
FULL-PARALLAX HOLOGRAM SYNTHESIS OF TRIANGULAR MESHES USING A
GRAPHICAL PROCESSING UNIT

Ivo Hanák, Martin Janda, and Václav Skala

University of West Bohemia
Department of Computer Science and Engineering

Univerzitnı́ 8, Pilsen, 306 14, Czech Republic

ABSTRACT

Application of the GPU to the computer generated hologra-
phy is a topic of research for some time. While the majority
of authors aim on performance, we aim on visual aspects. We
present a new approach that is capable to synthesise a holo-
gram of a scene described by triangles using the GPU and it
is capable to respect a local intensity variation on a surface
caused by textures and solve occlusion at the same time.

Index Terms— Holography, Computer graphics, Render-
ing

1. INTRODUCTION

Computer generated holography (CGH) is a research topic for
some time. Even thought the computational power is increas-
ing, the generation of the full-parallax hologram is a problem
on available computation power of an off-shelf computer to-
day. At the same time, a graphical processing unit (GPU)
offers a computational power that is greater than the com-
parable CPU. This encouraged attempts on general purposed
processing on the GPU.

Currently, there are several approaches that deals with the
CGH using the GPU [1, 2]. These solutions provides almost
real-time hologram synthesis. Yet, they trade the performance
for the visual quality as they assume that the scene consists of
low number of points or lines. The solid surface is out of
reach for them as the number of surface elements required
to gain an impression of a solid surface is far too high. The
approach presented in this paper deals with the CGH with the
aim on the visual quality of the output. We are able to render
surface and to solve the occlusion, too. In order to speedup
the process we use a programmable GPU.

This work was supported by EU 3DTV NoE project No. 511568 and
by MSMT CR project CPG No. LC06008. We would like to thank prof.
L. Onural from Bilkent University for help and for valuable advises. Used
models are based on data from the Stanford 3D Scanning Repository.

1.1. Utilized CGH model

For purposes of our approach we made following assumptions
and restrictions. First, we assume that surfaces are decompos-
able to point sources that are ideal and thus their complex am-
plitude at the source is not influenced by other point sources
in the scene. Second, a point on a surface has a complex am-
plitude with a phase equal to zero. As proposed in [3] this
shall not harm the hologram. Third, a point on a surface has
to be aligned to a distance nλ, where n is integer and λ is a
recording wavelength. According to numerical experiments,
only such points allows an arbitrary tilted plane to be recon-
structed properly without high angular sampling rate [4].

The approach treats the scene as a composition of large
point source set and the final diffraction pattern is computed
as a superposition of individual point sources defined as:

ũ(r; A) =
A

r
exp(−jkr), (1)

where k is wavenumber, r is a distance to point source, and
intensity of the point source is estimated according to numeri-
cal models for local lighting known from the computer graph-
ics. The numerical verification of results is done by numerical
simulation of wave propagation in angular spectrum [5, 6].

1.2. Graphics processing unit

The GPU is an implementation of a basic pipeline for render-
ing based on triangles. Certain parts of the GPU are customis-
able by a user supplied code. Thanks to its computational
power based on parallelism and limitations, such as restric-
tions on random-write operation, limited maximum offset for
read operations, lower accuracy, and lack of persistent mem-
ory allocation, it is possible to transfer certain tasks from the
CPU to the GPU and gain a speedup that depends on a na-
ture of the given algorithm. Currently, GPUs have two major
programmable blocks: the vertex shader and the pixel shader.
The vertex shader takes individual vertices, process them, and
passes them to the clipping engine and rasterizer. The pixel
shader computes color of surface elements generated by ras-
terizer. As the pixel shader is capable to write the result of

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on August 13,2010 at 08:27:51 UTC from IEEE Xplore.  Restrictions apply. 

3DTV Conference proceedings, IEEE ISBN 978-1-4244-0722-4, 2007

Skala
Obdélník



the processing to a memory array, it is usually a place for the
major computational kernel.

2. THE PROPOSED APPROACH

Our solution works for horizontal parallax only (HPO) holo-
grams as well as for full parallax holograms. Thus, let us
first describe the solution for the HPO case, the extension to
the full parallax version is straightforward. If a scene con-
sists of a single point source then each sample on a line of
diffraction pattern contains a complex amplitude according to
the Eq. (1). Increasing number of points leads to the solution
that is almost the same. The only difference is higher number
of contributions that has to be summed to gain a sample of the
diffraction pattern. Increasing of the number of point source
increases the scene complexity until the situation when the
scene consists of solid surfaces. Yet, in such case the number
of points is too high for computation time to be reasonable.
Thus, more effective approaches has to be applied by use of
wave propagation [7, 6] or even more effectively by use of
precomputed patterns [8]. Even thought, the latter approach
is effective, it cannot handle occlusion and local variations on
the surface and/or line that includes a texture. And that is a
place where our solution fits in.

First of all, our solution uses orthogonal projection be-
cause perspective is only a side-effect of a lens. Basically
there are two geometrical transformations that causes this ef-
fect: a rotation and a slanting. If the scene consist of a single
line parallel to the X-axis then by application of both trans-
formation we obtain different results, see Fig. 1a and Fig. 1b.
While the rotation causes non-uniform size of individual rays
that were of the same size before, the slanting does not ex-
hibit such behavior. Thus, we used slanting in a form of a
transformation matrix in left-handed coordinate system:

xt = x− z tan ξ, ξ ∈ (−π/2; π/2), (2)

where xt is transformed x-axis coordinate of point v for rays
of given angle ξ.

It can be seen in the Fig. 1 that the length of transformed
ray is related to the original one. The difference is caused by
a scaling along the Z-axis. Thus, the complete transformation
for the HPO case is:

vt = v
[

1 0
− tan ξ 1/ cos ξ

]
,v = [x; z], (3)

where v is an original point and vt is a transformed one that is
projected by orthogonally later. Note, that the transformation
does not cause non-linear deformations and thus it is possible
to benefit from capabilities of the GPU to perform linear inter-
polation along line/surface. After the vertex v is transformed,
the X-coordinate corresponds to an address of the sample on a
hologram line and the Z-coordinate is substituted as distance
r to the Eq. (1) in order to obtain a contribution. Intensity A

Fig. 1. Effect of a rotation transformation (a) and a slanting
transformation (b) on a line parallel to X-axis and a slanting
transformation in detail (c).

is computed according to a local lighting models [9]. Contri-
butions of individual angles ξ are summed together to form a
sample of a final diffraction pattern.

2.1. Extension to full-parallax

Full-parallax extension of the HPO approach applies the same
equation for the Y-coordinate as well as for the X-coordinate.
The only complication is a proper scaling along the Z-axis.
The scale coefficient can be computed as size of a vector
v = vx + vy + vz, where |vx| = z2 tan2 ξx and |vz| = z2.
Adding a second angle ξy to an already existing angle ξx

yields a transformation:

vt = v




1 0 − tan ξx

0 1 − tan ξy

0 0 (1 + tan2 ξx + tan2 ξy)
1
2




T

, (4)

where v = [x; y; z] and vt is point in the real-world coordi-
nates that is projected orthogonally to the hologram. Note,
that the transformation in the Eq. (4) is valid for a left-handed
coordinate system with Y-axis up and Z-axis pointing towards
the scene. The algorithm that computes a full-parallax holo-
gram is almost the same as the HPO version. The only dif-
ference is that it contains two loops, each iterating different
angle ξx and ξy independently.

2.2. Angle sampling considerations

The range of angles ξx and ξy can be estimated from an axis-
aligned bounding box as it is depicted by the Fig. 2a. If the an-
gle steps over this range, no sample of the diffraction pattern
will be affected. The scene sampling is a discretized version
of integration over a hemispherical domain for each diffrac-
tion pattern sample. Respective areas on the hemisphere have
to be kept as close to uniformity as possible. Otherwise, a
contribution has to be weighted. This is fulfilled even for a
constant angular step if maximum angle is kept small, see

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on August 13,2010 at 08:27:51 UTC from IEEE Xplore.  Restrictions apply. 

3DTV Conference proceedings, IEEE ISBN 978-1-4244-0722-4, 2007

Skala
Obdélník



Fig. 2. As this is fulfilled for a proper minimum object dis-
tance due to currently available spatial light modulators we
apply this scheme as well. If more suitable sampling is re-
quired it is possible to express it in term of angles ξx and ξy .

Fig. 2. Evaluation of a maximum sampling angle ξ =
max(ξ1, ξ2) for right side (a) and hemisphere from a top-view
sampled by a constant step in both angles (b).

3. IMPLEMENTATION

The implementation on the GPU is rather straightforward.
Yet, it has few difficulties that have to be avoided in order
to let the algorithm to behave properly and give reasonable
results. The actual implementation is done by use of the Di-
rect3D 9.0c interface and the GPU of shader model (SM) 2.0.

3.1. Numerical accuracy

The accuracy is crucial for computation of phase of the holo-
gram [10] and thus a high error in phase of a single contribu-
tion causes a significant degradation of the diffraction pattern.
The contribution is a complex number based on the Eq. (1).
The argument of the contribution is a distance r divided by
the wavelength λ but only its fraction part is required. As
1/λ ≈ 106 and r < 100 the integer part of the result is
106 ≈ 220. Thus an unnecessary integer part requires 20 bits
but on SM 2.0 a mantissa is guaranteed to have only 16 bits.
Even SM 3.0 has only 23 bits reserved for mantissa.

This numerical accuracy is bypassed by replacing the Z-
coordinate by z/λ with the result slit up into an integer and a
fractional part. The integer part has to be split up once more
as it does not fit into 16-bit mantissa, the fraction part has ac-
ceptable accuracy because it is used only for rounding of the
Z-coordinate to nearest multiply of λ that is greatly simplified
by the decomposition.

Also, for the HPO version we found out that it is diffi-
cult to evaluate 1/ cos(ξ) from the Eq. (3) precisely enough
for a very small angles as the cosine changes very slowly.
The same problem was detected for full-parallax Z-coordinate
scale factor from the Eq. (4). As the angle ξ is small, we ap-

plied Taylor expansion around zero together with decomposi-
tion scheme similar to the Z-coordinate.

In another words, both Z-coordinate and the Z-coordinate
scale factor are computed and stored in form of vectors. In the
case of the scale factor the fractional part is split further up be-
cause for the HPO hologram the integer part starts to grow for
larger angles. The ideal boundary of splits is 8 bits because
for 16-bit mantissa the multiply of two 8-bit numbers will not
cause loss of bits. This leads to use of a four-component vec-
tor in order to get acceptable number of bits. Yet, according
to our experiments, even a split boundary of 10 bits did not
cause significant degradation in the result.

The sum of individual contributions did not shown any
signs of accuracy problems as we did not see any disturbing
artifacts after numerical reconstruction. Thus, a vector that
consist of two components is used to store the resulting com-
plex number.

3.2. Implementation structure

We decided to use GPU of the SM 2.0 as it is a standard now
even for low-cost integrated GPUs. Due to that, the imple-
mentation requires four passes and two render target switches
for a combination of angles ξx and ξy . Even thought the num-
ber of passes can be reduced to three by merging the second
and the third pass by use of higher shader model, the number
of render target switches stays the same. For GPU of SM 2.0
each iteration includes step:

1. Render depth buffer of the scene including a stencil
buffer in order to benefit from GPU capability to skip
surface elements that are hidden according to the depth
buffer.

2. Compute phase and intensity of a complex amplitude
for a contribution with aid of a depth buffer from pre-
vious step. Phase is stored in tree-component vector,
intensity occupies only a single scalar value.

3. Compute contribution from phase and intensity, sum it
with the diffraction pattern from the previous iteration,
and store it into new diffraction pattern.

4. Copy diffraction pattern samples that were not modified
by this step to the new diffraction pattern.

4. RESULTS

We implemented our solution in C# 2.0, Direct3D 9.0, and
the HLSL, a language for the GPU. We tested our algorithm
on a AMD Athlon 3200+ with a single NVIDIA GeForce
FX 6800GT. The resolution of the diffraction pattern was set
to 1024 samples as the GPU-friendly resolution. The object
was centered around 200mm with maximum depth averaging
around 10mm. The constant step for angles ξx and ξy was

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on August 13,2010 at 08:27:51 UTC from IEEE Xplore.  Restrictions apply. 

3DTV Conference proceedings, IEEE ISBN 978-1-4244-0722-4, 2007

Skala
Obdélník



experimentally estimated to 1/300◦ as the longest step that
does not lead to appearance of false object reconstructions.

For a bunny model that consist of 16000 triangles with
simple lighting and one texture applied the computation time
was 8.1 hours. For more complex model with 96000 triangles
the time was 11.8 hours and for a simple model of 64 trian-
gles the was 6.0 hours. We assumed that last mentioned time
is approximately the overhead of the GPU caused by multiple
passes and render target switching for single combination of
angles ξx and ξy . The resulting diffraction pattern was recon-
structed numerically and for the bunny model, the results are
shown in the Fig. 3.

Fig. 3. Numerical reconstruction of diffraction pattern of a
textured model focused on muzzle z = 197mm (top) and on
body z = 200mm (bottom).

5. CONCLUSION

We presented a new approach that allows rendering of full
parallax diffraction patterns for a scene defined by a triangu-
lar mesh. We can solve occlusion and apply local lighting
and/or texture and we are compatible with compute graph-
ics methods for triangle-based visualisation. Even though we
ignore all effects caused by sharp edges we did not detected
any visible degradation in the numerical reconstruction. Our
approach is easily scalable and the performance can be im-
proved by distributed computation. We expect that the rela-
tion between speedup and a number of computers/GPUs to be
almost linear.

6. REFERENCES

[1] N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie,
“Computer generated holography using parallel com-
modity graphics hardware,” Optics Express, vol. 14, no.
2, pp. 603–608, 2006.

[2] C. Petz and M. Magnor, “Fast hologram synthesis for 3d
geometry models using graphics hardware,” in Practical
Holography XVII and Holographic Materials IX. SPIE,
2003, vol. 5005, pp. 266–275.

[3] M. Lucente, “Interactive computation of holograms us-
ing a look-up table,” J. El. Imag., vol. 2, pp. 28–34,
1993.

[4] M. Janda, I. Hanák, and V. Skala, “Digital HPO holo-
gram rendering pipeline,” in EG2006 short papers conf.
proc., 2006, pp. 81–84.

[5] G.B. Esmer and L. Onural, “Computation of holo-
graphic patterns between tilted planes,” in Holography
2005. SPIE, 2006, vol. 6252, p. 62521K.

[6] J.W Goodman, Introduction to Fourier Optics, Roberts
& Company Publishers, 3rd edition, 2005.

[7] H.P. Moravec, “3d graphics and the wave theory,” in
SIGGRAPH ’81, 1981, pp. 289–296.

[8] M. Koenig, O. Deussen, and T. Strothotte, “Texture-
based hologram generation using triangles,” in Practical
Holography XV and Holographic Materials VII. SPIE,
2001, vol. 4296, pp. 1–8.

[9] A. Watt, 3D Computer Graphics, Addison-Wesley, 3rd
edition, 2000.

[10] O. Matoba, T. J. Naughton, Y. Frauel, N. Bertaux, and
B. Javidi, “Three-dimensional object reconstruction us-
ing phase-only information from a digital hologram,” in
Three-Dimensional TV, Video, and Display. SPIE, 2002,
vol. 4864, pp. 122–128.

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on August 13,2010 at 08:27:51 UTC from IEEE Xplore.  Restrictions apply. 

3DTV Conference proceedings, IEEE ISBN 978-1-4244-0722-4, 2007

Skala
Obdélník


