
ARTICLE IN PRESS

Computers & Graphics 32 (2008) 704–710
Contents lists available at ScienceDirect
Computers & Graphics
0097-84

doi:10.1

� Corr

E-m

URL
journal homepage: www.elsevier.com/locate/cag
Technical Section
Space and time efficient isosurface extraction
Slavomir Petrik �, Vaclav Skala

Faculty of Applied Sciences, Department of Computer Science and Engineering, Center of Computer Graphics and Visualization, University of West Bohemia, Univerzitni 8,

CZ 306 14 Plzen, Czech Republic
a r t i c l e i n f o

Article history:

Received 29 February 2008

Received in revised form

17 September 2008

Accepted 21 September 2008

Keywords:

Isosurface extraction

Space efficiency

Data structure
93/$ - see front matter & 2008 Elsevier Ltd. A

016/j.cag.2008.09.009

esponding author. Tel.: +420 37763 2401; fax

ail address: spetrik@kiv.zcu.cz (S. Petrik).

: http://herakles.zcu.cz/people (S. Petrik).
a b s t r a c t

The constantly growing size of datasets over the past two decades has put new requirements on the

space and time efficiency of isosurface extraction methods. We present a novel approach to fast

isosurface extraction, which significantly shortens the preprocessing time and lowers the space

requirements. A new computationally inexpensive technique is proposed for transformation of the

original volume data into an alternative 1D space. A proper space efficient data structure, built over the

transformed data, is used for isosurface extraction. The relative simplicity of the proposed method

allows its easy implementation. We demonstrate the low space and time requirements of the proposed

approach by a comparison with current state-of-the-art methods applied to real-world datasets.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Isosurfaces are a standard tool for the investigation of
volumetric scalar datasets. The constantly growing size of the
datasets in recent decades has put new requirements on the time
and space efficiency of isosurface extraction methods.

Although current state-of-the-art isosurface extraction algo-
rithms achieve OðNÞ space complexity (where N is the total
number of cells in a dataset), their run-time space requirements
differ significantly. For example, the Interval tree method [1]
requires approximately 2 GB of memory for a 5123 floating-point
dataset. Such large space requirements render many of the
existing methods for isosurface extraction unusable on work-
station-class computers with limited memory resources.

We present a new method for isosurface extraction. The major
contributions of this work are the low space and time require-
ments of the proposed method. Most of the existing techniques
use the minimum and maximum values of each cell to identify
active cells–cells intersected by the isosurface. We propose a new
transformation of a cell’s min–max interval into an alternative
1D space. A proper space efficient data structure, constructed
over the transformed data, is used during active cell search. Our
algorithm outperforms or is comparable with existing methods in
all three observed aspects: preprocessing time, data structure size,
and performance during the search for active cells.

The transformation of cells’ min–max intervals into an
alternative 1D space is described in Section 3.1 and isosurface
extraction over such 1D space (Section 3.2). Finally, we show
ll rights reserved.

: +420 37763 2402
comparisons of the method proposed with four other isosurface
extraction methods in Section 6. The relative simplicity of the
proposed method allows its implementation with reasonably little
effort. We believe that the algorithm presented offers a valuable
solution to a wider family of range-search applications.
2. Related work

Early geometric-space techniques for isosurface extraction
marched through all the cells of a dataset during the search for
active cells. A simple method is the Marching Cubes (MC)
algorithm, introduced by Lorensen and Cline [2]. A number of
solutions have been proposed to resolve the problem of the
internal cell ambiguities of the original MC algorithm [3–5].
Wilhelms and van Gelder proposed octree spatial subdivision [6]
to accelerate the search for active cells. Surface growing
techniques [7] use a set of initial cells, from which all isosurface
components can be reconstructed by tracing the isosurface into
the neighboring cells.

On the other hand, the value-space methods use only the
minimum and maximum value to represent the cells. In the Span
Space [8] every cell with minimum value a, and maximum value b,
is represented as a point ða; bÞ on the plane (Fig. 1a). Let us assume
that there are N cells in a dataset, K of which are intersected
by an isosurface. The NOISE method [8] allows for active cells
search in Oð

ffiffiffiffi
N
p
þ KÞ time, with the aid of the kd-tree subdivision

of the Span Space. The ISSUE method [9] uses an L� L lattice
subdivision of the Span Space, and enhances the search time to
OðlogðN=LÞ þ

ffiffiffiffi
N
p

=Lþ KÞ.
The Interval tree technique [1] guarantees the worst case

optimal run-time efficiency OðK þ log NÞ. The cells are grouped at
the nodes of a balanced binary tree according to their minimum–

www.sciencedirect.com/science/journal/cag
www.elsevier.com/locate/cag
dx.doi.org/10.1016/j.cag.2008.09.009
mailto:spetrik@kiv.zcu.cz
http://herakles.zcu.cz/people

ARTICLE IN PRESS

minimum

m
ax

im
um

isovalue

min
= m

ax

a

isovalue * 2 u-axis

v-
ax

is

v > | u - isovalue * 2|

u
v

= maximum + minimum
maximum - minimum

b

Fig. 1. The Span Space (a) and the uv-space (b). Dark-shaded regions contain active

cells.

S. Petrik, V. Skala / Computers & Graphics 32 (2008) 704–710 705
maximum interval and the discriminant value computed for each
tree node.

Waters et al. [10] proposed Fixed-sized buckets to organize
the list of cells. First, all the cells of the dataset are sorted by
their minimum value and divided into buckets of the same size B.
Finally, the cells are sorted bucketwise by the maximum value.
The active cells can be extracted in OðK þ BÞ time.

This paragraph discusses the space requirements of the value-
space methods described above. Let us assume that each of N cells
of the dataset is represented by its ID (c bytes), minimum (d bytes),
and maximum (d bytes) value. The NOISE and Fixed-sized buckets
techniques store the (ID, min, max) record once for each cell. Thus,
the run-time space requirements of the NOISE and Fixed-sized
buckets are ðc þ 2dÞN. The ISSUE and Interval tree use two records
for each cell: (min, ID) and (max, ID). Therefore, the ISSUE and
Interval tree require storage space equal to ð2c þ 2dÞN. If the cell IDs
are represented by 32-bit integers and min–max values by 32-bit
floats, then the ISSUE and Interval tree applied to a 5123 floating-
point dataset require approximately 2 GB of memory, while the
proposed method lowers this requirement to about one-fourth.

Bordoloi and Shen introduced the space-efficient method [11],
which first transforms the cells’ extremal values into the 2D uv-
space (where u ¼maximumþminimum and v ¼maximum�
minimum, Fig. 1b) and then applies the quantization to divide
the uv-space into a finite set of M � L buckets. The method
requires the storage space for N cell IDs and MLþ Lþ 1
quantization levels, where MLþ Lþ 1 is typically equal to
N=100. Depending on the level of quantization, a certain amount
of false positives can occur during the search for active cells.

Another possible enhancement of space efficiency can be
achieved through dimensionality reduction methods such as
principal component analysis (PCA) [12]. However, transformation
of the maxima and minima values using PCA faces the problems of
a highly inaccurate search for cells and long preprocessing times.

The method described in this paper is based on a simple
transformation of the {minimum, maximum} information of each
cell into a 1D space. The proposed transformation lowers the worst-
case space requirement to 2N words. Construction of the search
structure over 1D data requires only one initial OðN log NÞ sorting
step, which shortens and simplifies the preprocessing compared to
the existing methods. Our algorithm achieves the near-optimal
search times, while the number of false positives during the active
cell search decreases significantly compared to [11].

Once identified, the active cell IDs are transferred into our
point-based visualization system. A range of point-based techni-
ques has been developed for isosurface rendering [13–19]. We
have adopted a technique similar to iso-splatting [15] for
interactive focus+context [20] visualization accelerated by mod-
ern GPU hardware. For high-quality isosurface rendering we use
the method of Brentzen and Christensen [13].
3. Search structure

Many existing isosurface extraction algorithms build a data
structure within which the minimum and maximum values of cells
are stored separately. However, the storage space required by those
algorithms may grow up to four times the size of the original
dataset. Thus, the first step of the proposed method is to transform
the {minimum, maximum} pairs of cells into the space-efficient 1D
form (Section 3.1). At run-time, the search for active cells is
performed in the 1D space, with the aid of the simple data structure
described. The search algorithm is explained in Section 3.2.

3.1. Transformation

The main idea of the transformation is to convert the
{minimum, maximum} pair of each cell into the parameter t

(denoted tc for cell c):

fcmin; cmaxg ! tc ; tc 2 ½0;1� (1)

The transformation (Eq. (1)) is done by quantization of the max-
axis of the Span Space [8] to the M quantization intervals. M is
the parameter to our method and its choice is explained later in
Section 4. After the max-axis quantization the Span Space becomes
a finite set of parallel horizontal lines. Parameter t from the
transformation, is equal to 0 at the beginning of the bottom-most
line, and is equal to 1 at the right end of the top-most line. The
t-interval per one max-axis quantization interval is tint ¼ 1=M.

Considering the quantization described in the previous para-
graph, the parameter tc of a cell c is computed as follows:

tc ¼ ti þ t0 (2)

where

ti ¼
cmax �maxmin

maxmax �maxmin

�
tint

� �
� tint (3)

t0 ¼
cmin �minmin

minmax �minmin
� tint (4)

Such a 1D index is used for a fast construction of the search
structure and for the identification of active cells. As can be seen, the
transformation does not handle both extremal values in a symmetric
way (only the max values are quantized), which results in the small
search error rates of the method presented, see Section 6.2.

Once the parameter t is computed for each cell of a dataset, the
cells are sorted by t in increasing order. Finally, a list of records is
constructed. Each record contains parameter t and a list of IDs of
the cells, which have this value of parameter t.

Since the list of cells is sorted by the t parameter, the records can
be created by simply traversing the list of cells and grouping the cells
with the same parameter t into the same record. An index of the first
record on each max-axis quantization interval is placed into a simple
search dictionary which helps during the active cell search. Note, that
Eqs. (2)–(4) can be implemented very efficiently using bit shifts if the
M, maxmax �maxmin and minmax �minmin are powers of 2.

3.2. Extraction

The goal of the extraction phase is to identify all active cells.
For a supplied isovalue q, a cell c is defined to be active if:
cminpqpcmax.

Active cells for the supplied isovalue are collected by traversing
the max-axis quantization intervals in the top–bottom order using
two nested loops. The outer loop traverses the items of the search
dictionary to determine the index of the first record on the current
quantization interval. The inner loop collects the active cells
from the records in the current quantization interval, until the

ARTICLE IN PRESS

S. Petrik, V. Skala / Computers & Graphics 32 (2008) 704–710706
condition tcptlimit holds. The value of tlimit for the n-th quantiza-
tion interval is computed as follows:

tlimit ¼ ðn � tintÞ þ
q�minmin

minmax �minmin
� tint (5)

The index of the last traversed quantization interval, ‘‘final’’, is
determined by the selected isovalue q:

final ¼
q�maxmin

maxmax �maxmin

�
tint

� �
(6)

In the final quantization interval we are unable to decide
whether the original maximum value of a cell is above or below
isovalue q (i.e. whether a cell is active or not), which may
introduce a small positive search error.

For small changes of isovalue q, it is often efficient to extract
the active cells incrementally. For this purpose, we keep list L of the
last visited record on each quantization interval. The intervals
between the topmost one and the finalnew are marched from the
record with index stored in L, activating the cells until the first
inactive record is met. Cells from all the quantization intervals
between finalold and finalnew are deactivated.

Similarly, when the isovalue is decreased to qnew, the
quantization intervals are traversed backwards from the position
stored in L, deactivating the cells passed along the way to the new
value of limitn. Additionally, full extraction has to be done for the
quantization intervals finalold to finalnew.
4. Number of quantization intervals

As stated in Section 3.1, the number of max-axis quantization
intervals is an optional parameter to the method presented and
depends on the data type of the processed dataset.

For datasets with byte data, it is sufficient to quantize the max-
axis of the Span Space into 256 intervals to recognize clearly each
possible maximum value. In other words, the R2

! R transfor-
mation (Eq. (1)) does not quantize the maximum values of cells
(i.e. it preserves the original {minimum, maximum} information),
and the active cells can be extracted with zero search error. The
same is the situation for 2-byte integer datasets and the search
structure with 65 536 quantization intervals.

The number of quantization intervals for the floating-point
data has been determined experimentally. The relationship bet-
ween the chosen number of quantization intervals and the search
error has been observed. In all performed measurements, the
search error drops under 0.3% for more than 216 quantization
intervals, regardless of the input dataset (Fig. 5). Thus, for floating-
point data we use 216 quantization intervals. Comparison of the
search error with the method [11] is provided in Section 6.2.
Table 1
The space requirements of the tested methods

Method Space requirement Space

(words) complexity

ISSUE 4N + kd-trees at min ¼ max OðNÞ

Interval tree 4N + tree overhead OðH þ IÞ

Fixed-sized buckets 3N þmin dictionary OðNÞ

Quantized search N þMLþM þ 1 OðNÞ

Our method 2Na+search dictionary OðNÞ

N ¼ # of cells, H ¼ # of interval tree nodes, I ¼ # of distinct intervals in data,

M; L ¼ # of quantization levels.
a The worst case.
5. Optimization

For floating-point datasets the number of different t parameters
of the transformed cells can be very large, which may results in a
large number of records. In the worst case, there is one record
created for each cell. Therefore, we employ user-selected level of the
t quantization Dt. Mathematically, the cells of any record R ¼

ðc0; . . . ; cnÞ satisfy conditions: tc0
ptc1

p � � �ptcn and jtcn � tc0
joDt.

All cells of R are further represented by the parameter tR ¼ tc0
.

Let us assume two records R1 and R2 on the same quantization
interval, so that tR1

otlimitotR2
. Because each cell of R2 has its

t4tR2
, R2 cannot contain any active cells with totlimit . Therefore,

collecting the active cells from records with totlimit guarantees
that all active cells will be found when quantization is applied,
avoiding cracks in the isosurface.
6. Comparisons and results

We have implemented the ISSUE [9], Interval tree [1], Fixed-
sized buckets [10], and Quantized search [11] algorithms to
compare the method proposed against existing methods. The
Span-triangle method [21] was omitted from the tests because it
is aimed only to quantized data (byte or 16-bit integer). First, the
formal space and time complexities of the presented method are
discussed, followed by the results of the tests.
6.1. Formal complexity analysis

The construction of our data structure involves three steps. The
transformation of {minimum, maximum} values into t parameter
requires O(N) time, while the sorting pass requires OðN log NÞ time.
The creation of records is OðNÞ step. Thus, construction of our
search structure can be done in OðN log NÞ time.

The most time-consuming parts of the construction phase are
the sorting steps. The ISSUE method [9] requires two sorting
passes for each non-empty lattice element (row and column data
structures). The Interval tree method [1] needs to sort AL and DR

lists of cells within each tree node. The Fixed-sized buckets
method [10] sorts all cells by minimum value in OðN log NÞ time,
and then resorts the cells bucketwise by maximum value in
OðB log BÞ time for each of the N=Bþ 1 buckets (where B is the
number of cells per bucket). In the Quantized search method [11]
all cells are first sorted by their u value, then the u axis is
quantized into M intervals and cells are sorted for the second time
within each u-interval.

Since there is only one initial sorting step in the proposed
method, the construction time is significantly shorter when
compared to the current state-of-the-art algorithms for active
cell identification. This conclusion is supported by the measure-
ments presented in Section 6.2.

At run-time, active cells are identified by traversing the list of
records. In the worst-case scenario, there is one record created for
each cell. In such a case, we need to visit K + E records, to extract K

active cells. For each record visited, one comparison of its tR

parameter is performed. For each traversed quantization interval
one check of the search dictionary and one failed tR comparison are
performed. E is the search error introduced by the small amount of
records visited in the last quantization interval, which do not
contain active cells. Because E is very small in practice (under 0.3%),
the run-time complexity of our search algorithm is OðKÞ.

In a typical case, many records contain more than one cell.
Therefore, to extract K active cells we usually need far less than K

comparisons, which shortens the search process.
Finally, the space requirements of the proposed method are

discussed. For comparison purposes, Table 1 summarizes the final

ARTICLE IN PRESS

S. Petrik, V. Skala / Computers & Graphics 32 (2008) 704–710 707
space requirements of all the tested methods in the number
of words. The Fixed-sized buckets method [10] stores the (ID, min,
max) ¼ (c bytes, d bytes, d bytes) record once for each cell.
Assuming that c ¼ 4 bytes (one word) and d ¼ 4 bytes (one word),
we can say that the space requirements of [10] are 3N words. As
shown in Table 1, the reported space complexity of the tested
methods is usually OðNÞ; however, their run-time space require-
ment ranges from 2N to 4N.

Because our method stores the ID number and t parameter
once for each cell, the temporal space required by our method is
Fig. 3. Comparison of the size of the final data structures. Only the Quantized search ach

twice as long construction time (Fig. 2) and higher search error.

Fig. 2. Comparison of the construction times. As predicted by the analysis of construc

times of all tested methods.

Table 2
Summary of datasets used during tests

Dataset Resolution Description

Skull 256� 256� 256 Hexahedral grid, byte

CT-head 256� 256� 113 Hexahedral grid, 16-bit integer

FiveJets 128� 128� 128 Hexahedral grid, 32-bit float

TeraShake 750� 375� 100 Hexahedral grid, 32-bit float

Isabel 500� 500� 100 Hexahedral grid, 32-bit float

Vertebra 512� 512� 512 Hexahedral grid, 16-bit integer

X2
2Y2 512� 512� 512 Hexahedral grid, 32-bit float
2N words. However, due to the bucketization of cells into records,
the final space requirements of the proposed method are between
1N and 2N, which is competitive with the method of Bordoloi and
Shen [11] (see results in Section 6.2).

There is also a small space required for the search dictionary,
which contains one 4-byte integer for each quantization interval.
Thus, the space allocated for the search dictionary is 256 � 4-bytes
¼ 1 kB for byte data, and 256 kB for 16-bit integer and floating-
point datasets.
6.2. Tests

The analyses from Section 6.1 are supported by the results of
measurements. Table 2 summarizes seven datasets used during
tests. The tests for Vertebra and X2

2Y2 datasets were done on the
64-bit Intel processor and 4 GB of RAM. The tests for all other
datasets were done on a desktop PC with Intel 3.2 GHz processor,
2 GB of RAM and ATI FireGL V5200 graphics adapter.

Fig. 2 provides a comparison of the construction time of the
presented data structure versus four tested methods. For testing
purposes, the number of quantization intervals for our method
ieves size of the data structure comparable to our method, but at the cost of almost

tion complexity, the search structure proposed achieves the shortest construction

ARTICLE IN PRESS

Fig. 4. Comparison of the search times. The plots show that the search times of our method are comparable with Quantized search with M ¼ 2000 and L ¼ 200 quantization

levels. As mentioned in Section 6.1 the run-time complexity of our proposed method is OðKÞ.

S. Petrik, V. Skala / Computers & Graphics 32 (2008) 704–710708

ARTICLE IN PRESS

Fig. 5. Plot of the search error versus number of quantization intervals for floating-

point datasets. The results show that the search error falls below 0.3% for search

structure with more than 216 quantization intervals, regardless of the input

dataset.

Table 3
Comparison of the search error for the Quantized search and our method

Dataset/isovalue Quantized search (%) Our method (%)

M ¼ 500, M ¼ 2000, M ¼ 4000,

L ¼ 50, L ¼ 200, L ¼ 400

FiveJets/253947.5 1.81 0.86 0.97 0.025

TeraShake/0.015 6.25 3.05 1.25 0.04

TeraShake/0.08 5.29 4.95 4.26 0.05

Isabel/16.3 1.63 0.53 0.48 0.18

Isabel/25.6 5.44 1.57 1.25 0.21

X2
2Y2=3:5 3.61 2.77 1.01 0.17

X2
2Y2=4:1 2.81 2.01 1.32 0.31

S. Petrik, V. Skala / Computers & Graphics 32 (2008) 704–710 709
has been determined according to the data type of a dataset
(Section 4). For the Fixed-sized buckets [10] the fixed bucket size
of 8192 cells has been used as recommended by the authors of the
method. For the Quantized search the ðM; LÞ ¼ (2000,200) quanti-
zation levels were constructed, because at this setup it achieves
the run-time performance similar to our method (see Fig. 4).
As predicted by the analysis of the construction complexity, our
search structure achieves the shortest construction times of all
tested methods. Construction times provided by Fig. 2 include
creation of the temporary and final data structure without data
loading.

Fig. 3 compares the size of the final data structures. Because
we do not compress the cell IDs, the size of our search structure
is always greater than 1N words. We need additional space
to store the tR parameter of each record, and the space for the
search dictionary. Thus, the total space required by our method
is between 1N and 2N words for the tested datasets. Only
the Quantized search [11] achieves a comparable size of
data structure. However, our method achieves much better
construction times than the Quantized search and lower search
error.

Next, the measurements of the search times are provided. The
search times of the presented method are compared against the
Interval tree and the Quantized search with three different setups
of quantization levels. The Interval tree method has been chosen
because of its reported near-optimal search time OðK þ log NÞ,
where K is the total number of active cells. The Quantized search
has been included into the measurements because, as well as the
method presented, it uses quantization of the data to shorten the
search time. For each dataset, 1000 isovalues from the value range
of the data were randomly chosen. For each chosen isovalue, the
average search time for 100 full extraction queries was recorded.

Fig. 4 shows that our method outperforms the Interval tree. In
fact, the search times of our method are comparable to those of a
Quantized search with M ¼ 2000 and L ¼ 200 quantization levels.
However, as will be shown later in this section, the search error of
the Quantized search for ðM; LÞ ¼ (2000, 200) is significantly
higher when compared with our method.

Note that the authors of the Quantized search method [11] do
not provide any specific recommendation for the optimal setup
of M and L parameters, while the value of the optional parameter
in our method (the number of max-axis quantization intervals)
is exactly given by the data type of the processed dataset
(see Section 4).

In the following paragraphs, the search error of our method
is discussed. The search error of the method presented is
introduced by the quantization of the original maximum values
of the cells during the transformation (Section 3.1). Therefore,
on the last traversed quantization interval final, we are unable
to decide whether the original maximum value of a cell was
above or below the user-specified isovalue. Fig. 5 shows that
the search error decreases with an increasing number of quanti-
zation intervals. We used three floating-point datasets with a
different value range. For all three datasets, the search structures
with 210–219 quantization intervals were constructed. For each
constructed data structure, the average search error for 200
full extraction queries (with random isovalues from the value
range of the data) was recorded. The results indicate that the
average search error remains below 0.3% for a search structure
with more than 216 quantization intervals, regardless of the input
dataset.

Finally, Table 3 provides exact measurements of search error
for floating-point datasets and selected isovalues. Note that
the search error of our method is zero for byte and 16-bit
datasets, because each possible maximum value is covered by one
quantization interval; thus, there is no quantization of the input
data at all. The search error of the Quantized search method has
been measured for various quantization levels ranging from
ðM; LÞ ¼ ð500;50Þ to (4000, 400). As can be seen, our method
achieves much lower search error, even compared to the
Quantized search with M ¼ 4000 and L ¼ 400 (Fig. 6).
7. Conclusions and future work

We have presented a novel space efficient method for isosur-
face extraction. The core of the method is a novel transformation
of the original volume data into an alternative 1D space. A simple
data structure, built over transformed 1D data, is used to identify
active cells during isosurface extraction.

We have shown that the data structure presented achieves a
lower size than the space efficient method created by Bordoloi
and Shen [11]. Moreover, the method presented requires shorter
construction time than the existing state-of-the-art techniques,
while achieving near-optimal search times and smaller search
errors.

The space and time efficiency of the method presented is a
valuable benefit for isosurface extraction especially today, when
the size of the datasets is growing steeply. Moreover, the
generality of our method offers an attractive solution for a wider
range of interval-search problems.

There are many possible directions for future work. We are
developing an extension of the method presented for time-
varying datasets.

ARTICLE IN PRESS

Fig. 6. Isosurfaces extracted using the method presented. (a) CT-head dataset, red isovalue ¼ 1879, transparent isovalue ¼ 850. (b) Skull dataset, isovalue ¼ 51. (c)

Vertebra, isovalue ¼ 1000. (d) FiveJets dataset, red isovalue ¼ 254 052, transparent isovalue ¼ 251 200. (e) TeraShake dataset (seismic wave velocity � isovalue ¼ 0.052,

timestep 80). (f) Isabel dataset (wind velocity magnitude isovalue ¼ 22, timestep 4).

S. Petrik, V. Skala / Computers & Graphics 32 (2008) 704–710710
Acknowledgments

This work has been supported by the project VIRTUAL no. 2C
06002 Ministry of Education of the Czech Republic. Skull and
Vertebra datasets were downloaded from www.volvis.org. FiveJets
dataset is from Time-Varying Volume Data Repository of UC Davis.
CT-head and MR-brain datasets are from Stanford Volume Data
Archive. TeraShake and Isabel datasets were provided by the San
Diego Supercomputer Center. X2

2Y2 dataset has been generated
at the Center of Computer Graphics and Visualization at
University of West Bohemia, Czech Republic. Detailed information
can be found at http://herakles.zcu.cz/projects/. Authors would
also like to thank their colleagues for consultations and com-
ments.

References

[1] Cignoni P, Marino P, Montani C, Puppo E, Scopigno R. Speeding Up Isosurface
Extraction Using Interval Trees. IEEE Trans. Visualization and Computer
Graphics 1997;3(2):158–70.

[2] Lorensen WE, Cline HE. Marching Cubes: a high resolution 3D surface
construction algorithm. In: Proceedings of the SIGGRAPH, 1987. p. 163–69.

[3] Cignoni P, Ganovelli F, Montani C, Scopigno R. Reconstruction of topologically
correct and adaptive trilinear isosurfaces. Computers & Graphics
2000;24(3):399–418.

[4] Montani C, Scateni R, Scopigno R. A modified look-up table for implicit
disambiguation of Marching Cubes. The Visual Computer 1994;10(6):353–5.

[5] Schaefer S, Warren J. Dual Marching Cubes: primal contouring of dual grids.
In: Proceedings of the Pacific graphics, 2004. p. 70–6.

[6] Wilhelms J, van Gelder A. Octrees for faster isosurface generation. ACM
Transactions on Graphics 1992;11(3):201–27.
[7] van Kreveld MJ, van Oostrum R, Bajaj CL, Pascucci V, Schikore D. Contour trees
and small seed sets for isosurface traversal. In: Proceedings of the symposium
on computational geometry, 1997. p. 212–20.

[8] Livnat Y, Shen HW, Johnson CR. A near optimal isosurface extraction
algorithm using the span space. IEEE Transactions on Visualization and
Computer Graphics 1996;2(1):73–84.

[9] Shen HW, Hansen CD, Livnat Y, Johnson CR. Isosurfacing in span space with
utmost efficiency (ISSUE). In: Proceedings of the IEEE visualization, 1996.
p. 287–94.

[10] Waters KW, Co CS, Joy KI. Isosurface extraction using fixed-sized buckets. In:
Proceedings of the EuroVis, 2005. p. 207–14.

[11] Bordoloi U, Shen HW. Space efficient fast isosurface extraction for large
datasets. In: Proceedings of the IEEE visualization, 2003. p. 201–8.

[12] Jolliffe IT. Principal component analysis. New York: Springer; 2002.
[13] Brentzen JA, Christensen N. Hardware accelerated point rendering of

isosurfaces. In: Proceedings of the WSCG, 2003.
[14] Cline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC. Two algorithms for

the three-dimensional reconstruction of tomograms. Medical Physics
1988;15(3):320–7.

[15] Co CS, Hamann B, Joy KI. Iso-splatting: a point-based alternative to isosurface
visualization. In: Proceedings of the Pacific graphics, 2003. p. 325–34.

[16] Grossman JP, Dally WJ. Point sample rendering. In: Proceedings of the
rendering techniques (Eurographics), 1998. p. 181–92.

[17] Levoy M, Whitted T. The use of points as display primitives. Technical Report
85-022, Computer Science Department, University of North Carolina at
Chapel Hill; 1985.

[18] Livnat Y, Tricoche X. Interactive point-based isosurface extraction. In:
Proceedings of the IEEE visualization, 2004. p. 457–64.

[19] Rusinkiewicz S, Levoy M. QSplat: a multiresolution point rendering system for
large meshes. In: Proceedings of the SIGGRAPH, 2000. p. 343–52.

[20] Wang L, Zhao Y, Mueller K, Kaufman A. The magic volume lens: an interactive
focus+context technique for volume rendering. In: Proceedings of the IEEE
visualization, 2005. p. 367–74.

[21] von Rymon-Lipinski B, Hanssen N, Jansen T, Ritter L, Erwin K. Efficient point-
based isosurface exploration using the span-triangle. In: Proceedings of the
IEEE visualization, 2004. p. 441–8.

http://herakles.zcu.cz/projects/

	Space and time efficient isosurface extraction
	Introduction
	Related work
	Search structure
	Transformation
	Extraction

	Number of quantization intervals
	Optimization
	Comparisons and results
	Formal complexity analysis
	Tests

	Conclusions and future work
	Acknowledgments
	References

