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Abstract: This paper presents an adaptive method for polygonisation of implicit surfaces. The 
method is based on the shape of triangles and the accuracy of resulting approximation. The main 
advantages of the triangulation presented are simplicity and the stable features that can be used 
for the next expansion. The presented algorithm is based on the surface tracking scheme, and it is 
compared with other algorithms that are based on the similar principle, such as the Marching 
cubes and the Marching triangles algorithms. Moreover, the technique for detection of more 
disjoint implicit surfaces in a defined area is also presented. The algorithm is not limited to a 
given polygonisation method, but then its use is possible for all other surface approaches that 
need a starting point at the beginning. 
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1 Introduction 
Implicit surfaces seem to be one of the most appealing 
concepts for building complex shapes and surfaces. They 
have become widely used in several applications in 
computer graphics and visualisation. 

An implicit surface is mathematically defined as a set of 
points in space x that satisfy the equation f(x) = 0. Thus, 
visualising implicit surfaces typically consists in finding the 
zero set of f, which may be performed either by 
polygonising the surface or by direct ray tracing. There are 
two different definitions of implicit surfaces. The first one 
(Bloomenthal, 1994, 1995 ) defines an implicit object as 
f(x) < 0 and the second one, F-rep (Hyperfun: Language for 
F-Rep Geometric Modeling, http://cis.k.hosei.ac.jp/~F-rep/; 
Pasko et al., 2000; Ohtake, Belyaev and Pasko, 2002), 
defines it as f(x) ≥ 0. In our implementation, we use the F-
rep definition of implicit objects. 

Existing polygonisation techniques may be classified 
into three categories. Spatial sampling techniques that 
regularly or adaptively sample the space to find the cells 
that straddle the implicit surface (Bloomenthal, 1994; 
Bloomenthal et al., 1997). Surface tracking approaches (also 
known as continuation methods) iteratively create a 

triangulation from a seed element by Marching along the 
surface (Bloomenthal, 1994; Hartmann, 1998; Akkouche 
and Galin, 2001; Karkanis and Stewart, 2001; Triquet, 
Meseure and Chaillou, 2001; Čermák and Skala, 2002a-c; 
Araujo and Jorge, 2004). Surface fitting techniques 
progressively adapt and deform an initial mesh which 
conver the implicit surface, (Ohtake, Belyaev and Pasko, 
2002). The algorithm described in Overveld and Wyvill 
(2004) uses a sphere object at the beginning and next 
applies a series of deformations to its triangulation to 
transform it into the required surface. 

2 Data structures 
The presented algorithm uses only the standard data 
structures used in computer graphics. The main data 
structure is an edge that is used as a basic building block for 
polygonisation. If a triangle’s edge lies on the triangulation 
border, it is contained in the Active Edges List (AEL) and it 
is called as an active edge. Each point, which is contained in 
an active edge, contains two pointers to its left and right 
active edge (left and right directions are in active edges’ 
orientation). 
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3 Principle of the algorithm 

Our algorithm is based on the surface tracking scheme, and 
therefore there are several limitations. A starting point must 
be determined and only one separated implicit surface is 
polygonised for such point. Several disjoint surfaces can be 
polygonised from a starting point for each of them. 

The whole algorithm consists of the following steps: 

1 Initialise the polygonisation: 
a Find the starting point p0 and create the first 

triangle T0. 
b Include the edges (e0, e1, e2,) of the first triangle 

T0 into the AEL, see Figure 1. 

2 Polygonise the first active edge e from the AEL. 

3 Update the AEL; delete the currently polygonised active 
edge e and include the new generated active edge/s at 
the end of the list. 

4 If the AEL is not empty return to step 2. 

Figure 1 The first triangle 

 

4 Initialising the polygonisation 

A first triangle has to be created at the beginning of the 
polygonisation. The first triangle is assumed to lie near a 
tangent plane of the starting point p0. Let such point p0 
exists then the algorithm is as follows: 

1 Determine the normal vector n =  (nx, ny, nz) in the 
starting point p0, see Figure 1. 

2 Determine the tangent vector t as in Hartmann (1998). 
If (nx > 0.5) or (ny > 0.5) then t = (ny, –nx, 0); else t = (–
nz, 0, nx). 

3 Use the tangent vector t as a fictive active edge and use 
the Edge Spinning (ES) algorithm (described below) for 
computation coordinates of the second point p1. The 
pair of points (p0, p1) forms the first edge e0. 

4 Polygonise the first edge e0 by ES algorithm for getting 
the third point p2. Points (p0, p1, p2) and edges 
(e0, e1, e2) form the first triangle T0. 

5 Edge spinning 
The main goal of this work is a numerical stability of a 
surface point coordinates’ computation for objects defined 
by implicit functions. In general, a surface vertex position is 

searched in direction of a gradient vector ∇f of an implicit 
function f, as in Hartmann (1998). In many cases, the 
computation of gradient of the function f is influenced by a 
major error that depends upon modelling techniques used 
(Hyperfun: Language for F-Rep Geometric Modeling, 
http://cis.k.hosei.ac.jp/~F-rep/; Taubin, 1994; Shapiro and 
Tsukanov, 1999; Pasko et al., 2000; Karkanis and Stewart, 
2001; Ohtake, Belyaev and Pasko, 2002). Because of these 
reasons, in our approach, we have defined these restrictions 
for finding a new surface point pnew: 

1 The new point pnew is sought on a circle; therefore, each 
new generated triangle preserves the desired accuracy 
of polygonisation. The circle radius is proportional to 
the estimated surface curvature. 

2 The circle lies in the plane that is defined by the normal 
vector of triangle Told and axis o of the current edge e, 
see Figure 3; this guarantees that the new generated 
triangle is well-shaped (isosceles). 

5.1 Determination of the circle radius 

The circle radius is proportional to the estimated surface 
curvature. The surface curvature in front of current active 
edge is determined in according to angle α between the 
surface normals n1 and n2, see Figure 2. The normal vector 
n1 is computed at point s that lies in the middle of the 
current active edge e and the vector n2 is taken at initial 
point pinit that is a point of intersection of the circle c1 with 
the plane defined by the triangle Told. 

Figure 2 The circle radius estimation 

 

Note that the initial radius r1 of the circle c1 is always the 
same and it is set at the beginning of polygonisation as the 
Lowest Desired Level of Detail (LoD). 

The new circle radius r2 is computed as follows: 
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where αlim is a limit angle and the constant c represents a 
speed of ‘shrinking’ of the radius according to the angle α. 
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To preserve well-shaped triangles, we use a constant kmin 
that represents a minimal multiplier. In our implementation, 
we used αmin = π/2, kmin = 0.2 and c = 1.2. 

Correction notes: 
if (α > αmin) then k = kmin 
if (k < kmin) then k = kmin. 

These parameters affect a shape of triangles of the 
polygonal mesh generated. 

5.2 Root finding 

If the algorithm knows the circle radius, the process 
continues as follows: 

1 Set the point pnew to its initial position; the initial 
position is on the triangle’s Told plane on the other side 
of the edge e, see Figure 3. Let the angle of the initial 
position be α = 0. 

2 Compute the function values f(pnew) = f(α), 
f(p’new) = f(α + ∆α) – initial position rotated by the 
angle + ∆α, f(p”new ) = f(α – ∆α) – initial position 
rotated by the angle – ∆α; Note that the rotation axis is 
the edge e. 

3 Determine the right direction of rotation; if 
|f(α + ∆α)| < |f(α)| then + ∆α else – ∆α. 

4 Let the function values f1 = f(α) and f2 = f(α ± ∆α); 
update the angle α = α ± ∆α. 

5 Check which of following case appeared: 

a If (f1⋅f2) < 0 then compute the accurate coordinates 
of the new point pnew by the binary subdivision 
between the last two points which correspond to 
the function values f1 and f2.  

b If the angle |α| is less than αsafe (see safe angle area 
in Figure 2) return to step 0 

c If the angle |α| is greater than αsafe then there is a 
possibility that both triangles Told and Tnew could 
cross each other; the point pnew is rejected and it is 
marked as not found. 

Figure 3 The principle of root finding algorithm 

 

5.3 Root finding of a sharp edge 

Let us assume that the standard ES root finding algorithm 
presented above has found the point pnew. The algorithm 
then determines the surface normal vector nnew at this point 
and computes the angle α between normal vectors nnew and 
ns. The vector ns is measured at mid-point s of the active 
edge e, see Figure 4. If the angle α is greater than some 
user-specified threshold αlim_edge (limit edge angle) then the 
algorithm will look for a new edge point as follows: 

1 Compute coordinates of the point pinit as an intersection 
of the three planes, tangent planes t1 and t2, and the 
plane in which the seeking circle c lies, see Figure 4. 

2 Apply the straight root finding algorithm described in 
Section 5.4 and find the new point p’new.  

5.4 Straight root finding algorithm 

The algorithm starts from an initial point pinit (see Figure 5) 
and supposes that the implicit surface is at least C0 
continuity. 

1 At point pinit, compute the surface normal vector ninit 
that defines the seeking axis o. 

2 Compute coordinates of point p’init with distance δ from 
point pinit in direction ninit * sign(f(pinit)); where δ is the 
length of step and the function sign returns ‘1’ if (f > 0) 
or ‘0’ if (f < 0). 

3 Determine function values f, f’ at points pinit, p’init. 

4 Check the next two cases 

a If these points lie on opposite sides of implicit 
surface, i.e. (f * f’) < 0; compute the exact 
coordinates of the point pnew by binary subdivision 
between these points. 

b If the points pinit, p’init lie on the same side of the 
surface then pinit = p’init and return to step 2. 

Figure 4 The principle of root finding algorithm for sharp edges 
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Figure 5 Principle of root finding in straight direction 

 

6 Polygonisation of an active edge 
Polygonisation of an active edge e consists of several steps. 
In step 1, the process will use the root finding algorithm (see 
Section 5.2) to find a new point pnew in front of the edge e. 
If pnew exists, there are two cases illustrated in Figure 6. 

6.1 Neighbourhood test 

Decision between cases (a) and (b) depends upon relation 
among angles α1, α2, αn, see Figure 6, step 1; let the angle α 
be min(α1, α2). 

Figure 6 Polygonisation of the active edge e 

 

If (α < αshape) then case (a) else case (b), see Figure 6 step 2; 
The limit shape angle is determined as αshape = k*αn, k ≥ 1, 
αshape < π, where the constant k has effect to shape of 
generated triangles and in our implementation is chosen 
k = 1.7. If the point pnew is not found, angle αn is not defined 
and the limit shape angle should be just less than π; we have 
chosen αshape = π*0.8. 

a In this case, a new triangle tnew is created by connecting 
the edge e with one of its neighbours, see step 2a. 

b The new triangle tnew is created by joining the active 
edge e and the new point pnew, see step 2b. 

In both cases, a bounding sphere is determined for the new 
triangle tnew. The bounding sphere is the minimal sphere that 
contains all three points of the triangle, i.e. the centre of the 
sphere lies in the plane defined by these three points. If 
there is not a new triangle (the point pnew does not exist and 
case a has not appeared) the bounding sphere of the active 
edge e is used. The next procedure is analogical for all 
cases. 

6.2 Distance test 

To preserve the correct topology, it is necessary to check 
each new generated triangle if it does not cross any other 
triangles generated before. It is sufficient to perform this test 
between the new triangle and a border of already 
triangulated area (i.e. active edges in AEL). For faster 
evaluation of detection of global overlap, there is used the 
space subdivision acceleration technique introduced in 
Čermák and Skala (2002b). 

The algorithm will make the Nearest Active Edges List 
(NAEL) to the new triangle tnew. Each active edge that is not 
adjacent to the current active edge e and crosses the 
bounding sphere of the new triangle (or the edge e), is 
included to the list, see Figure 7, step 2. The extended 
bounding sphere is used for the new triangle created by the 
new point pnew (case b) because the algorithm should detect 
a collision in order to preserve well-shaped triangles. The 
new radius of the bounding sphere is computed as r2 = c*r1 
and we used the constant c = 1.5. 

Figure 7 Solving of distance test 

 

If the NAEL list is empty then the new triangle tnew is finally 
created and the AEL is updated. 

In case a, Figure 6 step 2, the current active edge e and 
its neighbour edge er are deleted from the list and one new 
edge enew is added at the end of the list. The new edge 
should be tested if it satisfies the condition of the surface 
curvature. If it does not then the new triangle will be split 
along the edge enew, see Section 6.3. 
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In case b, Figure 6 step 2, the current active edge e is 
deleted from the list and two new edges enew1 and enew2 are 
added at the end of the list. 

Note that if there is no new triangle to be created (the 
point pnew does not exist and case a in Figure 6 has not 
appeared) the current active edge e is moved at the end of 
the AEL list and the whole algorithm will return back to step 
0, see Section 3. 

If the NAEL list is not empty then the situation has to be 
solved. The point pmin with minimal distance from the centre 
of the bounding sphere is chosen from the NAEL list, see 
Figure 7, step 3. The new triangle tnew has to be changed and 
will be formed by the edge e and the point pmin, i.e. by 
points (pe1, pmin, pe2); the situation is described in Figure 7, 
step 3. The point pmin is owned by four active edges enew1, 
enew2, emin1, e min2 and the border of already triangulated area 
intersects itself on it. This is not correct because each point 
that lies on the triangulation border should has only two 
neighbourhood edges (left and right). 

Solution of the problem is to triangulate two of four 
edges first. Let the four active edges be divided into pairs; 
the left pair be (emin1, enew2) and the right pair be (enew1, 
emin2). One of these pairs will be polygonised and the second 
one will be cached in memory for later use. The solution 
depends upon angles αm1, αm2, see Figure 7, step 3. If 
(αm1 < αm2) then the left pair is polygonised; else the right 
pair is polygonised. 

In both cases, the recently polygonised pair is 
automatically removed from the list and the previously 
cached pair of edges is returned into the list. The point pmin 
is contained only in one pair of active edges and the border 
of the triangulated area is correct, Figure 7, step 4. 

Note that the polygonisation of one pair of edges 
consists just of joining its end points by the edge and this 
second new triangle has to fulfil the empty NAEL list as 
well; otherwise the current active edge e is moved at the end 
of AEL list. 

6.3 Splitting the new triangle 

This process is evaluated only in cases when the new 
triangle has been created by connecting of two adjacent 
edges, i.e. situation illustrated in Figure 8, step 2a. If the 
new edge does not comply a condition of surface curvature 
the new triangle should be split. That means, see Figure 8; if 
the angle α between surface normal vectors n1, n2 at points 
pe1, per2 is greater than some limit αsplit_lim then the new 
triangle will be split into two new triangles, see Figure 8, 
step 2. 

Figure 8 Splitting of the new triangle 

 

The point pnew is a midpoint of edge enew and it does not lie 
on the implicit surface. Its correct coordinates are 
additionally computed by the straight root finding algorithm 
described in Section 5.4. 

7 Detection and polygonisation of disjoint 
implicit surfaces in a given area 

In this section, a new method how to detect, count, and 
polygonise more disjoint implicit surfaces will be 
introduced. The algorithm uses the Edge Spinning (ES) 
method for polygonisation of each component, so there is 
necessary to detect a starting point for each of them. 

Because of an implicit function can be an arbitrary 
unknown algebraic function, there is no other way how to 
detect more disjoint surfaces in a defined area than use of 
exhaustive search approach (described for the Marching 
Cubes (MC) and tetrahedra methods in Bloomenthal 
(1994)). 

Our algorithm divides the given polygonisation area by 
the regular grid, see Figure 9. An important note is that a 
size of grid cells need not to be proportional to extracted 
object detail but it should only be proportional to the size of 
the smallest object. The size of grid cells is only needed for 
detection of implicit components in a scene, it has no 
relation to object detail and this is the main difference from 
MC approaches. Therefore, a number of grid divisions is 
much lesser for our algorithm than for MC method as well 
as a computational time. 

Figure 9 The polygonisation area divided by the regular grid that 
contains three implicit objects. Grid cells intersected by 
the implicit function are highlighted 

 

Let the polygonisation area be defined in space as  
[– x, + x; – y, + y; – z, + z] and a number of division in each 
axis be M. Then the algorithm works as follows: 
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1 Use ES algorithm to polygonalise the first object in the 
area 

2 Create a function grid – find and mark all grid cells 
intersected by the implicit function 

3 Create a triangulation grid – find and mark all grid cells 
intersected by the triangular mesh 

4 Check if there is a marked function grid cell that has an 
unmarked equivalent and even unmarked 
neighbourhood in the triangulation grid 

a If YES – there is a new implicit component and 
continue as follows: 

• Find a new starting point in the given cell 

• Use the ES method for triangulation of the 
component 

• Return to step 3. 

b If NO – there is no other component – end of 
polygonisation. 

7.1 Notes 

• step 2: a grid cell is marked if at least two of their 
corners have opposite signs of the function; important 
note is that this step is performed just once and in case 
of complex functions it saves computational time 

• step 3: if the size of the grid cells is greater than or 
equal to the longest edge of a triangle then it is enough 
to mark a grid cell when a point of a triangle is located 
there 

• step 4: the neighbourhood in E3 means 26 adjacent grid 
cells to the given one 

• step 4a: a new starting point in the given cell is sought 
by the binary subdivision between two cell’s corners 
with opposite signs. 

8 Experimental results 
The Adaptive Edge Spinning Algorithm (AES) is based on 
the surface tracking scheme (also known as the continuation 
scheme). Therefore, we have compared it with other 
methods based on the same principle – the Marching 
Triangles Algorithm (MTR, introduced in Hartmann (1998)) 
and MC method (Bloomenthal’s polygoniser, introduced in 
Bloomenthal (1994)). 

As a testing function, we have chosen the implicit object 
Genus 3 that is defined as follows: 

4 2 2 2

2 2 2
1 1

2 2 2
1 1

( ) 1 ( / ) ( / )

( )

( ) 0

z x yf r z x r y r

x x y r

x x y r

x ⎡ ⎤= × − − −⎢ ⎥⎣ ⎦
⎡ ⎤× − + −⎢ ⎥⎣ ⎦
⎡ ⎤× + + − =⎢ ⎥⎣ ⎦

 

where the parameters are: x = [x, y, z]T, rx = 6, ry = 3.5, 
rz = 4, r1 = 1.2, x1 = 3.9. 

The values in Table 1 have been achieved with LoD 
equal to 0.8. It means that maximal length of triangles’ 
edges is 0.8. Note that there is not defined a unit of length, 
so that the number could be for example in centimetres as 
well as the parameters of the function Genus 3 described 
above. 

The table contains the number of triangles and vertices 
generated. The value Avg dev. means the average deviation 
of each triangle from the real implicit surface. It is measured 
as algebraic distance of a gravity centre of a triangle from 
an implicit surface, i.e. the function value at the centre of 
gravity of the triangle. Note that the algebraic distance 
strongly depends upon the given implicit function; in our 
test, the Genus 3 object is used for all methods, so the value 
has its usefulness. The value Angle crit. means the criterion 
of the ratio of the smallest angle to the largest angle in a 
triangle and the value Elength crit. means the criterion of 
the ratio of the shortest edge to the longest edge of a 
triangle. The value Avg dev. shows the accuracy of an 
implicit object approximation and the AES algorithm is 
logically the best of tested methods. The criterions of angles 
and length of edges in triangles are similar for AES and 
MTR algorithms, so the both approaches generate well-
shaped triangular meshes. 

Table 1 Values of the object Genus 3 with LoD = 0.8 

 AES MTR MC
Triangles 4886 947 1056
Vertices 2439 473 516
Avg dev. 10,99 56,80 73,28
Angle crit. 0,65 0,67 0,38
Elength crit. 0,77 0,78 0,54

For visual comparison, the resulting pictures of the Genus 3 
object generated in the test are in figures below. Figure 10a 
shows the object generated by the adaptive algorithm, so the 
number of triangles generated is higher in dependence upon 
the surface curvature. In Figure 10b, some parts of the 
object are lost because the algorithm just connects the 
nearest parts by large triangles depending upon LoD. The 
resulting image generated by MC algorithm is shown in 
Figure 10c. This algorithm produces badly-shaped triangles, 
but it is fast and also stable for complex implicit surfaces 
with C0 continuity, only. 

Figure 11 shows the object modelled as intersection of 
two spheres. The left picture is polygonised without the 
edge detection, i.e. the limit edge angle αlim_edge is equal to π 
and the right picture is polygonised with the limit edge 
angle equal to π/4, see Section 5.3 for details. This object 
complies only the C0 continuity and it is correctly 
polygonised by our method. 

Next measured experimental results are aimed at 
polygonisation of unknown implicit scenes consisting of 
more disjoint surface components. AES algorithm will be 
compared with MC method – Exhaustive search (MCE). 

The first scene is illustrated in Figure 12 and contains 
two entwined spirals. 
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Figure 10 The Genus 3 object generated by (a) AES algorithm; 
(b) MTR algorithm and (c) MC algorithm 

 

Figure 11 Intersection of two spheres generated by AES 
algorithm 

 

Figure 12 The Spirals model polygonised by AES spinning 
algorithm; (a) the first spiral and (b) both spirals 
polygonised 

 

Figure 13 The Olympic rings model polygonised by AES 
algorithm. The numbers means the order of 
polygonisation 

 

Regarding the recent Olympic Games, the second implicit 
scene represents the Olympic rings. The model consists of 
five disjoint components and has been modelled as union of 
five tori, see Figure 13. 

The measured values from the experiment are contained 
in Table 2. The level of detail for both algorithms has been 
set so that a number of triangles as well as the 
approximation quality to be similar. In such case, MC 
method is much slower than ES algorithm and moreover, it 
generates poor triangular mesh, see histogram of angle 
distributions in Figure 14. 

Table 2 Values generated by the Edge Spinning and MC 
algorithms 

AES  MCE 

 Spiral Olympic 
rings Spiral Olympic 

rings 

Subdivisions, M 50 50 400 300 
LoD 0.16 0.16 0.08 0.11 
Triangles 134,316 147,346 131,776 230,572 
Vertices 67,163 73,673 65,892 115,286 
Alg dist avg 1.79×10–3 1.88×10–2 2.65×10–3 1,51×10–2

Angle criterion 0.70 0.69 0.36 0.37 
Edge length 
criterion 0.81 0.80 0.52 0.53 

Time [ms] 6,453 7,375 42,844 27,422 
Avg time [ms] 48.04 50.05 325.13 118.93 
 

Figure 14 Histogram of triangles shape quality 

 

9 Conclusion 
This paper presents a new adaptive approach for 
polygonisation of implicit surfaces. The algorithm marches 
over the object’s surface and computes the accurate 
coordinates of new points by spinning the edges of already 
generated triangles. Coordinates of the new points depend 
upon the surface curvature estimation. We used the 
estimation by deviation of angles of adjacent points because 
it is simple and fast for computation. The similar 
measurement has been used as curvature estimation in 
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Velho (1996) as well. Our experiments also proved its 
functionality. 

The algorithm can polygonise implicit surfaces which 
comply C1 continuity, thin objects and some non-complex 
objects of C0 continuity (an object should have only sharp 
edges, no sharp corners or more complex shapes). In future 
work, we want to modify the current algorithm for more 
complex implicit functions of the C0 continuity, only. 

Moreover, a method, that makes possible polygonisation 
of more disjoint implicit surfaces in a defined area, has been 
presented as well. The algorithm is not limited to a given 
polygonisation technique but then, its use is possible for all 
other surface approaches that need a starting point at the 
beginning. The algorithm works well, it is able to find and 
polygonise all implicit components in a given region and the 
computational time is much less than in case of MC method 
– exhaustive search. All advantages of surface approaches 
are preserved.  
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