
Int. J. Computational Science and Engineering, Vol. 3, No. 1, 2007 45

Copyright © 2007 Inderscience Enterprises Ltd.

Polygonisation of disjoint implicit surfaces by the
adaptive edge spinning algorithm

Martin Čermák and Vaclav Skala*
Department of Computer Science and Engineering,
University of West Bohemia in Pilsen
Univerzitni 22, 306 14 Pilsen, Czech Republic
E-mail: cermakm@kiv.zcu.cz E-mail: skala@kiv.zcu.cz
*Corresponding author

Abstract: This paper presents an adaptive method for polygonisation of implicit surfaces. The
method is based on the shape of triangles and the accuracy of resulting approximation. The main
advantages of the triangulation presented are simplicity and the stable features that can be used
for the next expansion. The presented algorithm is based on the surface tracking scheme, and it is
compared with other algorithms that are based on the similar principle, such as the Marching
cubes and the Marching triangles algorithms. Moreover, the technique for detection of more
disjoint implicit surfaces in a defined area is also presented. The algorithm is not limited to a
given polygonisation method, but then its use is possible for all other surface approaches that
need a starting point at the beginning.

Keywords: adaptive triangulation; curvature; implicit function; polygonisation.

Reference to this paper should be made as follows: Čermák, M. and Skala, V. (2007)
‘Polygonisation of disjoint implicit surfaces by the adaptive edge spinning algorithm’, Int. J.
Computational Science and Engineering, Vol. 3, No. 1, pp.45–52.

Biographical notes: Martin Čermák is a member of Computer Graphics Group at the University
of West Bohemia in Pilsen. He received his PhD at the Department of Computer Science and
Engineering.

Vaclav Skala is a full professor at the University of West Bohemia in Pilsen. He is responsible
for the Centre of Computer Graphics and Visualisation (http://herakles.zcu.cz) and he is the Head
of Computer Graphics Group at University of West Bohemia in Pilsen.

1 Introduction
Implicit surfaces seem to be one of the most appealing
concepts for building complex shapes and surfaces. They
have become widely used in several applications in
computer graphics and visualisation.

An implicit surface is mathematically defined as a set of
points in space x that satisfy the equation f(x) = 0. Thus,
visualising implicit surfaces typically consists in finding the
zero set of f, which may be performed either by
polygonising the surface or by direct ray tracing. There are
two different definitions of implicit surfaces. The first one
(Bloomenthal, 1994, 1995) defines an implicit object as
f(x) < 0 and the second one, F-rep (Hyperfun: Language for
F-Rep Geometric Modeling, http://cis.k.hosei.ac.jp/~F-rep/;
Pasko et al., 2000; Ohtake, Belyaev and Pasko, 2002),
defines it as f(x) ≥ 0. In our implementation, we use the F-
rep definition of implicit objects.

Existing polygonisation techniques may be classified
into three categories. Spatial sampling techniques that
regularly or adaptively sample the space to find the cells
that straddle the implicit surface (Bloomenthal, 1994;
Bloomenthal et al., 1997). Surface tracking approaches (also
known as continuation methods) iteratively create a

triangulation from a seed element by Marching along the
surface (Bloomenthal, 1994; Hartmann, 1998; Akkouche
and Galin, 2001; Karkanis and Stewart, 2001; Triquet,
Meseure and Chaillou, 2001; Čermák and Skala, 2002a-c;
Araujo and Jorge, 2004). Surface fitting techniques
progressively adapt and deform an initial mesh which
conver the implicit surface, (Ohtake, Belyaev and Pasko,
2002). The algorithm described in Overveld and Wyvill
(2004) uses a sphere object at the beginning and next
applies a series of deformations to its triangulation to
transform it into the required surface.

2 Data structures
The presented algorithm uses only the standard data
structures used in computer graphics. The main data
structure is an edge that is used as a basic building block for
polygonisation. If a triangle’s edge lies on the triangulation
border, it is contained in the Active Edges List (AEL) and it
is called as an active edge. Each point, which is contained in
an active edge, contains two pointers to its left and right
active edge (left and right directions are in active edges’
orientation).

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

Skala
Obdélník

46 M. Čermák and V. Skala

3 Principle of the algorithm

Our algorithm is based on the surface tracking scheme, and
therefore there are several limitations. A starting point must
be determined and only one separated implicit surface is
polygonised for such point. Several disjoint surfaces can be
polygonised from a starting point for each of them.

The whole algorithm consists of the following steps:

1 Initialise the polygonisation:
a Find the starting point p0 and create the first

triangle T0.
b Include the edges (e0, e1, e2,) of the first triangle

T0 into the AEL, see Figure 1.

2 Polygonise the first active edge e from the AEL.

3 Update the AEL; delete the currently polygonised active
edge e and include the new generated active edge/s at
the end of the list.

4 If the AEL is not empty return to step 2.

Figure 1 The first triangle

4 Initialising the polygonisation

A first triangle has to be created at the beginning of the
polygonisation. The first triangle is assumed to lie near a
tangent plane of the starting point p0. Let such point p0
exists then the algorithm is as follows:

1 Determine the normal vector n = (nx, ny, nz) in the
starting point p0, see Figure 1.

2 Determine the tangent vector t as in Hartmann (1998).
If (nx > 0.5) or (ny > 0.5) then t = (ny, –nx, 0); else t = (–
nz, 0, nx).

3 Use the tangent vector t as a fictive active edge and use
the Edge Spinning (ES) algorithm (described below) for
computation coordinates of the second point p1. The
pair of points (p0, p1) forms the first edge e0.

4 Polygonise the first edge e0 by ES algorithm for getting
the third point p2. Points (p0, p1, p2) and edges
(e0, e1, e2) form the first triangle T0.

5 Edge spinning
The main goal of this work is a numerical stability of a
surface point coordinates’ computation for objects defined
by implicit functions. In general, a surface vertex position is

searched in direction of a gradient vector ∇f of an implicit
function f, as in Hartmann (1998). In many cases, the
computation of gradient of the function f is influenced by a
major error that depends upon modelling techniques used
(Hyperfun: Language for F-Rep Geometric Modeling,
http://cis.k.hosei.ac.jp/~F-rep/; Taubin, 1994; Shapiro and
Tsukanov, 1999; Pasko et al., 2000; Karkanis and Stewart,
2001; Ohtake, Belyaev and Pasko, 2002). Because of these
reasons, in our approach, we have defined these restrictions
for finding a new surface point pnew:

1 The new point pnew is sought on a circle; therefore, each
new generated triangle preserves the desired accuracy
of polygonisation. The circle radius is proportional to
the estimated surface curvature.

2 The circle lies in the plane that is defined by the normal
vector of triangle Told and axis o of the current edge e,
see Figure 3; this guarantees that the new generated
triangle is well-shaped (isosceles).

5.1 Determination of the circle radius

The circle radius is proportional to the estimated surface
curvature. The surface curvature in front of current active
edge is determined in according to angle α between the
surface normals n1 and n2, see Figure 2. The normal vector
n1 is computed at point s that lies in the middle of the
current active edge e and the vector n2 is taken at initial
point pinit that is a point of intersection of the circle c1 with
the plane defined by the triangle Told.

Figure 2 The circle radius estimation

Note that the initial radius r1 of the circle c1 is always the
same and it is set at the beginning of polygonisation as the
Lowest Desired Level of Detail (LoD).

The new circle radius r2 is computed as follows:

2 1

lim

lim

, 0, 1 ;

,

r r k k

ck α α
α

= × ∈

⎛ ⎞− × ⎟⎜ ⎟=⎜ ⎟⎜ ⎟⎜⎝ ⎠

 (1)

where αlim is a limit angle and the constant c represents a
speed of ‘shrinking’ of the radius according to the angle α.

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

 Polygonisation of disjoint implicit surfaces 47

To preserve well-shaped triangles, we use a constant kmin
that represents a minimal multiplier. In our implementation,
we used αmin = π/2, kmin = 0.2 and c = 1.2.

Correction notes:
if (α > αmin) then k = kmin
if (k < kmin) then k = kmin.

These parameters affect a shape of triangles of the
polygonal mesh generated.

5.2 Root finding

If the algorithm knows the circle radius, the process
continues as follows:

1 Set the point pnew to its initial position; the initial
position is on the triangle’s Told plane on the other side
of the edge e, see Figure 3. Let the angle of the initial
position be α = 0.

2 Compute the function values f(pnew) = f(α),
f(p’new) = f(α + ∆α) – initial position rotated by the
angle + ∆α, f(p”new) = f(α – ∆α) – initial position
rotated by the angle – ∆α; Note that the rotation axis is
the edge e.

3 Determine the right direction of rotation; if
|f(α + ∆α)| < |f(α)| then + ∆α else – ∆α.

4 Let the function values f1 = f(α) and f2 = f(α ± ∆α);
update the angle α = α ± ∆α.

5 Check which of following case appeared:

a If (f1⋅f2) < 0 then compute the accurate coordinates
of the new point pnew by the binary subdivision
between the last two points which correspond to
the function values f1 and f2.

b If the angle |α| is less than αsafe (see safe angle area
in Figure 2) return to step 0

c If the angle |α| is greater than αsafe then there is a
possibility that both triangles Told and Tnew could
cross each other; the point pnew is rejected and it is
marked as not found.

Figure 3 The principle of root finding algorithm

5.3 Root finding of a sharp edge

Let us assume that the standard ES root finding algorithm
presented above has found the point pnew. The algorithm
then determines the surface normal vector nnew at this point
and computes the angle α between normal vectors nnew and
ns. The vector ns is measured at mid-point s of the active
edge e, see Figure 4. If the angle α is greater than some
user-specified threshold αlim_edge (limit edge angle) then the
algorithm will look for a new edge point as follows:

1 Compute coordinates of the point pinit as an intersection
of the three planes, tangent planes t1 and t2, and the
plane in which the seeking circle c lies, see Figure 4.

2 Apply the straight root finding algorithm described in
Section 5.4 and find the new point p’new.

5.4 Straight root finding algorithm

The algorithm starts from an initial point pinit (see Figure 5)
and supposes that the implicit surface is at least C0
continuity.

1 At point pinit, compute the surface normal vector ninit
that defines the seeking axis o.

2 Compute coordinates of point p’init with distance δ from
point pinit in direction ninit * sign(f(pinit)); where δ is the
length of step and the function sign returns ‘1’ if (f > 0)
or ‘0’ if (f < 0).

3 Determine function values f, f’ at points pinit, p’init.

4 Check the next two cases

a If these points lie on opposite sides of implicit
surface, i.e. (f * f’) < 0; compute the exact
coordinates of the point pnew by binary subdivision
between these points.

b If the points pinit, p’init lie on the same side of the
surface then pinit = p’init and return to step 2.

Figure 4 The principle of root finding algorithm for sharp edges

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

48 M. Čermák and V. Skala

Figure 5 Principle of root finding in straight direction

6 Polygonisation of an active edge
Polygonisation of an active edge e consists of several steps.
In step 1, the process will use the root finding algorithm (see
Section 5.2) to find a new point pnew in front of the edge e.
If pnew exists, there are two cases illustrated in Figure 6.

6.1 Neighbourhood test

Decision between cases (a) and (b) depends upon relation
among angles α1, α2, αn, see Figure 6, step 1; let the angle α
be min(α1, α2).

Figure 6 Polygonisation of the active edge e

If (α < αshape) then case (a) else case (b), see Figure 6 step 2;
The limit shape angle is determined as αshape = k*αn, k ≥ 1,
αshape < π, where the constant k has effect to shape of
generated triangles and in our implementation is chosen
k = 1.7. If the point pnew is not found, angle αn is not defined
and the limit shape angle should be just less than π; we have
chosen αshape = π*0.8.

a In this case, a new triangle tnew is created by connecting
the edge e with one of its neighbours, see step 2a.

b The new triangle tnew is created by joining the active
edge e and the new point pnew, see step 2b.

In both cases, a bounding sphere is determined for the new
triangle tnew. The bounding sphere is the minimal sphere that
contains all three points of the triangle, i.e. the centre of the
sphere lies in the plane defined by these three points. If
there is not a new triangle (the point pnew does not exist and
case a has not appeared) the bounding sphere of the active
edge e is used. The next procedure is analogical for all
cases.

6.2 Distance test

To preserve the correct topology, it is necessary to check
each new generated triangle if it does not cross any other
triangles generated before. It is sufficient to perform this test
between the new triangle and a border of already
triangulated area (i.e. active edges in AEL). For faster
evaluation of detection of global overlap, there is used the
space subdivision acceleration technique introduced in
Čermák and Skala (2002b).

The algorithm will make the Nearest Active Edges List
(NAEL) to the new triangle tnew. Each active edge that is not
adjacent to the current active edge e and crosses the
bounding sphere of the new triangle (or the edge e), is
included to the list, see Figure 7, step 2. The extended
bounding sphere is used for the new triangle created by the
new point pnew (case b) because the algorithm should detect
a collision in order to preserve well-shaped triangles. The
new radius of the bounding sphere is computed as r2 = c*r1
and we used the constant c = 1.5.

Figure 7 Solving of distance test

If the NAEL list is empty then the new triangle tnew is finally
created and the AEL is updated.

In case a, Figure 6 step 2, the current active edge e and
its neighbour edge er are deleted from the list and one new
edge enew is added at the end of the list. The new edge
should be tested if it satisfies the condition of the surface
curvature. If it does not then the new triangle will be split
along the edge enew, see Section 6.3.

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

 Polygonisation of disjoint implicit surfaces 49

In case b, Figure 6 step 2, the current active edge e is
deleted from the list and two new edges enew1 and enew2 are
added at the end of the list.

Note that if there is no new triangle to be created (the
point pnew does not exist and case a in Figure 6 has not
appeared) the current active edge e is moved at the end of
the AEL list and the whole algorithm will return back to step
0, see Section 3.

If the NAEL list is not empty then the situation has to be
solved. The point pmin with minimal distance from the centre
of the bounding sphere is chosen from the NAEL list, see
Figure 7, step 3. The new triangle tnew has to be changed and
will be formed by the edge e and the point pmin, i.e. by
points (pe1, pmin, pe2); the situation is described in Figure 7,
step 3. The point pmin is owned by four active edges enew1,
enew2, emin1, e min2 and the border of already triangulated area
intersects itself on it. This is not correct because each point
that lies on the triangulation border should has only two
neighbourhood edges (left and right).

Solution of the problem is to triangulate two of four
edges first. Let the four active edges be divided into pairs;
the left pair be (emin1, enew2) and the right pair be (enew1,
emin2). One of these pairs will be polygonised and the second
one will be cached in memory for later use. The solution
depends upon angles αm1, αm2, see Figure 7, step 3. If
(αm1 < αm2) then the left pair is polygonised; else the right
pair is polygonised.

In both cases, the recently polygonised pair is
automatically removed from the list and the previously
cached pair of edges is returned into the list. The point pmin
is contained only in one pair of active edges and the border
of the triangulated area is correct, Figure 7, step 4.

Note that the polygonisation of one pair of edges
consists just of joining its end points by the edge and this
second new triangle has to fulfil the empty NAEL list as
well; otherwise the current active edge e is moved at the end
of AEL list.

6.3 Splitting the new triangle

This process is evaluated only in cases when the new
triangle has been created by connecting of two adjacent
edges, i.e. situation illustrated in Figure 8, step 2a. If the
new edge does not comply a condition of surface curvature
the new triangle should be split. That means, see Figure 8; if
the angle α between surface normal vectors n1, n2 at points
pe1, per2 is greater than some limit αsplit_lim then the new
triangle will be split into two new triangles, see Figure 8,
step 2.

Figure 8 Splitting of the new triangle

The point pnew is a midpoint of edge enew and it does not lie
on the implicit surface. Its correct coordinates are
additionally computed by the straight root finding algorithm
described in Section 5.4.

7 Detection and polygonisation of disjoint
implicit surfaces in a given area

In this section, a new method how to detect, count, and
polygonise more disjoint implicit surfaces will be
introduced. The algorithm uses the Edge Spinning (ES)
method for polygonisation of each component, so there is
necessary to detect a starting point for each of them.

Because of an implicit function can be an arbitrary
unknown algebraic function, there is no other way how to
detect more disjoint surfaces in a defined area than use of
exhaustive search approach (described for the Marching
Cubes (MC) and tetrahedra methods in Bloomenthal
(1994)).

Our algorithm divides the given polygonisation area by
the regular grid, see Figure 9. An important note is that a
size of grid cells need not to be proportional to extracted
object detail but it should only be proportional to the size of
the smallest object. The size of grid cells is only needed for
detection of implicit components in a scene, it has no
relation to object detail and this is the main difference from
MC approaches. Therefore, a number of grid divisions is
much lesser for our algorithm than for MC method as well
as a computational time.

Figure 9 The polygonisation area divided by the regular grid that
contains three implicit objects. Grid cells intersected by
the implicit function are highlighted

Let the polygonisation area be defined in space as
[– x, + x; – y, + y; – z, + z] and a number of division in each
axis be M. Then the algorithm works as follows:

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

50 M. Čermák and V. Skala

1 Use ES algorithm to polygonalise the first object in the
area

2 Create a function grid – find and mark all grid cells
intersected by the implicit function

3 Create a triangulation grid – find and mark all grid cells
intersected by the triangular mesh

4 Check if there is a marked function grid cell that has an
unmarked equivalent and even unmarked
neighbourhood in the triangulation grid

a If YES – there is a new implicit component and
continue as follows:

• Find a new starting point in the given cell

• Use the ES method for triangulation of the
component

• Return to step 3.

b If NO – there is no other component – end of
polygonisation.

7.1 Notes

• step 2: a grid cell is marked if at least two of their
corners have opposite signs of the function; important
note is that this step is performed just once and in case
of complex functions it saves computational time

• step 3: if the size of the grid cells is greater than or
equal to the longest edge of a triangle then it is enough
to mark a grid cell when a point of a triangle is located
there

• step 4: the neighbourhood in E3 means 26 adjacent grid
cells to the given one

• step 4a: a new starting point in the given cell is sought
by the binary subdivision between two cell’s corners
with opposite signs.

8 Experimental results
The Adaptive Edge Spinning Algorithm (AES) is based on
the surface tracking scheme (also known as the continuation
scheme). Therefore, we have compared it with other
methods based on the same principle – the Marching
Triangles Algorithm (MTR, introduced in Hartmann (1998))
and MC method (Bloomenthal’s polygoniser, introduced in
Bloomenthal (1994)).

As a testing function, we have chosen the implicit object
Genus 3 that is defined as follows:

4 2 2 2

2 2 2
1 1

2 2 2
1 1

() 1 (/) (/)

()

() 0

z x yf r z x r y r

x x y r

x x y r

x ⎡ ⎤= × − − −⎢ ⎥⎣ ⎦
⎡ ⎤× − + −⎢ ⎥⎣ ⎦
⎡ ⎤× + + − =⎢ ⎥⎣ ⎦

where the parameters are: x = [x, y, z]T, rx = 6, ry = 3.5,
rz = 4, r1 = 1.2, x1 = 3.9.

The values in Table 1 have been achieved with LoD
equal to 0.8. It means that maximal length of triangles’
edges is 0.8. Note that there is not defined a unit of length,
so that the number could be for example in centimetres as
well as the parameters of the function Genus 3 described
above.

The table contains the number of triangles and vertices
generated. The value Avg dev. means the average deviation
of each triangle from the real implicit surface. It is measured
as algebraic distance of a gravity centre of a triangle from
an implicit surface, i.e. the function value at the centre of
gravity of the triangle. Note that the algebraic distance
strongly depends upon the given implicit function; in our
test, the Genus 3 object is used for all methods, so the value
has its usefulness. The value Angle crit. means the criterion
of the ratio of the smallest angle to the largest angle in a
triangle and the value Elength crit. means the criterion of
the ratio of the shortest edge to the longest edge of a
triangle. The value Avg dev. shows the accuracy of an
implicit object approximation and the AES algorithm is
logically the best of tested methods. The criterions of angles
and length of edges in triangles are similar for AES and
MTR algorithms, so the both approaches generate well-
shaped triangular meshes.

Table 1 Values of the object Genus 3 with LoD = 0.8

 AES MTR MC
Triangles 4886 947 1056
Vertices 2439 473 516
Avg dev. 10,99 56,80 73,28
Angle crit. 0,65 0,67 0,38
Elength crit. 0,77 0,78 0,54

For visual comparison, the resulting pictures of the Genus 3
object generated in the test are in figures below. Figure 10a
shows the object generated by the adaptive algorithm, so the
number of triangles generated is higher in dependence upon
the surface curvature. In Figure 10b, some parts of the
object are lost because the algorithm just connects the
nearest parts by large triangles depending upon LoD. The
resulting image generated by MC algorithm is shown in
Figure 10c. This algorithm produces badly-shaped triangles,
but it is fast and also stable for complex implicit surfaces
with C0 continuity, only.

Figure 11 shows the object modelled as intersection of
two spheres. The left picture is polygonised without the
edge detection, i.e. the limit edge angle αlim_edge is equal to π
and the right picture is polygonised with the limit edge
angle equal to π/4, see Section 5.3 for details. This object
complies only the C0 continuity and it is correctly
polygonised by our method.

Next measured experimental results are aimed at
polygonisation of unknown implicit scenes consisting of
more disjoint surface components. AES algorithm will be
compared with MC method – Exhaustive search (MCE).

The first scene is illustrated in Figure 12 and contains
two entwined spirals.

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

 Polygonisation of disjoint implicit surfaces 51

Figure 10 The Genus 3 object generated by (a) AES algorithm;
(b) MTR algorithm and (c) MC algorithm

Figure 11 Intersection of two spheres generated by AES
algorithm

Figure 12 The Spirals model polygonised by AES spinning
algorithm; (a) the first spiral and (b) both spirals
polygonised

Figure 13 The Olympic rings model polygonised by AES
algorithm. The numbers means the order of
polygonisation

Regarding the recent Olympic Games, the second implicit
scene represents the Olympic rings. The model consists of
five disjoint components and has been modelled as union of
five tori, see Figure 13.

The measured values from the experiment are contained
in Table 2. The level of detail for both algorithms has been
set so that a number of triangles as well as the
approximation quality to be similar. In such case, MC
method is much slower than ES algorithm and moreover, it
generates poor triangular mesh, see histogram of angle
distributions in Figure 14.

Table 2 Values generated by the Edge Spinning and MC
algorithms

AES MCE

 Spiral Olympic
rings Spiral Olympic

rings

Subdivisions, M 50 50 400 300
LoD 0.16 0.16 0.08 0.11
Triangles 134,316 147,346 131,776 230,572
Vertices 67,163 73,673 65,892 115,286
Alg dist avg 1.79×10–3 1.88×10–2 2.65×10–3 1,51×10–2

Angle criterion 0.70 0.69 0.36 0.37
Edge length
criterion 0.81 0.80 0.52 0.53

Time [ms] 6,453 7,375 42,844 27,422
Avg time [ms] 48.04 50.05 325.13 118.93

Figure 14 Histogram of triangles shape quality

9 Conclusion
This paper presents a new adaptive approach for
polygonisation of implicit surfaces. The algorithm marches
over the object’s surface and computes the accurate
coordinates of new points by spinning the edges of already
generated triangles. Coordinates of the new points depend
upon the surface curvature estimation. We used the
estimation by deviation of angles of adjacent points because
it is simple and fast for computation. The similar
measurement has been used as curvature estimation in

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

52 M. Čermák and V. Skala

Velho (1996) as well. Our experiments also proved its
functionality.

The algorithm can polygonise implicit surfaces which
comply C1 continuity, thin objects and some non-complex
objects of C0 continuity (an object should have only sharp
edges, no sharp corners or more complex shapes). In future
work, we want to modify the current algorithm for more
complex implicit functions of the C0 continuity, only.

Moreover, a method, that makes possible polygonisation
of more disjoint implicit surfaces in a defined area, has been
presented as well. The algorithm is not limited to a given
polygonisation technique but then, its use is possible for all
other surface approaches that need a starting point at the
beginning. The algorithm works well, it is able to find and
polygonise all implicit components in a given region and the
computational time is much less than in case of MC method
– exhaustive search. All advantages of surface approaches
are preserved.

Acknowledgements

The authors thank all those who contributed to the
development of this new approach, especially colleagues
and MSc and PhD students at the University of West
Bohemia in Pilsen. This work was supported by the
Ministry of Education of the Czech Republic – projects
MSM 235200005 and 2C06002.

References
Akkouche, S. and Galin, E. (2001) ‘Adaptive implicit surface

polygonization using marching triangles’, Computer Graphic
Forum, Vol. 20, pp.67–80.

Araujo, B. and Jorge, J. (2004) ‘Curvature dependent
polygonization of implicit surfaces’, Paper presented in the
Proceedings of the XVII Brazilian Symposium on Computer
Graphics and Image Processing (SIACG’04/SIBGRAPI’04),
pp.256–273.

Bloomenthal, J. (1994) ‘An implicit surface polygonizer’, in
P. Heckbert (Ed.), Graphics Gems IV (pp.324–350). Boston,
MA: Academic Press.

Bloomenthal, J. (1995) ‘Skeletal Design of Natural Forms’, PhD
Thesis, University of Calgary.

Bloomenthal, J., Bajaj, Ch., Blinn, J., Cani-Gascuel, M-P.,
Rockwood, A., Wyvill, B. and Wyvill, G. (1997) Introduction
to implicit surfaces, San Francisco, CA: Morgan Kaufmann,
p.332.

Čermák, M. and Skala, V. (2002a) ‘Polygonization by the Edge
Spinning’, 16th Conference on Scientific Computing,
Algoritmy, Slovakia, ISBN 80-227-1750-9, September 8–13.

Čermák, M. and Skala, V. (2002b) ‘Accelerated Edge Spinning
algorithm for Implicit Surfaces’, International Conference on
Computer Vision and Graphics, ICCVG, Zakopane, Poland,
ISBN 839176830-9, September 25–29.

Čermák, M. and Skala, V. (2002c) ‘Space Subdivision for Fast
Polygonization of Implicit Surfaces’, The Fifth International
Scientific Conference, ECI, Slovakia, ISBN 80-7099-879-2,
October 10–11.

Hartmann, E. (1998) ‘A marching method for the triangulation of
surfaces’, The Visual Computer, Vol. 14, pp.95–108.

‘Hyperfun: Language for F-Rep Geometric Modeling’, Available
at: http://cis.k.hosei.ac.jp/~F-rep/.

Karkanis, T. and Stewart, A.J. (2001) ‘Curvature-dependent
triangulation of implicit surfaces’, IEEE Computer Graphics
and Applications, March, Vol. 21, pp.60–69.

Ohtake, Y., Belyaev, A. and Pasko, A. (2002) ‘Dynamic mesh
optimization for polygonized implicit surfaces with sharp
features’, The Visual Computer, Vol. 11, pp.429–446.

Overveld, K. and Wyvill, B. (2004) ‘Shrinkwrap: an efficient
adaptive algorithm for triangulating an iso-surface’, The
Visual Computer, Vol. 20, pp.362–379.

Pasko, A., Adzhiev, V., Karakov, M. and Savchenko, V. (2000)
‘Hybrid system architecture for volume modeling’, Computer
and Graphics, Vol. 24, pp.67–68.

Shapiro, V. and Tsukanov, I. (1999) ‘Implicit functions with
guaranteed differential properties’, Solid Modeling, Ann
Arbor, Michigan, pp.258–269.

Taubin, G. (1994) ‘Distance approximations for rasterizing
implicit curves’, ACM Transactions on Graphics, January,
Vol. 13, pp.3–42.

Triquet, F., Meseure, F. and Chaillou, Ch. (2001) ‘Fast
Polygonization of Implicit Surfaces, WSCG’2001’, Int.
Conf., p. 162, Pilsen, Czech Republic: University of West
Bohemia.

Velho, L. (1996) ‘Simple and efficient polygonization of implicit
surfaces’, Journal of Graphics Tools, Vol. 1, pp.5–25.

 Int.J.Computational Science and Engineering, ISSN 1742-7185, Vol.3, No.1, pp.45-52, 2007

Skala
Obdélník

