
Z-DIAMONDS: A FAST ISO-SURFACE EXTRACTION 
ALGORITHM FOR DYNAMIC MESHES 

Slavomír Petrík 
University of West Bohemia 

Univerzitní 8, Pilsen, Czech Republic 
 

Václav Skala 
University of West Bohemia 

Univerzitní 8, Pilsen, Czech Republic 
skala@kiv.zcu.cz 

ABSTRACT 

Dynamic simulation meshes are successfully used in many scientific and engineering fields. We present simple and 
efficient algorithm for a fast extraction of the iso-surfaces from the data sets with dynamic mesh. Simulation mesh at each 
time step is preprocessed into a list of diamonds composed of the original mesh cells. The min / max values of all 
diamonds are stored in a Time-space Partitioning Tree (TSP), which is used to quickly locate the diamonds intersected by 
a queried iso-surface. To overcome the large memory requirements due to the dynamic changes of a simulation mesh, an 
out-of-core approach is used to dynamically load geometry of the active diamonds during visualization. We demonstrate 
our approach on the data sets from the Computational Fluid Dynamics (CFD) simulations.  
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1. INTRODUCTION 

Researchers in many scientific and engineering fields use iso-surfaces to investigate data sets. Most of the 
current techniques for iso-surface construction assume static simulation mesh (e.g. [Shen H.-W., 1998, 
Weigle Ch. and Banks D.C., 1998, Waters K.W. and Co Ch.S., 2006]). Simulation domain can change from 
time step to time step because of deforming boundaries, moving parts or flexible bodies. In order to maintain 
the mesh quality criteria, the dynamic re-meshing techniques are often employed. Examples of dynamic 
meshing come from various industrial applications [Amsden A.A., 1997, Marshall L., 2002, Doleisch et al., 
2005, Cavallo P. et al., 2005]. Figure 1 shows the example of the dynamic simulation mesh from a simulation 
of combustion process in an engine.  

While the methods for generating dynamic meshes are being rapidly developed, there is a lack of suitable 
visualization techniques. We propose simple and efficient algorithm for extraction of the iso-surfaces from 
the data sets with dynamic mesh. Proposed Z-Diamonds method works over triangular or tetrahedral meshes. 
We do not make any assumption about the way a simulation mesh changes between adjacent time steps. We 
also do not attempt to reconstruct the evolving iso-surfaces in between time steps defined in a data set. To 
overcome the problem of dynamic simulation mesh, we first preprocess a simulation mesh at each time step 
into a list of diamonds. The min / max values of all diamonds are stored in a common TSP tree [Shen H.-W., 
1999], which is used to quickly locate the diamonds intersected by a queried iso-surface (active diamonds). 
Geometry of the active diamonds is then read from disk in an out-of-core fashion [Wang et al., 2007]. 

In the following sections, we first provide the list of the related techniques for visualization of time-
varying data (section 2). Then we present our novel approach to this visualization problem (section 3) and 
demonstrate its performance on the real CFD data sets (section 4). Finally we draw conclusions and suggest 
possible areas for future work. 
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Figure 1. The example of the dynamic mesh from a simulation of combustion process in an engine. The simulation mesh 
changes its layout according to the actual vertical position of a moving piston 

2. PREVIOUS WORK 

The idea of dynamic simulation meshes is not a new one. Arbitrary Lagrangian-Eulerian (ALE) methods 
were developed just for this purpose. While an overview of the ALE methods is outside the scope of this 
paper, [Donea J. et al, 2004] provides a good survey of the field. 

Yet current techniques for a fast iso-surface extraction assume static simulation mesh (i.e. the number of 
mesh cells and their geometry do not change during a simulation). Even if the ability of these methods to 
extract an iso-surface from the data sets with dynamic mesh is very limited or none at all, we provide their 
brief overview, because they are useful at the certain step of our method. 

Wilhelms and van Gelder introduced Branch-on-Need-Octree [Wilhelms J. and van Gelder A., 1992]; the 
space efficient version of the standard octree. Livnat et al. [Livnat Y. et al, 1994] introduced notion of span 
space, in which cells are represented as the points with x (minimum) and y (maximum) coordinates. Shen et 
al. use lattice subdivision of the span space in their ISSUE algorithm [Shen H.-W. et al, 1996]. 

This initial research on fast iso-surface extraction from the static data sets has been also extended onto the 
data sets which cover certain period of time. Weigle and Banks [Weigle Ch. and Banks D.C., 1998] 
introduced method which treats 3D time-varying data set as the static 4D data. Temporal Hierarchical Index 
Tree (THIT) [Shen H.-W., 1998] assigns the cells of a simulation mesh to its nodes according to a temporal 
variation of their values. T-BON technique [Sutton P. and Hansen Ch., 1999] extends BONO tree [Wilhelms 
J. and van Gelder A., 1992] for the time-varying data sets. A common BONO tree structure is saved only 
once for the entire data set, while minimum and maximum iso-values for its nodes are stored separately for 
each time step. Time-space Partitioning Tree (TSP) [Shen H.-W., 1999] is a standard full octree. Each node 
of TSP tree has a binary time tree associated. The partial rendered sub-volumes are cached for selected TSP 
nodes and used to speed up time-varying data visualization. The approach of Gregorski [Gregorski B., 2004] 
builds a hierarchy of diamonds from the original mesh cells. The mesh refinement process (sequence of split 
and merge operations) ruled by the min, max and error values of the active diamonds is initiated for each iso-
surface query, starting from either current refinement or a root diamond of a hierarchy. Recently the 
Difference Intervals [Waters K.W. and Co Ch.S., 2006] technique has been introduced, encoding change of a 
cell’s status between adjacent time steps by either add or remove (cell become active / inactive) operation 
which is used for fast extraction of the active cells during interactive iso-surface visualization.  

All of the methods described above assume static simulation mesh. They exploit the fact that the number 
of mesh cell and their geometry do not change during a simulation. This fact can not be in general exploited 
for dynamic simulation meshes, since the number of mesh cells and their geometry may change under the 
deformation of the simulation domain boundaries. 

Doleisch et al. [Doleisch et al., 2005] introduced system for interactive visualization of the data sets with 
dynamic simulation mesh. They assume certain time intervals in a data set (topology zones), within which the 
number of cells and their correspondence between time steps remains constant. Mesh cells are not matched or 
tracked over topology zone borders (rezone points). In our approach, each time step represents a different 
topology zone. Moreover, we do not make any assumption about the way a simulation mesh changes (or 
remains static) between adjacent time steps. 
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3. METHOD 

The key contribution of our method is its ability to handle dynamic simulation mesh. We make no 
assumption about the way a simulation mesh changes between the adjacent time steps. Presented Z-
Diamonds method works with triangular or tetrahedral meshes. Since a simulation mesh dynamically 
changes, we do not try to match the original mesh cells between adjacent time steps. Instead we preprocess 
the mesh at each time step into a list of diamonds. Each diamond is composed of two neighboring simplicial 
cells, sharing a common face (i.e. two triangles in 2D or two tetrahedra in 3D, Figure 2). Diamonds are not 
matched or tracked between adjacent time steps. In this way the problem of changing simulation mesh is 
overcome. In the rest of this article we will assume tetrahedral mesh as an input of our method.  

Pairing of the tetrahedral mesh cells into the diamonds has several advantages over the simple tetrahedral 
representation of a mesh. Firstly, a single diamond is represented by five vertices and five scalar values, in 
comparison to the eight vertices with associated scalar values necessary to represent two separate tetrahedra. 
Since the active diamonds are dynamically loaded for each iso-surface query, such “five-vertex” 
representation of the diamonds reduces the I/O traffic during interactive visualization. Secondly, it allows use 
of the Marching Diamonds algorithm [Anderson et al, 2005] to produce smoother resulting iso-surfaces.  

 

 
 
 
 
 
 

 (a) (b) 

Figure 2. Each diamond is composed of two neighboring simplicial mesh cells, sharing a common face. Reference 
diamonds are depicted for 2D (a) and 3D (b) simulation mesh 

Once we have a list of diamonds for each time step, we need a data structure to support fast extraction of 
the active diamonds.  Because of the large amount of data needed for representation of dynamic simulation 
mesh, we keep only the min / max values of the diamonds in the main memory. The min / max values of all 
diamonds from all time steps are organized in a common TSP tree [Shen H.-W., 1999]. Geometry of the 
active diamonds is dynamically loaded from a disk in an out-of-core fashion. Since we extract a queried iso-
surface only at the discrete time steps, specified in a data set, we do not deal with the topological changes of 
the iso-surfaces in between adjacent time steps. We assume that the data sets processed by our method are 
sampled sufficiently along the time dimension. 

During the preprocessing phase of the Z-Diamonds method a list of diamonds is created for each single 
time step. In the visualization phase a common TSP tree is built and used for interactive extraction and 
visualization of the queried iso-surfaces. The following sections detail about the diamonds-building phase, 
the TSP tree and its usage for fast extraction and visualization of the iso-surfaces from the data sets with 
dynamic meshes. 

3.1 Diamonds Building Process 

In the preprocessing phase a simulation mesh at each discrete time step is treated separately. The process of 
building diamonds is initiated, starting form an arbitrary initial tetrahedron Tinit. One of the tetrahedra sharing 
a common face with Tinit is chosen, to form a new 3D diamond D0 with Tinit (Figure 3). We choose that 
neighbor of Tinit, whose additional vertex has scalar value closest to those of Tinit, so as to ensure that the 
resulting diamond D0 will cover as small a range of iso-values as possible. This increases the probability that 
a queried iso-surface will intersect both tetrahedra in a diamond. The diamond-building process continues 
recursively for each of six tetrahedra sharing faces with D0. During the diamond building process, each 
tetrahedron is assigned to at most one diamond. If all of the neighboring tetrahedra have already been 
assigned to some diamond, a new diamond composed of only one tetrahedron and one empty vertex is 
created. A list of diamonds for each time step is sorted according to their minimum values and stored in a 
separate file as a result of the preprocessing phase.  
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Figure 3. 2D example of the recursive diamond-building process. Two neighboring triangle cells are paired into the 2D 
diamond D0. The process continues recursively for each of four triangles sharing edges with D0 

The algorithm of pairing tetrahedra into the diamonds is related to the perfect matching problem 
[Karpinski M. and Rytter W., 1998]. In our case, the goal of perfect matching would be to build as few as 
possible diamonds composed of only one tetrahedron and one empty vertex. As will be shown in the section 
4, a relatively small amount of such one-tetrahedron diamonds does not significantly influences the overall 
performance of the method. Therefore, we do not employ advanced algorithms for pairing tetrahedra into the 
diamonds, because they could potentially raise the time and space complexity of the preprocessing phase 
with little or no benefit.  

3.2 TSP Tree 

The concept of TSP tree was introduced in [Shen H.-W., 1999]. The TSP tree is designed for fast extraction 
of the active cells for queried iso-value and time-step. TSP tree is a standard full octree, which recursively 
subdivides a data volume until a predefined minimum size of sub-volume is reached. To store temporal 
information into the TSP tree, each TSP node Ni has assigned a binary time tree Bi. Bi recursively bisects the 
entire time span of the data set [0,t], until a unit time step is reached. So, each leaf node of Bi represents a 
single time step. Figure 4 depicts the TSP tree and one of its nodes in the form of binary time tree. Each node 
of Bi represents a time span [ta,tb] and keeps the min / max iso-values of the cells within the subspace of the 
TSP node Ni during [ta,tb]. 

       
 

Figure 4. TSP tree is a standard full octree. Each node of TSP tree has assigned a binary time tree. In this case, the data 
set consists of four time steps (picture from [Shen H.-W., 1999]) 

A list of diamonds from each single time step is first sorted according to the diamonds’ minimum values 
and then organized row-by-row in a 2D diamond table. So, each time step has its own 2D diamond table. 

Diamond tables of all time step have a common size equal to ⎡ ⎤xL
 in each direction, where xL is the size 

of the longest diamond list Lx.  
We build one TSP tree which holds min/max values of all diamonds from all time steps. Each leaf node of 

a TSP tree corresponds to a position (x, y) in the 2D diamond tables. Binary time tree assigned to a leaf node 
of TSP tree holds the min/max values of the diamonds from all time steps placed at position (x, y) in the 2D 
diamond tables. Binary tree assigned to an internal node of TSP tree holds the min/max values of the 
diamonds within a subspace of 2D diamond tables. So, we build a quad-tree-based TSP tree with binary time 
tree associated with each TSP node. 

Sorting a list of diamonds before it is organized in a 2D diamond table for particular time step increases 
probability that the diamonds placed at corresponding positions in the diamond tables of two adjacent time 
steps will have the same or at least very similar min / max values. This effect is exploited to achieve better 
memory footprint of a common TSP tree. To be more specific, we stop recursive subdivision of each binary 
time tree Bi (Figure 4) once the child nodes n1 and n2 of the current node n have the same min / max values or 
when the difference between their min and max values is lower than the user specified constant α. In such 
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case we only update the time span and min / max values of the node n. Constant α provides a tool to manage 
the tradeoff between the memory footprint of a TSP tree (for large data sets) and fast and accurate extraction 
of a set of active diamonds (for smaller data sets). The lower the constant α, the more precise and smaller set 
of active diamonds is extracted by traversing a common TSP tree, but the memory requirements of TSP tree 
grow. On the other hand, for the higher values of the constant α, a better memory footprint is achieved (the 
binary time trees will contain less nodes), but the percentage of the extracted active diamonds which do not 
cover the specified iso-value will grow.  

3.3 Iso-surface Extraction 

Prior to the visualization itself, a common TSP tree is built (section 3.2), holding the min / max values of the 
all diamonds from all time steps. We do not store geometry of the diamonds in a TSP tree. Only the extreme 
min / max values of the diamonds are stored in the binary time trees at the nodes of TSP tree. 

For each query (iso-value, time step) a common TSP tree is traversed. At each TSP node Ni , an associated 
binary time tree Bi is traversed. If a leaf node of Bi is reached and its iso-value range covers queried iso-
value, then we continue recursively to the child nodes of Ni. Otherwise, we skip traversing the whole sub-tree 
of the TSP node Ni. If Ni is a leaf node of TSP tree, then a corresponding diamond D is read from the file 
which keeps the diamond list for queried time step. Since the records for all diamonds have the same size, the 
position of the record of diamond D can be easily calculated. 

Once all the active diamonds are read from disk, a resulting iso-surface is rendered using techniques like 
Marching Tetrahedra [Treece G. M. et al, 1998] or Marching Diamonds [Anderson et al, 2005]. Figure 5 
shows the example of a part of an iso-surface interpolated out of the active diamonds extracted by the Z-
Diamonds method. 

 
 

Figure 5. A part of rendered iso-surface with highlighted active diamonds 

4. RESULTS 

Presented Z-Diamonds method was implemented in C#. Tests were done on Intel Pentium 3.2GHz 
workstation with 2GB of RAM and ATI FireGL V5200 graphics adapter. Table 1 provides information about 
the data sets used for tests. Motor data set is a simulation of combustion process in an engine. Simulation 
mesh changes its layout according to the vertical position of a piston inside a valve. Wind tunnel data set is 
from a simulation of an air flow around solid body, moving inside a wind tunnel. Airfoil data set is from a 2D 
simulation of a low-speed air wave, flowing around the leading edge of a flexible airfoil. Table 1 also 
provides the preprocessing times and size of the preprocessed data. For each data set we preprocessed the 
simulation meshes at all time steps and one scalar quantity.  

The most expensive part of the preprocessing step is a sorting of the diamonds according to their 
minimum values (section 3.1). Sorting step has usually logarithmic time complexity, depending on the 
sorting algorithm used,  thus the overall time complexity of the preprocessing of one time step t is 
O (n * log (n)), where n is the number of mesh cells at the time step t.  
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Table 1. The data sets used for tests of Z-Diamonds method 

Data set # of time  
steps 

Cells per  
time step 

Size of  
data set 

Preprocessing 
time 

Size of the 
preprocessed data 

Motor (3D) 148 40,000 to 115, 000 3.2 GB 86 mins 32s 1.2 GB 
Wind tunnel (3D) 700 400 k to 430 k 7.5 GB 120 mins 8s 3.4 GB 

Airfoil (2D) 500 30,000 to 32,000 781 MB 9 mins 22s 181 MB 

As stated in the section 3.1, the process of pairing original mesh cells into the diamonds may produce the 
diamonds composed of only one mesh cell and one empty vertex. Figure 6 shows the number of created 
diamonds composed of just one mesh cell for the Motor and Wind tunnel data sets. The percentage of created 
one-cell-diamonds is lower than 14% of all created diamonds. We have accepted this price in exchange for 
low time complexity of the preprocessing phase. 

 
Figure 6. Percentage of the diamonds composed of only one tetrahedron and one empty vertex for the Motor and Wind 

tunnel data sets 

Table 2 draws the iso-surfaces extraction times during interactive visualization. Query execution times 
stated in the table 2 include time for active cells extraction by traversing a TSP tree, loading of active 
diamonds geometry from disk and extraction of iso-surface geometry from loaded active diamonds. Extracted 
iso-surfaces for iso-values and time steps from the table 2 are depicted by the figure 7. All measurements 
were done with constant α = 0 (section 3.2). 

 

Table 2. The extraction times, numbers of active diamonds and numbers of triangles on the resulting iso-surfaces for 
selected iso-values and time steps for Motor and Wind tunnel data sets 

Data set / iso-value / time step Extraction 
time # of active diamonds # of triangles 

on the iso-surfaces 
Motor  / 342.101 / 15 
Motor  / 391.124 / 30 
Motor  / 392.345 / 130 

Wind tunnel  / 8.612 / 451 
Wind tunnel  / 12.711 / 688 

386 ms 
612 ms 
514 ms 
289 ms 
602 ms 

3,262 
15,900 
6,741 
3,133 

16,324 

4,354 
36,768 
15,398 
4,932 

38,202 

We do not provide any comparison with the previous approaches. This is because we have not found any 
published technique for iso-surfaces extraction from the data sets with dynamic simulation mesh. The method 
of Doleisch et al. [Doleisch et al., 2005] assumes continuous time spans in a data set, within which the 
number of mesh cells and their correspondence between adjacent time step remains constant (topology zone). 
In our data sets the simulation mesh changes with each discrete time step. So, each time step represents one 
topology zone. Other approaches for a fast extraction of iso-surfaces from time-varying data sets (section 2) 
are unable to handle dynamic simulation mesh. 
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 (a) Iso-value: 342.101,   (b) Iso-value: 391.142,  (c) Iso-value: 392.345,  
time step: 15 time step: 30 time step: 130 

 

 
 
 
 
 
 
 
 

(d) Iso-value: 8.612, time step: 451  (e) Iso-value: 12.711, time step: 688 
 
 
 
 
 
 
 
 
 
 

 (f) time step: 50  (g) time step: 116 (h) time step: 50  (i) time step: 116,  
   iso=0.182 iso=0.214 

Figure 7. Iso-surfaces extracted and rendered from: (a) - (c) Motor data set - temperature, (d), (e) Wind tunnel data set – 
total pressure, and (f) - (i) 2D Airfoil data set – speed magnitude 

5. CONCLUSIONS 

Visualization of the evolving iso-surfaces is the powerful tool for understanding of the dynamic data 
behavior. We presented the Z-Diamonds method for fast extraction of the iso-surfaces from the data sets with 
dynamic simulation mesh. Proposed method allows interactive extraction and visualization of the iso-
surfaces for any desired iso-value and discrete time step defined in a data set. Extraction of the iso-surface is 
done at interactive frame-rates and was demonstrated on the data sets from CFD simulation. 

The main contributions of the presented method are: 
• The method supports the data sets with dynamic simulation meshes. This is an advantage over the 

existing visualization techniques, which are based on the assumption, that the number, geometry and 
correspondence of the mesh cells between adjacent time steps remain constant. 

• Since the preprocessing of each time step is done independently of the others, the preprocessing 
phase can be easily parallelized.  

• Time and space complexities of the preprocessing and visualization phase are low. This is especially 
important for the large scientific data sets.  
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There are numerous possible ways for the future work. With the desktop workstation configuration 
mentioned in the section 4, we are able to interactively extract iso-surfaces from up to 50 consecutive time 
steps. Therefore, modification of the method for better memory footprint is expected. 
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