p = 0.1 then no output,   if p = 0.25 then expected output
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Geometry & Computers
– point inside of a circle given by three points  – Delaunay 

triangulation – problems with meshing points in regular 
rectangular grid. 

OR ?

Voronoi cell

If a vertex is 
moved by ε
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Geometry & Computers
• Precision issues – basic rules

• [X] + [Y] = [Xmin+Ymin, Xmax+Ymax]
• [X] - [Y] = [Xmin-Ymax, Xmax-Ymin]
• [X] * [Y] = [min{Xmin*Ymin, Xmin*Ymax, Xmax*Ymin, Xmax*Ymax}, 

max{Xmin*Ymin, Xmin*Ymax, Xmax*Ymin, Xmax*Ymax}]
• [X] / [Y] = (-∞,∞) if Y=0 ; [X] / [Y] = [X] * [1/X, 1/Y] otherwise !!!!!
• √[X] = [√ Xmin, √ Xmax]

• Typical example of wrong computational result:
F(x,y)=333.75 y6+x2 (11x2y2-y6-121y4-2) +5.5y8 +x/(2y)  at 

[x,y]=[77617, 33096]
single 6.33 10^29,    double 1,172…, 

exact [-0.82739…± 1-34 ] if interval arithmetic used
[Lecrerc,A.: Should we be concerned about round-off error? ] 
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Vectors and Points in Geometry

• A vector v has a magnitude 
(length) and direction.

• Normalized vectors have 
magnitude 1, e.g. ║v║=1

• Zero vector 0 has magnitude 
zero, no direction

• Vectors do not have a location!!
• Vectors and points have only a 

similar representation !!
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Vectors and Points in Geometry

Algebraic rules - properties
• v+w = w+v commutative
• u+(v+w) = (u+v)+w associative
• u+0 = u additive identity
For every v there is a vector –v such 

that v+(-v) = 0
• (ab)v = a(bv) associative
• (a+b)v = av+bv distributive
• a(v+w) = av+bw  distributive
• 1.v = v   multiplicative identity

u

v

v+w

w

u+v+w

scalar multiplication
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Vectors and Points in Geometry

Vector representation in R2

x0+x1 = (x0,y0)+(x1,y1) = (x0+x1,y0+y1)
a x0 = a(x0,y0) = (ax0,ay0)

Direct generalization to R3 and Rn

Linear combination
v = a1v1+…..+ anvn

If vi = a1v1+.. ai-1vi-1+ ai+1vi+1+...+ anvn

then vi is linearly dependent – two linearly 
dependent vectors v and w are said to be 
parallel, e.g. w = av

v

w

w’
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Vectors and Points in Geometry

Standard vector basis for R3 

e1 = (1,0,0), e2 = (0,1,0), e3 = (0,0,1)

usually as {i, j, k} , where
i = (1,0,0), j = (0,1,0), k = (0,0,1)

coefficients a1, a2, a3, commonly 
represented as x, y, z

Vector v in R3 

v = xi + yj + zk
x

y

z

i

v

k

j
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Vectors and Points in Geometry

Right handed R3 Left handed R3

y
x

z

j

v

k

ix
y

z

i

v

k

j

! Be careful – column x row vector notation –
matrices of geometric transformations are transposed  
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Vectors and Points in Geometry

Vector length and norm

║v║≥ 0 ║v║=0 � v = 0
║a v║= │a│║v║
║v + w║≤ ║v ║+ ║w║

║v║= (∑ vi
2 )1/2 Euclidean norm usually 

Pythagorean theorem x2 + y2 = d2 

in R3 x2 + y2 + z2 = ║v║2

v

w

v + w
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Vectors and Points in Geometry

Inner product

‹v , w› = ‹w , v›  - symmetry

‹u+v , w› = ‹u , w› + ‹v , w›  - additivity

a ‹v , w› = ‹a v , w› = ‹v , a w› - homogenity

‹v , v› ≥ 0 - positivity

‹v , v› = 0 � v = 0 - definiteness

Euclidean inner product – dot product
‹v , w›= v . w = ║v║║w║cosϑ

ϑ

v

w
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Vectors and Points in Geometry

Cross (vector) product
v x w  = -(w x v ) – it is not commutative !!
u x (v + w) = u x v + u x w
(u + v) x w = u x w + v x w
a (u x v) = (a u) x v = u x (av)
u x 0 = 0 x u = 0
v x v = 0

║v x w ║ = ║v║║w║sinϑ
The length of the v x w  equals to area of parallelogram

v

ϑ

w

v x w
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Vectors and Points in Geometry

Cross (vector) product
v x w  = det │ i j k│

│ ux uy uz │
│ vx vy vz  │

Vector triple product
u x (v x w)=(u.w )v - (u.v)w

Scalar triple product – equals to the volume 
of a parallelopiped
u . (v x w) = ║u║║v x w║cosϑ

ϑ

v

w

v x w

u
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Vectors and Points in Geometry

Algebraic rules:

Vector triple product

u x (v x w) = (u.w)v - (u.v)w
(u x v) x w = (u.w)v - (v.w)u
u.(v x w) = w.(u x v) = v.(w x u)=det [u|v|w ]

(a x b).(c x d) = det |aTc bTc |
|aTd bTd |

(a x b)x(c x d) = cT[abd ] – dT[abc ] 

= bT[acd ] – aT[bcd ]
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Vectors and points in geometry

Outer (tensor) product – result is a MATRIX Q
Q = u vT = u ⊗ v
qij = ui vj  - will be defined latter

Useful

aTb . cTd = aT (b ⊗ cT)d = aT Q d
Tip :
• CPU and GPU optimization for vector/parallel computation
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Vectors and points in geometry

[ ]

[ ] ( )

3 2 1

3 1 2

2 1 3

0

0

0

if
TT T

a a b

a a b

a a b
×

×

−   
   × = = −   
   −   

= × = −

a b a b

a c d a cd cd

Useful formula

( ) ( ) ( )
( )grad div laplacian

∇× ∇× = ∇ ∇ − ∇ ∇ =

−

f .f . f

f f

For data visualization 
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Vectors and Points in Geometry
Vectors – movable, no fixed position
Points – no size, position fixed 

in the GIVEN coordinate system
Coordinate systems
• Cartesian – right handed 

system is used
• Polar
• Spherical
• and many others

[ Confocal Ellipsoidal Coordinates 
(http://mathworld.wolfram.com/

ConfocalEllipsoidalCoordinates.html)]

x
y

z

i

v

k

j
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Vectors and Points in Geometry

An affine space is formed by a vector 
space V and set of points W

Let us define relations

v = P – O
P = O + v
using n basis vectors of V
P = O + a1v1+ a2v2+…..+ anvn

Coordinate Frame

i

O
P

v

x
y

z
v

k

jO

P
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Vectors and Points in Geometry

An affine combinations
P = a1P1+ a2P2+…..+ akPk

and a1+ a2+…..+ ak= 1  or a1 = 1 – a2 -…..- ak

Convex combination 0 ≤ a1+ a2+…..+ ak ≤1 

P = P0+ a1 (P1- P0) …..+ ak (Pk- P0) 

if vi = Pi - P0 then

P = P0+ a1 v1 …..+ ak vk
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Vectors and Points in Geometry
• Projective extension of the affine space

• A point x in E2 is defined with coordinates 
X = (X,Y) or as a point x = [x,y,w]T 

with homogeneous coordinates
X = x /w     Y = y/w,   w ≠ 0

• The point x in E2 is a line (without an origin) 
in the projective space P2

• A point x in E3 is defined with coordinates 
X = (X,Y,Z) or as a point x = [x,y,z,w]T, 

with homogeneous coordinates
X = x /w     Y = y/w,  Z = z/w  w ≠ 0

• The  line in E2 is a plane (without an origin) 
in the projective space P2

x
y

w=1

w

x

P2

E2

x
y

w=1

w
P2

E2

p
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Vectors and Points in Geometry
Vector representation  v = ( vx , vy , vz : 0 )
Point representation P = ( Px , Py , Pz : 1 )
Many libraries do not distinguish between points and 

vectors and treat them in the same manner 
!! BE CAREFUL !!

Often used:
v = P1 – P0 = ( Px1 , Py1 , Pz1 : 1 ) - ( Px0 , Py0 , Pz0 : 1 ) =

( Px1 – Px0 , Py1 – Py0 , Pz1 – Pz0 : 0 ) = ( vx , vy , vz : 0 )

!!! Do not make it on CPU/GPU – result ( vx , vy , vz : ε ) 
that is a point ( vx / ε, vy /ε, vz / ε ) in E3
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Vectors and Points in Geometry
How to handle vectors? [X, V - Euclidean , x, v – homogeneous]

[ ]

0 0 01 1 1
1 0

1 0 1 0 1 0

1 1 0 0 0 1 1 0 0 1

, ,

: : :

T

T TT

x y zx y z

w w w w w w

w w w w w w

 
= − = − − − 

 

= − = −      

V X X

v x x x x

•Result is a vector with homogeneous coordinate “hiding” the division 
operation
•Vectors and points have “similar” representations, b ut different 
interpretation
•if the vector length is not important – homogeneous coordinate value 
can be ignored [one division is saved]
•stability of computation –
•we do not need to solve instability  

[ ]
( ) ( )

'
1 0: 1 : 1 : 0

e.g. , ,

where 0

TT

x yX Y v vε ε

ε

 ≅ − ≅ = ≅    

=

→

x x x
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Vectors and Points in Geometry

1 1
, : :

1

1
:

y yx x
a b

a b a b a b a b

yx z
x y z x y z

a a a a b
x y y x y y

yx z

b b b

a b

a ba b
w w

w w w w w w w w

aa a
A A A a a a

w w w w w
B B B b b b

bb b

w w w

w w

 
= = =        
 

 
 
    
    
 = = = =   
    
       
 
  

Projective extensions

A.B a . b a.b

i j k
i j k i j k

A.B

a
1

:a b x y z
a b

x y y

w w a a a
w w

b b b

 
 

× =        
 
  

i j k

b
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Vectors and Points in Geometry

Geometric product

( ) ( )
n

3

It can be seen

1 1

2 2

Result is a scalar and bivector in E

In the case of  E  the operator is equivalent to 

Extension to projective case is analogical

= + ∧ = + ∧ = − ∧

= + ∧ = −

∧ ×

AB A.B A B BA B.A B A A.B A B

A.B AB BA A B AB BA
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Geometric product

WOW !

It means that we do not need to use division 
operation !

Vectors and Points in Geometry

[ ][ ] [ ] [ ] [ ] [ ]

}{ [ ]

: : : : : :

1
:

a a a a a a

a b
a b

w w w w w w

w w
w w

= + × =

+ × = + ×

a b a . b a b

a.b a b a.b a b
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Vectors and Matrices

Vector – any vector in n-dimensional vector space V
can be represented as

x = x1v1 + x2v2 + …..+ xnvn

where {v1 ,v2 ,…,vn } is a basis vector of V

Notation
1

2

...

n

v

v

v

v

 
 
 =
 
 
 

v 1 2 ... nv v v v=   v
column row
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Vectors and Matrices

Matrix – square matrix  n = m

An,m = [aij]

Special cases 

m = 1 - column matrix – vector
(used in the right handed coordinate system)

n = 1   - row matrix - vector 

1,1 1,

, ,

...

: :

...

m

n m n m

a a

a a

 
 =  
 
 

A
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Vectors and Matrices

Algebraic rules
A + B = B + A
A + (B + C) = (A + B) + C
A + 0 = A
A + (-A) = 0
a(A + B) = aA + Ab
(a+b)A = aA + bA 
1 . A = A

Transpose of a matrix A is 
a matrix B = AT

where: bij = aij

Additional rules
(AT)T = A
A-1A = I
(A-1)T = (AT)-1 = A-T  (n x n) 
(aA)T = aAT

(A+B)T = AT + BT
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Vectors and Matrices

Matrix multiplication
C = A B

A = [aik ]      i = 1,…,n,   k = 1,…,p
B = [bkj ]      k = 1,…,p,   j = 1,…,m
C = [cij ]      i = 1,…,n,   j = 1,…,m

NOTE!
A B ≠ B A

1

p

ik ik kj
k

c a b
=

=∑

How to compute C?

B

A C

8/13/2010 9:55 AM No.slides 72 35

Vectors and Matrices

A(BC) = (AB)C a(BC) = (aB)C
A(B + C) = AB+ AC (A + B)C = AC+ BC
(AB)T = BTAT 

Block matrices

+ +     
=     + +     

A B E F A E B G A F B H

C D G H C E D G C F D H
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Lines and Line Segments

Lines in E2

two points define a line p

• implicit description

• parametric description

0

0T

a x b y d

d

+ + =

+ =a x

( )
0 1 0( ) ( )

, , r e s p . 0 , 1

t t

t t

= + −

∈ − ∞ ∞ ∈

x x x x

x0

x1 p
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Lines and Line Segments

Lines in E2

• two points define 
a line p

• 2 equations for 3 
parameters –
a, b, d

• linear homogeneous 
system, i.e. one 
parametric solution

1 1

2 2

1 1

2 2

0

0

1 0

1 0

a x b y d

a x b y d

a
x y

b
x y

d

+ + =
+ + =

 
     =    

     

x1

x2

p
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Lines and Line Segments

A point x as an 
intersection of two lines 
in E2

• system of linear 
equations must be 
solved

• numerical stability of 
a solution - intersection 
x collinearity

1 1 1

2 2 2

1 1 1

2 2 2

0

0

a x b y d

a x b y d

a b dx

a b dy

+ + =
+ + =

−    
=     −    

=A x b

x0

x1
p1

x3

x4
p2

x
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Points and Planes in E3

• A point x as an 
intersection of three 
planes in E3

• system of linear 
equations must be 
solved

• numerical stability 
of the solution
if |det A| < ε then 
“singular case”??
What is ε value ??

1 1 1 1

2 2 2 2

3 3 3 3

1 1 1 1

2 2 2 2

3 3 3 3

0

0

0

a x b y c z d

a x b y c z d

a x b y c z d

a b c x d

a b c y d

a b c z d

+ + + =
+ + + =
+ + + =

−    
     = −    
     −    

=A x b
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Points and Planes in E3

• Three points define a 
plane ρ

• Homogeneous system 
must be solved

• Non unique solution 

0

0T

a x b y c z d

d

+ + + =

+ =a x

1 1 1

2 2 2

3 3 3

1 1 1

2 2 2

3 3 3

0

0

0

1 0

1 0

1 0

ax ay az d

ax ay az d

ax ay az d

a
x y z

b
x y z

c
x y z

d

+ + + =
+ + + =
+ + + =

 
    
     =    
       

 

=Ax 0
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Points and Planes in E3

• A parametric form for the plane ρ

Triangle: 0 ≤ |u+v| ≤ 1 & 0 ≤ u,v ≤ 1

( ) ( )
( )

1 2 1 3 1( , )

, ,

u v u v

u v

= + − + −

∈ − ∞ ∞

x x x x x x

x1
x3

x2
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Interpolation

• Linear interpolation - formulation
– Parametric
– Implicit form

• Quadric/cubic interpolation – splines etc.
[not discussed here]

• Radial basis functions RBF - multidimensional

( ) ( ) ( )

( )
1

N

i i i
i

T

f f p

usually p d

λ
=

= − +

= +

∑x x x x

x a x
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Interpolation

( )
( )

11 1 1 1 1 1 1

1

1

1

2

... 1

: : : : : : : : :

... 1

... 0 0 0 0 0

: : : : : : : 0

... : : : : 0

1 1 1 0 0 0 0 0

where:

( ) lg .

n

n nn n n n n n

n

n

ij i j

f f x y z h

f f x y z h

x x a

b

z z c

d

f f

f r r r etc

λ

λ

     
     
     
     
     =     
     
     
     
     
     

= −

=

x x
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RBF Interpolation

Corrupted image 30%                                    Reconstructed image
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RBF Interpolation

Corrupted image 90%                          Reconstructed image
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Principle of Duality

• Any theorems remain true in E2 when we 
interchange words “point” and “line”, “lie on” and 
“pass through”, “join” and “intersection” etc.

• Points and planes are dual in E3 etc. 
(not points and lines!)

• It means that intersection computation of two 
lines and a line given by two points should be 
same if we use the principle of duality.
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Principle of Duality

• In E2

– a line p is given by two points 
(how to compute 3 coefficients [a,b,d]T of the line ax+by+d=0 ? )

– a point x as an intersection of two lines
• In E3

– a plane ρ is given by three points
(how to compute 4 coefficients [a,b,c,d]T of the plane 
ax+by+cz+d=0 ? )

– a point x as an intersection of three planes

Dual problems – but computations are not “symmetrical”
Stability and robustness?? 

WHAT IS WRONG ??

8/13/2010 9:55 AM No.slides 72 48

Principle of Duality

x

X
YX

y

w

a

D(p) B
A

b

d

0ax by d+ + =

w=1 d=1p=[a,b,d]T D(X)
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Computation in Projective Space

Intersection point x given 
by two lines p1=[a1,b1,d1]T

and p2=[a2,b2,d2]T

x = p1 x p2

[ ]

1 1 1

2 2 2

1 1 1

2 2 2

1 1 1

2 2 2

0

0

/ * 0

0

0

, ,
T

a X b Y d

a X b Y d

a x b y d w

a x b y d w

x y w

a b d

a b d

ξ

+ + =
+ + =

= − ≠

+ + =
+ + =

= =

 
=  

 

A X d

B x 0 x

B1 2 1 1 1

2 2 2

× d e t a b d

a b d

 
 =  
  

i j k

p p
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Computation in Projective Space
Lines in E2

• a line p = [a,b,d] T is defined 
by points
x1=[x1, y1, w1]T

x2=[x2, y2, w2]T

p = x1 x x2

• we do not need to solve linear equations 
and no division operation is needed!

• stability evaluation AFTER computation

x1

x2
p

1 2 1 1 1

2 2 2

× det x y w

x y w

 
 =  
  

i j k

x x
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Computation in Projective Space

[ ]

( )

1 2 1 1 1

2 2 2

1 2 1 1 1

2 2 2

× det

It means

× 0 det 0

T

T

x y w a b d

x y w

a b d

x y w

x y w

 
 = = 
  

 
 = = 
  

i j k

x x a

a x x
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Computation in Projective Space
In E2

• A line p can be determined by cross product of two 
points x1 and x2

• An intersection x point can be determined by cross 
product of two lines p1 and p2

• If x1 or x2 in homogeneous coordinates, e.g. wi ≠ 1 
no division is needed

How the E3 case is handled?
• A point is dual to a plane ρ
ρ=[a,b,c,d]T

• There is no “direct duality” for a line in E3
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Computation in Projective Space

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× ×
x y z w

x y z w

x y z w

 
 
 =
 
 
 

i j k l

x x x
• Cross product definition

• A plane ρ is determined 
as a cross product of 
three given points

Due to the duality
• An intersection point x of 

three planes is determined 
as a cross product of three 
given planes

0 0Tax by cz dw+ + + = =a x

1 1 1 1
1 2 3

2 2 2 2

3 3 3 3

× ×
a b c d

a b c d

a b c d

 
 
 =
 
 
 

i j k l

ρ ρ ρ
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Computation in Projective Space

• No division operation!

• An “intersection of parallel lines” can be 
computed - it leads to [x,y:0]T, resp. [x,y:ε]T

– a point in, resp.close to infinity 

• More robust computations in general
no IF clauses (conditions) are needed

• Substantial speed-up on CPU or GPU can be 
expected due to vector-vector operations 
support
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Computation in Projective Space

A line in E3

• parametric form

• as an intersection of 
two planes

• Plücker coordinates

( )
0 1 0( ) ( )

,

t t

t

= + −
∈ −∞ ∞

x x x x

x0

x1
p
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x1

Computation in Projective Space

Plücker coordinates

( ) ( )

0 1 1 0

41 42 43 23 31 12

2

2 2

, , , 1,2

××

T
i i i i i

T T

T T

x y z w i

tensor product matrix

l l l l l l

τ
τ τ τ

= =  

= − −

= =      

 +
 = + =
 
 

x

L x x x x

ω v

v ω ω ωv ω
q ω q

ω ω

x0

p

x

y

( ) ( )

[ ]

1 2 1 2:

:    sometimes as :

TT T

T TT T

 = − ×  

 
 

p x x x x

ω v ω v
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x1

Computation in Projective Space

Plücker coordinates
• a line given by two planes 

– due to DUALITY

( ) 2

41 42 43 23 31 12

0 1 1 0

×

, , , 1,2

T T

T T

T
i i i i i

l l l l l l

tensor product matrix

a b c d i

τ τ= +

= =      

= − −

= =  

ω v
q v

v

ω v

L a a a a

a

p

x

y

ρ1

ρ2
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Computation in Projective Space

• Geometric transformations
– points

( )1
1 2 1 2

' ? but
T−

=

× = ×

x' = Q x

p

Q x Q x Q x x

p
x2

x1

x’2

x’1

p’

1 2 1 1 1

2 2 2

× det x y w

x y w

 
 = =  
  

i j k

p x x

x

y
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x’1

Computation in Projective Space

• Translation
– distance given in E2

– distance given in P2

x1

1 0

' 0 1

0 0 1

A

B

 
 =  
  

x x

B

A
x

y

( )
0

' 0 , , 0

0 0

w a
a b

w b A B w
w w

w

 
  = = ≠      

x x

if A or B are fractions, we can avoid division ! 
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x’1

Computation in Projective Space

• Rotation

x1

cos sin 0

' sin cos 0

0 0 1

ϕ ϕ
ϕ ϕ

− 
 =  
  

x x

x

y
0

' 0

0 0

cos sin

A B

B A

C

A B

C C
ϕ ϕ

− 
 =  
  

= =

x x
φ
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Computation in Projective Space

• Window-Viewport

1 2

2 1

1 0 1 0

0 1 0 1

0 0 1 0 0 1

0 0

0 0

0 0 1

A A

A A

Wx Vx

Wy Vy

Vx Wx

Vy Wy

− −   
   = − = −   
      

∆ ∆ 
 = ∆ ∆ 
  

=

T T

S

Q T S T

VA

x

y
VB

View

WA

x

y
WB

Window

2 1

0 0

' 0 0 ' '

0 0

Vx Wy

Vy Wx

Wx Wy

∆ ∆ 
 = ∆ ∆ = 
 ∆ ∆ 

S Q T S T

No division operation needed !!
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Computation in Projective Space

Fundamental geometric transformations
– translation, rotation, reflection, shearing, scaling, 

projection from E3 to E2

– can be performed without division operation and if 
parameters are given as fractions, matrices can be 
easily modified for parameters given in homogeneous 
representation

No division operation needed !!
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v┴ cosφ v┴

w sinφ
φ

Computation in Projective Space

Rotation around general axis

T(v║┴)

n

v║

v┴
φ

T(v┴)

T(v)
v

( ) ( )
( )

cos 1 cos

sin 1

tensor product-matrixT

ϕ ϕ

ϕ

= + − ⊗

+ × =

⊗ =

T I n n

n v n

n n nn

w

T(v┴)= v║cosφ + w sinφ
T(v) = T(v║) + T(v┴)
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Interpolation

( )

( )

0 1 0

0 1 0

0 1 0 0 1 0

0 1 0 0 1 0

Linear parametrization

( ) ( ) ,

Non-linear (monotonous) parametrization

( ) ( ) ,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t t t

t t t

x t x x x t y t y y y t

z t z z z t w t w w w t

= + − ∈ −∞ ∞

= + − ∈ −∞ ∞
= + − = + −
= + − = + −

X X X X

x x x x

Y

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

0,00 1,00 2,00 3,00 4,00 5,00 6,00 7,00

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

0,0 0,2 0,4 0,6 0,8 1,0 1,2

• It means that we can interpolate using 
homogeneous coordinates without a need
of “normalization” to Ek !!

• Homogeneous coordinate w ≥ 0
• In  many algorithms, we need  

“monotonous” parameterization, only !
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Interpolation

( )

( )

0 1 0 2 0

0 1 0 2 0

0 1 0 2 0

0 1 0 2 0

0 1 0 2 0

Linear parametrization

( ) ( ) ( ) , ,

Non-linear (monotonous) parametrization

( ) ( ) ( ) , ,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) (

t u v u v

t u u u v

x t x x x u x x v

y t y y y u y y v

z t z z z u z z

= + − + − ∈ −∞ ∞

= + − + − ∈ −∞ ∞
= + − + −
= + − + −
= + − + −

X X X X X X

x x x x x x

0 1 0 2 0

)

( ) ( ) ( )

v

w t w w w u w w v= + − + −

•Homogeneous coordinate w ≥ 0
• In  many algorithms, we need  

“monotonous” parameterization, only !
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Barycentric coordinates

P1

x1

x

x3

P3

x2

P2

1 1 2 2 3 3

1 1 2 2 3 3

1 2 3

additional condition

1 0 1

i = 1,...,3

i

i
i

a X a X a X X

a Y a Y a Y Y

a a a a

P
a

P

+ + =
+ + =

+ + = ≤ ≤

=

Let us consider a triangle with vertices X1, X2, X3,
A position of any point X∈E2 can be expressed as

Linear system must be solved
If points x i are given as [xi, yi, zi: wi ]T and wi ≥ 0 

then x i must be “normalized”
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Barycentric coordinates

1 1 2 2 3 3 4

1 1 2 2 3 3 4

1 2 3 4

4 4

0

0

0

1,...,3 0i i

b X b X b X b X

b Y b Y b Y b Y

b b b b

b a b i b

+ + + =
+ + + =

+ + + =
= − = ≠

It can be modified to:

1
1 2 3

2
1 2 3

3

4

1 1 1 1

b
X X X X

b
Y Y Y Y

b

b

 
   
    =   
    

 

0

Rewriting 

[ ]

1 2 3 4

1 2 3

1 2 3

× ×

, , ,

, , ,

, , ,

1,1,1,1

T

T

T

T

b b b b

X X X X

Y Y Y Y

=

=   

=   

=   

=

b ξ η w

b

ξ

η

w
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Barycentric coordinates

1
1 2 3

2
1 2 3

3
1 2 3

4

b
x x x x

b
y y y y

b
w w w w

b

 
   
    =   
    

 

0
1 2 3 4

1 2 3

1 2 3

1 2 3

× ×

, , ,

, , ,

, , ,

, , ,

T

T

T

T

b b b b

x x x x

y y y y

w w w w

=

=   

=   

=   

=   

b ξ η w

b

ξ

η

w

if wi ≥ 1 
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Barycentric coordinates

if wi ≥ 0 

1 2 3

2 3 1

3 1 2

0 ( : ) 1

0 ( : ) 1

0 ( : ) 1

b w w w

b w w w

b w w w

≤ − ≤
≤ − ≤
≤ − ≤

It means that we can compute
barycentric coordinates without 
division operation

Simple modification for a position 
in the tetrahedron [4]

1 2 3 4

1 2 3

1 2 3

1 2 3

× ×

, , ,

, , ,

, , ,

, , ,

T

T

T

T

b b b b

x x x x

y y y y

w w w w

=

=   

=   

=   

=   

b ξ η w

b

ξ

η

w

8/13/2010 9:55 AM No.slides 72 70

Length, Area and Volume

Length, area and volume computation in projective space
if an element is given by points in homogeneous coordinates

[ ] [ ]

( )
1 2

1 2

× , , ,

:

T T

T

a b d a b

l w w

= = =

=

p x x p n

n n

[ ] [ ]

( )
1 2 3

1 2 3

× × , , , , ,

: 2

T T

T

a b c d a b c

S w w w

= = =

=

ρ x x x ρ n

n n

Line segment length

Triangle area
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Length, Area and Volume

[ ] [ ]

( )
1 2 3 4

1 2 3 4

× × × , , , , , , ,

: 6

T T

T

a b c d e a b c d

V w w w w

= = =

=

ρ x x x x ρ n

n n

Tetrahedron volume

General formula

( )

( )

1

_

1

: 1 ! k = number of end-points

: 1 !

k
T

k i
i

k

k i
T

i

Q k w

k Q w

=

=

 
= − 
 
 

 
= = − 

 
 

∏

∏

n n

n
n n

n n
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Intersection Computation in 
Projective Space

• Linear interpolation& 
parameterization 
very often used

• Intersection of a line 
and a plane

• Robustness 
problems if ATS →0

( )

[ ]

0 1 0

1 0

0

( ) ( ) ,

0 0

, ,

T

T

T

T

t t t

d ax by cz d

a b c

d
t

= + − ∈ −∞ ∞

+ = + + + =

= = −

+
= −

X X X X

A X

A S X X

A X

A S

x0

x1 p

??? How to avoid an instability ???

S
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Intersection Computation in 
Projective Space

• An intersection of a plane 
with a line in E2 can be 
computed efficiently [6]

• Comparison operations 
must be modified !!!

• Cyrus-Beck line clipping 
algorithm 10-25% faster

( )

[ ]

0 1 0

1 0

0

0

min

min min

( ) ( ) ,

0 0

, , ,

: 0 :

TEST

.....

* * ..... condition 0
w

T

T

T

T

T T
w

w w

w

t t t

ax by cz d

a b c d

t

t t

τ τ
τ τ τ

τ τ τ τ τ

= + − ∈ −∞ ∞

= + + + =

= = −

= −

= − =

= ≤ = −  

>
> ≥

x x x x

a x

a S X X

a x

a s

a x a s

t if then t t

if then

if then
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Intersection Computation in 
Projective Space

Line clipping in E2 algorithms
- Cohen-Sutherland
- Liang-Barsky
- Hodgman
- Skala – modification of 

Clip_L for line segments

xA

xB

p

x3
x2

x1x0

procedure CLIP_L; {details in [3]}
{ xA , xB – in homogeneous coordinates }
{ The EXIT ends the procedure }
{ input : xA , xB ; xA=[xA,yA,1]T p = [a,b,c]T }
begin
{1} p := xA x xB;  { ax+by+c = 0}
{2} for k:=0 to N-1 do { xk=[xk,yk,1]T }
{3} if pTxk ≥ 0 then c k:=1 

else ck:=0; 
{4} if c = [0000]T or c = [1111]T

then EXIT ;  
{5} i:= TAB1[c]; j:= TAB2[c];
{6} xA :=  p x ei ; xB :=  p x ej ;
{7} DRAW (xA; xB )       {ei – i-th edge }
end {CLIP_L};
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Intersection Computation in 
Projective Space

Iterative computations
– values are represented as fractions with floats
– exponents grow – need of “exponents normalization” 

- not available on current CPUs
- necessity of explicit CALL

– solution - see PLib for .NET [8]
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fragment texturing
& coloring

Cg / HLSL and GPU Computing

• GPU (Graphical Processing Unit) -optimized for matrix-vector, 
vector-vector operation – especially for [x,y,z,w]

• Native arithmetic operations with homogeneous coordinates –
without exponent “normalization”

• Programmable HW – parallel processing

primitive assembly
& rasterization

vertex
transformation

raster
operations

vertex connectivity

vertices

fragments
pixel positions

colored fragmentsPixel updates
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Cg / HLSL and GPU Computing

• 4D cross product can be implemented in Cg/HLSL 
on GPU (not optimal implementation) as:

float4 cross_4D(float4 x1, float4 x2, float4 x3) 
{ float4 a;

a.x=dot(x1.yzw, cross(x2.yzw, x3.yzw));
a.y=-dot(x1.xzw, cross(x2.xzw, x3.xzw));
a.z=dot(x1.xyw, cross(x2.xyw, x3.xyw));
a.w=-dot(x1.xyz, cross(x2.xyz, x3.xyz));
return a;

}
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Conclusion

• Fundamentals of computation in projective space have 
been introduced

• Proposed approach helps to improve robustness of 
algorithms, but it does not give the ultimate solution -
limited numerical precision

• Homogeneous coordinate w must be non-negative 
(simplification comparison operations)

• Comparison operations are a little bit complicated – but 
tests rely on separation functions – higher robustness

• Due to GPU and CPU architecture algorithms might be 
significantly faster even in SW implementation
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Conclusion
• A new data type for programming languages –

float_projective, double_projective should be 
considered 
– perhaps as a native representation
– it enables more robust numerical algorithms
– unfortunately increases a data bus traffic
– operation “exponent normalization” should be supported 

on CPU/GPU in HW – significantly slow in SW
– experimental library PLib is available [8]

• Geometry algebra applications in CG & CV ??
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