
Iso-contouring in time-varying meshes

Slavomı́r Petrı́k∗

University of West Bohemia, Pilsen Czech Republic
Václav Skala†

University of West Bohemia, Pilsen Czech Republic

Figure 1: Dynamic mesh adapting around the changing airfoilduring simulation.

Abstract

Dynamic meshing techniques are widely used in the Computational
Fluid Dynamic (CFD) and Computational Mechanics (CM) simula-
tions. Simulated moving parts or dynamic boundaries of simulation
domain force a simulation mesh to change from one time step toan-
other. So, geometry of the mesh cells and their number vary asthe
simulation time proceeds. This paper presents a novel approach for
smooth iso-contours extraction from 2D dynamic mesh at and in
between defined time slices. No assumption is made about mesh
cells correspondence between successive time slices. The key idea
of the proposed method is to establish an edge-edge correspondence
between meshes at adjacent time steps. Then the data structure sup-
porting an easy iso-contours interpolation from intermediate time
slices is built. We provide the proof that our method produces cor-
rect results under defined conditions and demonstrate our approach
on the data sets from the CFD simulations.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

Keywords: iso-contour, time-varying mesh, interactive visualiza-
tion

1 Introduction and problem definition

Visualization of the iso-surfaces [Lorensen and Cline 1987] evolu-
tion over time is a powerful tool for understanding dynamic data
behavior. Most of the research done in this area was focused on the
case when a simulation mesh remains static and the scalar values
in its vertices vary over time. Constantly growing computational
power enables the scientists and engineers to perform CFD simula-
tions which include moving parts and dynamic shape of simulation
domain. So, the underlying simulation mesh is required to change
from one time step to another.

∗e-mail: spetrik@kiv.zcu.cz
†e-mail:skala@kiv.zcu.cz

The concept of dynamically moving and changing simulation mesh
has evolved into group of techniques commonly known as Arbi-
trary Lagrangian-Eulerian (ALE) methods [Donea et al. 2004]. In
pure Eulerian approach a simulation mesh remains static anda fluid
movement is reflected in the changing scalar values associated with
mesh vertices. In the Lagrangian approach the movement of a sim-
ulation mesh is driven by the fluid flow (mesh vertices remainsat-
tached to the same points flowing in a fluid). ALE methods com-
bine the best features from both Eulerian and Lagrangian approach.
A mesh generated by the ALE methods conforms to the chang-
ing boundaries of a simulation domain while preserving criteria of
mesh quality. Examples of dynamic meshes comes from variousin-
dustrial applications: [Amsden 1997; Marshall 2002; Cavallo et al.
2005; Doleisch et al. 2005].

Up to now, very little has been done in the area of interactiveiso-
surfaces extraction from dynamic meshes. This problem has been
mentioned by the range of authors [Ma 2003; Doleisch et al. 2005;
Bernardon et al. 2006]. Most of the visualization techniques for
time-varying iso-surface extraction assume static simulation mesh
(geometry and number of mesh cells remains constant during the
whole simulation). So, they are ill-suited or completely unable to
handle dynamic mesh.

The approach proposed in this article focuses on extractionof
evolving iso-contours from dynamic mesh at and in between time
slices defined in a data set. Formally this visualization problem can
be formulated as: Given the input scalar data organized in a se-
quence of time slices, each of which is represented by a different
unstructured mesh with the scalar values associated to its vertices,
find a method for smooth continuous iso-surface extraction at and
in between the time slices. In this work we restrict to the simpler
case of 2D dynamic mesh, however extension of the proposed ap-
proach into 3D is also discussed. The key idea of our solutionto
the problem of iso-surface extraction from dynamic mesh is to es-
tablish an edge-edge correspondence between meshes at successive
time slices and to build a data structure to support a fast iso-contour
extraction for arbitrary time and iso-value. This is very useful for
interactive visualization of smoothly evolving iso-contours. With
the proposed method, there is no need to re-sample the time-varying
meshes for the visualization purposes.

In the Section 2 we provide a list of existing related techniques and
also brute-force solution to this problem is discussed. Sections 3
and 4 describe our proposed solution, followed by the proof of cor-
rectness in the Section 5. Numerical stability and other aspects of
the proposed method are discussed in the Section 6. Extension of
the proposed method into 3D is discussed in the Section 7. Finally
the test results are provided in the Section 8.

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

(a) (b) (c) (d)

Figure 2: Four stages of the proposed method: (a)iso-components extraction from the original data set, (b) matching and tracking of iso-
components between successive time slices, (c) mapping of inner envelopes of iso-components, (d) final edge-to-edge mapping.

2 Previous work

”Time-varying unstructured mesh data sets have been eitherren-
dered in a brute-force fashion or just re-sampled and down-sampled
onto a regular grid for further visualization calculations.” [Ma
2003]. When working over static structured or unstructuredmesh,
vertices connectivity in between time slices is implicit. Alot of
research has been devoted to a fast extraction of time-varying iso-
surfaces [Shen 1998; Weigle and Banks 1998; Sutton and Hansen
1999; Shen et al. 1999]). All of these methods are well designed
for the static regular simulation mesh; however they are notable to
handle dynamic unstructured mesh.

Situation changes dramatically when trying to visualize data or-
ganized in a dynamic mesh. The correspondence between mesh
vertices at successive time slices may not be one-to-one, and thus
one value may be interpolated to many [Weigle and Banks 1998].
This may results in many possible iso-surfaces evolution scenar-
ios. Moreover, due to the moving boundaries of simulation domain,
some mesh vertices may not have their direct equivalent in the suc-
cessive time slice.

Closely related to our work is the approach of Szymczak [Szym-
czak 2005], investigating the iso-contour evolution in between time
slices. Szymczak assumes a static regular mesh. Doleisch et
al. [Doleisch et al. 2005] presented method for datasets with dy-
namic simulation mesh. Their technique divides the entire time
frame of a dataset into so-calledtopology zones, within which con-
nectivity of mesh vertices is implicit. However, mesh cellsare not
matched or tracked over topology zone borders calledrezone points.
Fig. 3 shows the principle ofbrute-force solution to the extraction
of iso-contours from the dynamic meshes. A hyper-surface ruled at
both ends by the iso-contours extracted at successive time slices is
built and cut at the desired time. This solution is on an account of
limited interactivity, because a hyper-surface has to be recomputed
every time a user changes desired iso-value.

Figure 3: Thebrute-force approach to iso-contours extraction from
the dynamic meshes. Hyper-surface is build between iso-contours
in successive time slices and cut at the desired time.

3 Proposed method

As stated in the Introduction the goal is to build an edge-edge cor-
respondence between adjacent time slices (Fig. 2(d)). Thenwe
build a data structure to achieve fast and smooth visualization of
iso-contours evolution for arbitrary time and iso-value. Proposed
method works uponiso-components. Iso-components are strips of
neighboring triangles extracted from simulation mesh at particular
time step. Each iso-component covers certain range of iso-values
and has its inner and outer envelope composed of the lists of mesh
vertices (Fig. 4).

Outer envelope

Iso-curve

Inner envelope
Edges sequence

Figure 4: Iso-component is a strip of neighboring triangles with
inner (IE) and outer (OE) envelope.

Instead of tracking mesh vertices over time and trying to corre-
late them, a set of iso-components is extracted from each time
slice (Fig. 2(a)). Iso-components are then matched and tracked
between the pairs of adjacent time slices (Fig. 2(b)). Finally an
edge-edge mapping is established between edges (Fig. 2(c),(d)) of
corresponding iso-components. This edge-edge correspondence is
used during final interpolation of the iso-contours in between de-
fined time slices. Preprocessing phase as described by the follow-
ing list has to be done for each pair of consecutive time slices. In
the visualization phase the preprocessed data are used for afast iso-
contours extraction.

1. Preprocessing:

(a) Iso-components extraction from the defined time slices,
forming stand-alone entities with inner and outer enve-
lope (Fig. 2(a)).

(b) Iso-components tracking to determine evolutionary
events [Samtaney et al. 1994] which happen between
two adjacent time slices (Fig. 2(b)).

(c) Mapping of iso-components’ inner envelopes vertices
(Fig. 2(c)) to gain a guide for the final edge-edge map-
ping.

(d) Edge-edge mapping, to make out the final sets of edge
pairs for all tracked iso-components pairs (Fig. 2(d)).

2. Visualization based on established edge-edge mapping.

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

Preprocessing phase begins by building a listL of all different scalar
values(v1,v2, ...,vi,vi+1, ...,vn) associated with the mesh vertices
of two adjacent time slices. This list of iso-value ranges isthen
sorted in ascending order. Next a set of the iso-components is ex-
tracted from each time slice using Continuation method [Wyvill
et al. 1986]. Continuation method tracks the particular iso-
value into the neighboring triangles, creating single connected
iso-components with inner and outer envelopes (Fig. 2(a)).Iso-
components are extracted from each time slice for each iso-value
vi+vi+1

2 of the list L. To find the initial cell for Continuation
method and particular iso-value the Path Seeds technique [Carr and
Snoeyink 2003] is used, which builds up upon the work on Contour
trees [Carr et al. 2000].

Iso-components matching and tracking step (Fig. 2(b)) is basically
the feature tracking problem first described by the Samtaney et
al. [Samtaney et al. 1994]. Their approach has been later improved
in the various ways by a range of other authors [Silver and Wang
1998; Reinders et al. 1999; de Leeuw and van Liere 2001]. To de-
termine evolutionary events (birth, death, split, merge) which hap-
pen to the iso-components at or in between time slices we use iso-
components’ area overlapping test. This test marks the successors
/ predecessors of iso-components if their relative overlapping area
exceeds user defined thresholdα.

Once we have iso-components and their predecessors / succes-
sors defined, a mapping of their inner envelope vertices is done
(Fig. 2(c)). This mapping provides a guide for the final edge-
edge mapping between iso-components from a pair of adjacenttime
slices. This problem is essentially a problem of linear morphing of
two polygons and is described in detail in Section 4. Our solution
to this ”polygon morphing” problem is inspired by the approach of
Bajaj et al. [Bajaj et al. 1996]. They assumed only closed polygons
and use a complex set of orientation rules for mapped polygons,
which is not possible in our case, because we also have to dealwith
open polygons (iso-component may be open, so its inner envelope
is also an open polyline).

Mapping of inner envelope vertices provides a guide to the
edge-edge mapping for each pair of successive iso-components
(Fig. 2(d)). In this step successive iso-components’ edgesemanat-
ing from the vertices joined by the inner envelopes mapping proce-
dure are paired. Such edge-edge pairs are then stored into a file as
a result of the preprocessing phase.

During the visualization, queries of the formquery(iso-value, time)
are accepted and processed. First the pair of adjacent time slices
covering the queriedtime is selected. Next, the iso-component cov-
ering the queriediso-value is selected from the earlier time-slice.
As depicted by the Fig. 5, a list of selected iso-component’sedges is
traversed and pointsC andE are interpolated from point-pairsA-B
andD-F according to the desired iso-value. PointR is then interpo-
lated out ofC-E according to the desiredtime. ExtractedR points
are then connected by line, approximating resulting iso-contour.

When thetime value is changed by user during interactive explo-
ration only the new set ofR points has to be interpolated out and
a resulting iso-contour is assembled from them. In the worsecase
when the newtime value does not fit into the time interval spanned
by the currently selected pair of time slices a new proper pair of
time slices is selected.

When theiso-value is changed and fits into the range of iso-values
covered by the currently selected iso-component, an interpolation
scheme described in the previous paragraph is done, otherwise a
new proper iso-component is selected. Results of such interactive
exploration of CFD data sets are described in Section 8.

Figure 5: Points on the mapped edges used during visualization.

4 Mapping of iso-components’ Inner Enve-

lope Vertices

Iso-component may be open or closed, depending on the pro-
cessed data. Therefore, let’s define the common rule for an iso-
component’s inner envelope orientation.

A gradient of the form∇ f = (∂ f
∂ x , ∂ f

∂ y) computed at any of iso-
component’s inner envelope vertices can be used to unambiguously
determine the areaabove (in the direction of gradient) andbelow
(opposite the direction of gradient) an inner envelope. Thus, we de-
fine that an inner envelope is oriented in the direction such that area
”above” it is on its right side (Fig. 6(a)). The case when∇ f = 0 is
left unsolved by our method and the user should be notified about
its occurrence.

It has to be said that the iso-component may have one or more suc-
cessors (because an iso-component may split into two or moreoth-
ers in the successive time slice).

Let’s denote the set of iso-component’s inner envelope vertices as
IEt1 and a set of all vertices of its successors’ inner envelopes as
IEt2. In the following text the termslicechord represents an imagi-
nary line connecting two vertices from adjacent time slices- inves-
tigated vertexq and itscandidate vertex C(q) (Fig. 6(b)).

Algorithm for mappingIEt1 onto vertices ofIEt2 visits each vertex
q ∈ IEt1 and looks for a candidate vertexC(q) ∈ IEt2. For eachq
a candidate area (clarified in the Def. 1) is determined. Candidate
area restricts the set of possible candidate vertices fromIEt2 and
the closest one of them is connected by a slicechord withq. If the
closest one doesn’t meet all the criteria for candidate vertex (Def.
3), then the second closest is taken and so on. Special care istaken
to the so-calledmultivertices discussed later in Section 4.1.

This traversal and slicechords building process obviouslyleaves
some of theIEt2 vertices uncovered by the mapping, and thus the
mapping procedure is done for uncoveredIEt2 vertices once again
backward onto theIEt1 vertices. Mapping the IE vertices in both
directions (IEt1 onto IEt2 andIEt2 onto IEt1) cause that some ver-
tex may be mapped onto more than one vertex in the adjacent time
slice.

Set of produced slicechords defines mapping ofIEt1 vertices onto
IEt2. The last step in this mapping algorithm is to removeredun-
dant slicechords which are defined by the Def. 4, so we have a
simple mapping ofIEt1 to IEt2.

Now let’s define the precise rules for mapping the inner envelopes
vertices.

Definition 1. Candidate area of vertex q (denotedCA(q)) is an
area which lies below the inner envelope theq belongs to. Borders
of candidate area are defined by two line segmentsqp andqr and
the borders of mesh at successive time slice (Fig. 6(a)).

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

below

above
IE

r

p q

f

f
f

CA(q)

t1

Bt2

(a)

S

S’

S’

q

q’
C(q)

C’(q)
IE

IE (t2)

(t1)q

C(q)

T
im

e

(b)

q r

C(q) C(r)

S

IE(t2)

IE(t1)

T
im

e

slicechords

(c)

Figure 6: (a) Candidate area CA(q) of vertexq (shadowed region). Borders of CA(q) are defined by the segments qp andqr and the borders
of mesh at successive time sliceBt2. (b) ProjectionS′ of slicechord S. (c) Redundant slicechord S.

Definition 2. Projection [Bajaj et al. 1996] of a slicechordS
spanned between time slices onto those 2D time slices, is denoted
by appending a prime sign (’) toS (Fig. 6(b)).

Definition 3. This definition contains rules for candidate vertex of
q (denotedC(q)) and possible slicechord spanned betweenq and
C(q).

1. C(q) ∈ {v|v ∈ IEt2∩CA(q)}

2. q /∈CA(C(q))

3. ProjectionS’ of a slicechordS spanned betweenq andC(q)
does not cross projections of:

(a) any other slicechordS′n, except their joining in the slice-
chords’ end-points,

(b) any line segment of iso-component’s inner envelope
the q belongs to, nor the line segment of the iso-
component’s successor / predecessor inner envelope.

4. If q is multivertex (defined in Section 4.1), thenC(q) has to
lie inside candidate areas of all vertices theq is composed of.
And vice versa, if C’(q) is multivertex thenq can’t lie inside
candidate area of any of the vertices the multivertex C’(q) is
composed of.

Definition 4. Redundant slicechord S is a slicechord, which has
both endpoints, incident with slicechords other than S (Fig. 6(c)).

Because inner envelopes mapping procedure is very sensitive to
their shapes, we now define the criterion that has to be fulfilled.

Criterion 1. Continuing along the inner envelopeA in the direction
of its orientation, the sequence of crossing points with themapped
inner envelopeB from adjacent time slice have to follow the orien-
tation ofA.

Criterion 1 essentially states an assumption that the data are not
changing rapidly, so, the shapes of mapped inner envelopes don’t
differ significantly from time slice to time slice. In the case of sud-
den significant data change between time steps we are able to detect
it by the violation of criterion 1 as well as in the iso-components
tracking phase. In this case the mapping algorithm will still fin-
ish, but it does not guarantee the correct shape of the resulting iso-
contour and user should be notified of such ”critical” areas.Exper-
iments (Section 8) show that violation of criterion 1 is veryrare in
the data sets available for our tests.

Another question is how this inner envelope mapping procedure
handles the cases when one inner envelope splits into two or more
on the successive time slice. Note, that this is an open problem in
polygon mapping and its correct solution is hard to find. Although,
described mapping algorithm is unable to handle very complicated

splits or merges of the inner envelopes, it provides reasonable re-
sults in the most cases of inner envelope splits and merges. This
statement is supported by the proof of correctness (Section5) and
also has been verified experimentally on the testing data sets.

4.1 Handling multivertices

Definition 5. Multivertex is a vertex of an iso-component’s inner
envelopeIE shared multiple times by theIE or shared by two inner
envelopes of different iso-components from the same time slice.
Fig. 7(a) shows two iso-componentsI1, I2 with inner envelopesIE1,
IE2 sharing multiverticesv2, v3. Multivertex v1 is used two times
by theIE1.

multivertices

OE

1

1

OE

1
IE2

I2I1
v

3v

2v

2

IE

(a)

IE1(t2)

S’ a

b

IEIE1(t1)

IE2(t1)

v2vv

v3vv

v1
vv4v

(b)

Figure 7: (a) Example of multiverticesv1, v2, v3. (b) Proposed
slicechordS′ violates Point 4 of the Def. 3.

Multivertices, if not treated properly may become a source of prob-
lems for correct inner envelopes mapping as described in Section 4.
For multivertex, Point 4 of Def. 3 has to be fulfilled when searching
for its candidate vertex. Omitting this rule may result in improper
inner envelopes mapping, thus the edges of iso-components will not
be mapped properly. Consequently an iso-contour interpolated out
of such corrupted edge-edge mapping may be misshaped.

Fig. 7(b) depicts an example of what Point 4 of Def. 3 means in
practice. Multiverticesv2, v3 are shared by theIE1(t1) andIE2(t1).
When looking for a candidate vertexC(v2) of v2, then possible
slicechordS′ has to be refused becausea ∈ IE1(t2) doesn’t lie in-
side all candidate areas ofv2. Vertex a does lie inside candidate
areaCA(v2) made ofv2v3, v2v4, but as can be seen the gray shaded
candidate areaCA(v2) made ofv2v1, v2v3 violates Point 4 of Def.
3 becausea does not lie inside it. Fig. 7(b) suggests to handle this
situation by spanning slicechord between vertexb andv2 = C(b).

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

5 Proof of correctness

In order to secure smooth resulting iso-curve without self-crossing
or other disturbing artifacts, we have to prove, that our inner enve-
lope mapping algorithm will always produce an ordered set ofslice-
chords, such that sequence of indices at their both sides is monoton-
ically increasing (or decreasing) (i.e. slicechords are not crossing
each other):

∀p,s ∈ IE(t1), p 6= s : p < s ⇔ C(p) ≤C(s),or

∀p,s ∈ IE(t1), p 6= s : p < s ⇔ C(p) ≥C(s)
(1)

Let’s consider slicechordSq
p spanned between vertexp ∈ IEt1 and

q = C(p) ∈ IEt2. Vertexq has to fulfill all the requirements from
the Def. 3. Therefore,Sq

p can’t lie inside bothCA(p) andCA(q) at
the same time (Fig. 8(a)). Otherwise, it will violate Point 2of the
Def. 3:

Sq
p /∈ (CA(p)∩CA(q)) (2)

In example given by the Fig. 8(b) the possible area (denotedA)
for any slicechord emanating from vertexp, is bordered by the se-
quence of edges betweenpa, pb andqa, qb (because of Point 3b of
the Def. 3). By acceptingSq

p the areaA is divided into two subareas.
So, any future slicechord emanating fromp−1 can be placed only
into one of the subareas ofA, because two slicechords can’t cross
each other (Point 3a of the Def. 4).

This ensures, that the condition 1 always holds withinA. Point 3b
of the Def. 3, together with Def. 1 ofcandidate area guarantee, that
no slicechord will be accepted between the vertices which belong
to A and vertices of any other such areaAx along mapped inner
envelopes.

If the Criterion 1 (Section 3) holds for mappedIE(t1) and IE(t2),
then the resulting set of slicechords spanned betweenIE(t1) and
IE(t2) always satisfies condition 1.

IE(t1)

IEIEIEIE(t2)(t2)(t2)(t2)

p

q

S

(a)

p

qa
b

p-1

q-1

A

p+2

p+1

q+1

q+2

Ax

IE(t1)

IE(t2)

(b)

Figure 8: (a) Shadowed regions show CA(p) and CA(q) and their
product. (b) AreaA bordered by two adjacent intersections ofIE(t1)

andIE(t2).

6 Numerically stable implementation

The two main issues that may influence numerical stability ofthe
implementation are very close scalar values associated with adja-
cent mesh vertices and very close position of the two adjacent ver-
tices.

The first one can be avoided by rounding all scalar values associated
with mesh vertices to then-1 digits, wheren is guaranteed accuracy

of the data type of scalar values associated with mesh vertices. The
last digit is saved for the first phase of the method, when the middle
values of iso-intervals are determined (Section 2). Otherwise, the
iso-interval may collapse into a value thinner than precision of the
used data type and the iso-value (equal to the half of an iso-interval
limit) used during iso-component extraction won’t be determined
properly. Consequently the extracted iso-components willbe cor-
rupted.

The second one - the very close position of two adjacent vertices
- may result in extremely sharp triangles, causing numerical insta-
bility while working with position of those vertices. By theterm
”very close” we mean, the distance of two adjacent vertices which
is lower than guaranteed accuracy of data type used for representa-
tion of their position. This issue has to be watched while generating
the input mesh, before processing the data by our method. This is
because remeshing of input mesh is very sensitive operationwhich
depends on the particular data and may consequently influence the
result of visualization. Therefore, we assume that input meshes of
our method are free of such ”very close vertices”.

7 3D case

In the case of 3D time-varying simulation mesh, the overall princi-
ple of this method can be used; however some of its aspects have to
be treated in a slightly different manner.

3D version of 2D iso-components are iso-volumes extracted by the
continuation method (Section 3) tracking the iso-values into the
neighboring tetrahedron. Such iso-volume has inner and outer en-
velope in the form of mesh composed of 2D triangles. Iso-volumes
tracking and matching has been well studied in the past decades. In-
ner envelope mapping algorithm as described in Section 4 then can
be used to search candidate vertices in the 3D space. Candidate area
as defined by the Def. 1 is a 3D subspace with borders governed
by the incident triangles (from the inner envelope) of the investi-
gated vertex. In the last phase the tetrahedra of the mapped iso-
volumes are mapped, guided by the slicechords spanned between
iso-volumes’ inner envelopes. From this basic point of viewno
principal restrictions are known for the 3D extension of thepro-
posed method.

Various aspects of this 3D extension need to be further investigated
before its application onto data sets. Also, the preprocessing phase
of such 3D version of the method needs to be optimized because
3D computations are in generally more expensive than their 2D ver-
sions.

8 Tests

The method has been implemented in C# and tests run on Intel
3.2GHz workstation with 2GB of RAM. Two 2D data sets were
used for testing.

Airfoil data set is the result of simulation of low-speed air wave hit-
ting the leading edge of the flexible airfoil. Scalar values associated
with the mesh vertices are the velocity magnitudes of advancing air
wave. The data set consists of 200 time steps each represented by
the triangular adaptive mesh. Number of mesh vertices vary be-
tween 16 000 and 17 000. Simulation mesh adapts to the changing
shape of flexible airfoil at each simulation step. For the test we
took every 10th time slice and computed the iso-contour evolution
in between them by our method.

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

Fig. 9 (a) and (b) show the original data at time steps 10 and 100.
Fig. 9 (c) shows the adapted simulation mesh at time step 100.Iso-
contour evolution computed by our method between time steps30
and 50 is depicted by the Fig. 9 (d). Finally a set of iso-contours
extracted by our method at inter-time slice times is depicted by the
Fig. 9 (e) and (f). Because the number of mesh cells is different
for each time step (dynamic mesh) a classic point-wise linear in-
terpolation known from static regular simulation grids cannot be
used.

Payload data set originate from CFD simulation of payload release
from under an aircraft wing. Data sets consists of 500 time steps
from which every 10th time step has been saved and used as an
input of our method. Number of samples at each time step vary
between 60 000 and 62 000. Simulation mesh adapts itself around
falling payload as the simulation time proceeds. Fig. 11 depicts
the set of iso-contours extracted by our method. The application
interface containing sliders for interactive set up of iso-value and
time of desired iso-contours is also depicted.

The third test is the accuracy comparison of our method and lin-
ear interpolation. In order to be able to do such comparison our
method was applied onto the data set with static simulation mesh.
During the simulation a low speed air wave hits the leading edge
of the static airfoil. So, the simulation mesh remains static during
the whole simulation. Again every 10th time step was used and
iso-contour evolution between them was calculated by the both our
method and linear interpolation. Results of calculations were com-
pared against the real data produced during the simulation.

Graph on the Fig. 10 shows the average deviation of the calculated
iso-contours against the real data. Average deviation of our method
is almost the same or better (time steps 45 to 195) as that of linear
interpolation. Slightly worse deviation of our method before time
step 35 reflects the fact that the scalar data are changing fast at the
beginning of the simulation when the overall speed of air wave is
high. Thus, we assume that our method achieves approximately
the same accuracy in the case of dynamic mesh (where the linear
interpolation can not be used) as that of linear interpolation achieves
in the cases of static simulation mesh.

For both ”Airfoil” and ”Payload” data sets, once we preprocessed
the input meshes as described in this article, we were able toin-
teractively explore the smoothly evolving iso-contours without any
noticeable delays in visualization. Tab. 1 provides preprocessing
times for both data sets as well as extraction times for various iso-
values and simulation times. This has been achieved withoutex-
pensive re-sampling of the original data sets onto regular static grid,
which introduces higher error and allows the case when a vertex of
regular steady grid interpolated in time dimension hits themoving
object in the successive time slice (thus, no scalar value suitable for
interpolation is at that place) or runs completely out of thesimula-
tion mesh in the successive time slice because of the time-varying
boundaries of a simulation domain.

Flexible airfoil Payload release

13.3 42.6

iso-value timestep

0.1 10 0.2133 0.5668

0.5 50 0.1158 0.7885

0.6 180 0.1288 0.6841

0.85 230 - 0.6382

1.2 240 - 0.8833

Preprocessing time [minutes]

Extraction time [ms]

Table 1: Performance results for both CFD data set. Extraction
times were measured for various iso-values and time steps.

(a) (b)

(c) (d)

(e) (f)

Figure 9: Dataset from CFD simulation of low-speed air wave hit-
ting the leading edge of experimental dynamic airfoil. (a)-(b) input
data (speed magnitude) at the time steps 10 and 100, (c) dynamic
adaptive mesh (time step 80), (d) iso-curve evolution computed by
the proposed method between the time steps 30 and 50, (e)-(f)ex-
tracted iso-curves at time steps 74 and 186.

Deviation from the real data inside

the densely meshed area around airfoil

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

5

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5

1
0
5

1
1
5

1
2
5

1
3
5

1
4
5

1
5
5

1
6
5

1
7
5

1
8
5

1
9
5

Time step

D
e
v
ia

ti
o

n
 f

ro
m

 t
h

e
 r

e
a
l

d
a
ta

Linear interpolation

Our method

Figure 10: Accuracy comparison: Our method vs. linear interpo-
lation. Data from CFD simulation of low-speed airwave hitting the
leading edge of static airfoil (static simulation mesh).

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

Figure 11: Iso-curves extracted from payload-release simulation (iso-value=0.533, time step: 395). Blue rendered original data at the
background (speed magnitude values) are just for illustration and comparison purposes.

9 Conclusion

We presented a method for iso-contours extraction from dynamic
meshes. A method is able to compute iso-contour also in between
defined time slices. In this way a smooth continuous iso-contours
evolution can be visualized. This is particularly useful inthe cases
of large simulations when only every n-th time step is saved and the
evolution of iso-contour can be interpolated and visualized by the
proposed method. The method has been successfully applied onto
the data sets from Computational Fluid Dynamics simulations.

The main contributions of presented method are:

• Method supports a sequence of triangular meshes with time-
varying geometry / topology as its input, withouta priori
knowledge about vertices connectivity between successive
time slices.

• There is no need to re-sample the original data onto the static
regular grid, which is required by most of the existing meth-
ods for time-varying data visualization.

• Iso-contour visualization itself is done at interactive frame-
rates, which makes investigation of dynamic data behavior ef-
ficient.

• Steps are incorporated which allow to tune the method up for
a particular dataset without changing its overall principle (se-
lection of the best suitable method for iso-components match-
ing between successive time steps).

Future work involves further exploration of the method’s 3Dex-
tension and also improvements of the method that would lead to
its higher accuracy and ability to handle data sets sampled more
sparsely along the time dimension.

Acknowledgement

This work has been supported by the project 3DTV NoE FP6 No:
511568 and Ministry of Education, Youth and Sports of the Czech
Republic project VIRTUAL No: 2C06002. Data sets are courtesy
of Centre of Computer Graphics and Data Visualization, University
of West Bohemia, Czech Republic.

References

AMSDEN, A. 1997. Kiva-3v: A block-structured kiva program
for engines with vertical or canted valves. Technical Report LA-
13313-MS, Los Alamos NATIONAL LABORATORY.

BAJAJ, C. L., COYLE, E. J., AND L IN , K.-N. 1996. Arbi-
trary topology shape reconstruction from planar cross sections.
Graphical Models and Image Processing 58, 6, 524–543.

BERNARDON, F., CALLAHAN , S., COMBA , J., AND SILVA , C.
2006. Interactive volume rendering of unstructured grids with
time-varying scalar fields. InProceedings of Eurographics Sym-
posium on Parallel Graphics and Visualization ’06, 51–58.

CARR, H., AND SNOEYINK , J. 2003. Path seeds and flexible
isosurfaces using topology for exploratory visualization. In Pro-
ceedings of Symposium on Data Visualization ’03, Eurographics
Association, 49–58.

CARR, H., SNOEYINK , J., AND AXEN, U. 2000. Computing
contour trees in all dimensions. InProceedings of SODA ’00,
Society for Industrial and Applied Mathematics, 918–926.

CAVALLO , P., HOSANGADI, A., AND AHUJA, V. 2005. Transient
simulations of valve motion in cryogenic systems. InProceeding
of 35th AIAA Fluid Dynamics Conference and Exhibit.

DE LEEUW, W., AND VAN L IERE, R. 2001. Chromatin decon-
densation: a case study of tracking features in confocal data. In
Proceedings of Visualization ’01, IEEE Computer Society, 441–
444.

DOLEISCH, H., MAYER, M., GASSER, M., PRIESCHING, P.,
AND HAUSER, H. 2005. Interactive feature specification for
simulation data on time-varying grids. InProceedings of SimVis
’05, 291–304.

DONEA, J., HUERTA, A., PONTHOT, J.-P.,AND RODRIGUEZ-
FERRAN, A. 2004.Encyclopedia of Computational Mechanics,
vol. 1. John Wiley & Sons.

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

LORENSEN, W. E., AND CLINE , H. E. 1987. Marching cubes: A
high resolution 3D surface construction algorithm. InProceed-
ings of ACM SIGGRAPH ’87, ACM Press, 163–169.

MA , K.-L. 2003. Visualizing time-varying volume data.Comput-
ing in Science and Engineering 5, 2, 34–42.

MARSHALL , L., Ed. 2002.Fluent news: Dynamic Mesh, vol. XI.
Fluent Inc.

REINDERS, F., POST, F. H., AND SPOELDER, H. J. W. 1999.
Attribute-based feature tracking. InData Visualization ’99.
Springer-Verlag Wien, 63–72.

SAMTANEY, R., SILVER , D., ZABUSKY, N., AND CAO, J. 1994.
Visualizing features and tracking their evolution.Computer 27,
7, 20–27.

SHEN, H.-W., CHIANG , L.-J., AND MA , K.-L. 1999. A fast
volume rendering algorithm for time-varying fields using a time-
space partitioning (TSP) tree. InProceedings of Visualization
’99, IEEE Computer Society Press, 371–377.

SHEN, H.-W. 1998. Iso-surface extraction in time-varying fields
using a temporal hierarchical index tree. InProceedings of Visu-
alization ’98, IEEE Computer Society Press, 159–166.

SILVER , D., AND WANG, X. 1998. Tracking scalar features in
unstructured datasets. InProceedings of Visualization ’98, IEEE
Computer Society Press, 79–86.

SUTTON, P., AND HANSEN, C. D. 1999. Isosurface extraction
in time-varying fields using a temporal branch-on-need tree(T-
BON). In Proceedings of Visualization ’99, IEEE Computer So-
ciety Press, 147–153.

SZYMCZAK , A. 2005. Subdomain-aware contour trees and contour
tree evolution in time-dependent scalar fields. InProceedings of
Shape Modeling International 05, IEEE Computer Society, 136–
144.

WEIGLE, C., AND BANKS, D. C. 1998. Extracting iso-valued
features in 4-dimensional scalar fields. InProceedings of IEEE
Symposium on Volume Visualization ’98, ACM Press, 103–110.

WYVILL , G., MCPHEETERS, C., AND WYVILL , B. 1986. Data
structure for soft objects.The Visual Computer 2, 4, 227–234.

SCCG 2007 conference, ISBN 978-80-223-2292-8, pp.216-223,2007

