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Abstract 

This paper presents a fast and complete rendering method that can 

be used for creating digital horizontal parallax only (HPO) 

holograms of a scene consisting of triangle mesh objects. This 

method solves visibility and occlusion problems and is capable of 

working with triangles as the basic primitive instead of the usually 

used points. It is fast because it avoids the direct distance 

computation using the square root operation. Advanced numerical 

reconstruction techniques are used for presenting the results of the 

rendering method. 
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1 Introduction 

The two dimensional displays are known for quite a long time.  

Two dimensions, however, are not enough. One needs three 

dimensions. There are several research activities in progress 

whose goal is to create a genuine three dimensional display.  

This research has already delivered several solutions like 

stereoscopic displays or volumetric displays, but the solutions are 

not complete because each of them delivers only some of the 

depth cues. The stereoscopic displays have a single viewing 

position and/or viewer if tracking is utilized; volumetric displays 

are not able to hide occluded surfaces. 

These limitations might be bypassed by the auto-stereoscopic 

displays based on multiple views. They are able to deliver very 

appropriate results with all depth cues thanks to the large number 

of views. Yet, these images are still 2D images not a wavefront 

emitted by the original scene as in the case of the holography. 

Holography is completely different from solutions mentioned 

before. This technology is able to reconstruct complete wavefront 

and thus is capable of delivering all depth cues without limitations 

in ideal case. This fact makes this technology very promising for 

the future utilization within 3D displays. 

However there is always a catch and the holography catch is a 

huge amount of data needed to describe a hologram. This 

influences memory consumption, transmission bandwidth, and 

processing time if a hologram is computed numerically.  

Nowadays, there are spatial light modulators that allow 

modification of light properties similar to that of an optical 

hologram. Unfortunately, they have several limitations in 

resolution, size, and range of light property modifications but they 

can be considered as a basis for future holography-based displays. 

Nevertheless, it is not a problem of computer graphics, rather it is 

a problem of the hardware development. 

The problem to solve is to compute a hologram of a synthetic 

scene that would be fast enough. There has been a lot of work 

done in this field, e.g. Lucente [1994], but the results are quite far 

from the beauty of the scenes we are used to from games and 

computer generated movies. 

We have developed a method for hologram rendering which is 

capable of evaluating visibility and occlusion in a scene composed 

of triangular meshes, which are most convenient since all tools for 

processing triangle meshes are available.  

For the purposes of presenting our results we need to be able 

reconstruct the scene from a hologram. This is also useful for 

reusing scene information contained in a hologram for other 

displaying systems like the already mentioned stereoscopic 

display, which works on a principle of delivering slightly different 

images to each eye. In order to use a hologram as a data source for 

such a display one needs to reconstruct the scene from two 

different viewing positions and then deliver those images to eyes. 

The reconstruction process described in this paper is a 

combination of existing approaches as described in the following 

section. The approach described here is simple, yet it provides a 

reasonable output that allows us to prove the major part of this 

paper: the rendering algorithm. 

Now a little summary of what follows: 

 In the section 2 the basic information about holography 

and the current state of the art is presented.  

 Section 3 contains description of the scan line rendering 

method of a hologram.  

 Section 4 contains description of the reconstruction 

issues.  

 Section 5 presents short summary and our conclusions.  

 Our intentions for a future work are presented in the 

section 6. 

2 Fast Introduction into Holography 

In opposition to the majority of computer graphics approaches, 

where the light is represented by rays or structures of similar 

properties, the light is considered a wave in the case of the 

holography. The mathematical expression for the wave has a form 

of a phasor notation: 

tiiU=tu exp~  (1) 

where φ is the basic phase and U is an amplitude of the wave that 

square is related to its energy according to mean optical intensity. 

The ω is an angular frequency of the wave and t is time. The first 
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component of the exp-function argument represents a spatial 

configuration of the wave while the second part represents a time 

varying configuration of the wave. The latter one is omitted for 

computational reasons, i.e. the scene and the waves are examined 

in a single moment of a time with no consideration about the wave 

propagation speed through a space. The tu~  has complex values, 

i.e. it is a vector in a complex plane. 

The next important thing that is required for holography is the 

phenomenon of light diffraction on a diffraction grating. 

Diffraction is essential to holography because it causes a change 

of the light wave propagation direction with some energy loss 

caused by the fact that the diffraction grating divides energy of 

wave between several waves, each traveling in different direction.  

The simplest grating to describe is a cosine grating, which is a 

grating resembling the cosine function where –1 means full 

transparency and +1 full opacity of the material. The equation, 

which describes a diffraction of a plane wave whose direction of 

propagation is perpendicular to the grating, is called a diffraction 

condition: 

,,2,1,0,sin g
Λ

λ
g=Θ , (2) 

where Θ is the angle measured from the normal of a grating plane, 

λ is an incident light wavelength, and Λ is a length of the cosine 

function period of the grating. 

The g is an integer number and represents an order. Even though 

the g is in the range of <0; +∞ ), only value of g = 1 is 

considered. The values larger than 1 are omitted due to very low 

energy they carry and in the case of holography they are a cause 

of noise. The g = 1 order has approximately the energy of one 

fourth of the original plane wave energy. The highest energy has 

the zero order that is basically the undiffracted plane wave. This 

order is ignored as well because of the fact that it is not possible to 

control its direction by means other than by changing the original 

wave‘s direction. In holography, this zero order may damage the 

resulting image due to its high energy. 

Besides the diffraction holography also depends on a phenomenon 

of interference that appears if two waves are superposed together. 

According to phases of incident waves, various cases of 

interference ranging from constructive, i.e. both phases are the 

same, to destructive, i.e. difference of phases is π , appear. 

This effect is important for holography because it allows 

construction of a structure that acts as a diffraction grating later 

on. And this is the essence of holography. When a plane 

considered as a screen is illuminated by a coherent light and by a 

light coming from a scene an interference pattern also called 

fringe pattern is generated. The coherent light is usually 

referenced as a reference wave. The whole situation can be 

described by the following equation: 

**222 ~~~~~~~~
RsRssRsR uu+uu+u+u=u+u=I , (3) 

where I is an energy density, 
Su~ is the wavefront from a scene, 

Ru~  is the reference wavefront and superscript * denotes complex 

conjugate. Rather than the equation itself, its expansion is 

important for holography. The first component represents energy 

of the reference wave and influences only variation in brightness 

of the whole hologram and thus can be omitted in numerical 

simulations. The second component is denoted as a scene self-

interference and causes unwanted artifacts such as a noise. For 

simplification reasons this component is usually omitted as well.  

The most important parts of the Equation (3) are the last two 

components that are the actual cause of the fringe pattern. These 

components, respective their real parts are usually denoted as 

bipolar intensity and can be expressed as real part of complex 

number multiplication: 

sRsRsRB uu=uu=I cos ~~2~~2 * . (4) 

If such pattern, i.e. IB, is recorded on a light-sensitive material 

such as a high-resolution photographic film, the result is a 

diffraction grating, i.e. hologram. When this diffraction grating is 

illuminated by a reference wave of the same propagation 

direction, distance, and wavelength, waves are created thanks to 

the diffraction. A part of these waves resembles the original 

waves that were coming from the scene when recording was 

made. The only difference is in the brightness of the resulting 

image caused by the fact that the energy of the image is part of 

reference wave energy utilized in reconstruction. 

The direction of the reference wave relative to the recording plane 

together with a position of the scene is an important aspect of the 

optical holography. The simplest approach is to put the source of 

reference wave, the scene and the recording plane in a line. This 

configuration is denoted as in-line hologram and requires a scene 

to be transparent in a majority of its volume, see Hariharan et al. 

[1996]. Due to the nature of the scene, this configuration allows 

reconstruction of silhouettes mostly. 

Another configuration is denoted as off-axis, i.e. direction of the 

reference wave propagation and the direction towards the scene 

does not follow normal of the recording plane. This configuration 

allows to record surface information of objects in scene and when 

reconstructed, the image is not disturbed by the first component 

from the equation (3) at all in an ideal case. Nevertheless, for 

computational reasons we will consider only in-line holography.  

2.1 Digital Hologram Computation 

From the numerical point of view, both construction of a 

hologram and a reconstruction of an image can be simulated by 

considering  points in the scene as  point sources of  light, i.e. the 

scene has to be decomposed into reasonable number of reasonable 

small points. Each point emits a spherical light wave that 

propagates through the space according to a following expression: 

ikri
r

U
=zy,x,u exp exp~ , (5) 

where U is related to an energy of given point source and φ is its 

starting phase. In a majority of cases the scene sampling is 

significantly larger than the wavelength and thus this starting 

phase is considered as zero, i.e. the component containing this 

phase is omitted, see Lucente [1994]. The k denotes a 

wave-number and depends on a wavelength, i.e. λπ=k /2 . The r 

is a distance of examined point to the point source, i.e. 

222 z+y+x=r . Wavefront coming from a scene is computed 

as a superimposition of individual point sources’ spherical light 

waves. 
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As it was already mentioned, the hologram is constructed by 

superimposing of a wavefront coming from the scene together 

with a reference wave. In optical holography, the reference wave 

can be of any form with the requirement of a coherence and 

monochromacity, i.e. only single wavelength. In the case of 

digital holography, the situation is not different, yet, for 

simplification reasons the reference wave is considered to be a 

plane wave. For such a wave, the propagation in the space of 

constant refraction index is defined as: 

,expexp

expexp~

zkykxkiiU

ikriUu

zyxR

RR
 (6) 

where k is a wave-number and it is equal to a size of the 

wave-vector zyx k,k,k . 

Of course, during the process of rendering, one has to, consider 

the visibility of points. The points are infinitesimally small thus 

all points are always visible. That introduces transparency into the 

scene and in most cases, this is an unwanted phenomenon. 

Some hidden surface (points) removal method has to be applied 

before computing the wavefront. However, this is quite an 

expensive operation. Moreover, the visibility of points changes 

across the hologram plane. Each point on a hologram can be 

considered as a viewpoint and the visibility of points has to be 

evaluated according to that viewpoint. This makes it very 

demanding in regard to algorithmic and computation efficiency. 

One trick to cut down the computation demands is to get rid of the 

vertical parallax. It is not as important as the horizontal one 

because human eyes are also arranged horizontally. By omitting 

the vertical parallax, one has to consider only the slice portion of a 

scene for a given hologram row, i.e. only points having 

Y coordinate equal y may contribute to a hologram row having the 

same coordinate y. This practically removes one order of 

complexity and also reduces dimension of all rendering problems 

to two dimensions. Holograms with horizontal parallax only are 

denoted HPO. 

2.2 Digital Hologram Reconstruction 

Reconstruction, i.e. computation of an image, means numerical 

propagation of an optical field from one plane to other. In its basic 

form, the solution is similar to the construction process, i.e. 

superposing of individual points sources where each point source 

is a point on a hologram plane. If a source plane is set to the 

coordinate system’s origin and directed to direction of positive 

Z-axis, then one obtains the following equation: 

00000 exp ~1~ dydxikry,xu
r

=zy,x,u  , (7) 

where r is the distance between the source point (x0, y0, 0) and the 

examined point (x, y, z), k is a wave-number, and 0
~u  describes an 

optical field at a source place. If a source is a hologram, i.e. an 

intensity function h(x0, y0), the source optical field is usually 

estimated as 00
*

00000
~~ y,xhy,xu=y,xu R . 

It can be clearly seen from the Equation (7) that a direct 

implementation of the equation leads to an algorithm of O(N4) 

complexity and becomes unusable even for common sizes of 

1024×1024 samples. For these reasons, this algorithm is not 

employed at all. 

Nevertheless, the reconstruction can be successfully performed 

using the Fourier transformation (FT) together with the Fresnel 

approximation, see Goodman [2004]. If a distance to the source 

plane is much larger than the maximum extent in the source plane, 

i.e. z<<(x2 + y2), it is possible to approximate the variable r in the 

Equation (7) by an expression that does not contain square root. 

In the case of the variable r utilized for modification of the 

amplitude it can be even approximated by the variable z because 

the amplitude is not as important as the phase, see Matoba et al. 

[2002]. In the case of the r variable in the phase component, is it 

possible to approximate it by 
z

y+x
+zr

2

22

 as the first two 

components of the Taylor expansion for square root in the 

expression a+zzyxr 1222
.  

An important requirement is that the third component should not 

cause changes larger than 1 rad. If fulfilled, this leads to an 

expression which, if expanded, resembles the 2D FT of an input 

optical field multiplied by a chirp function, see Goodman [2004]: 

00

00

2

0

2

0

000

22

exp
2

exp~

2
exp

exp~

dydx
z

yy+xx
ik

z

y+x
iky,xu

z

y+x
ik

z

ikz
=zy,x,u

(8) 

Another possibility is to interpret FT of an input optical field as a 

set of plane waves, see Esmer et al. [2004]. Each sample U(kx, ky) 

on such FT-transformed plane is basically a complex amplitude, 

i.e. amplitude and phase, of a plane wave that is propagated in 

direction of its wave-vector kx, ky, kz, where 222
yxz kkkk . 

After that, the image is computed using a backward FT over 

propagated set of plane waves. This solution requires FT twice. 

Yet, it does not utilize approximation of any kind and thus it is 

able to handle reconstruction that violates condition required for 

the Fresnel approximation. An interesting feature of this approach 

is the fact that it is able to handle other cases than just parallel 

plane, i.e. it allows estimating optical field on plane that is rotated 

in respect to the source plane. 

3 Hologram Scan Line Rendering 

This section describes our method for rendering a hologram of a 

triangle mesh object. This method is capable of computing some 

sort of form factors which relates an occlusion – a point is not 

considered if it is occluded by some other point – and visibility – 

less area is visible if a triangle is tilted or far away – of triangles 

and makes the captured and reconstructed scene more real like.  

The method is tailored for the HPO holograms because the 

problem of rendering is much easier for HPO holograms. This is 

due to reduced dimension of the problem. Instead of three 

dimensional problem of general form factor computation, one has 

only two dimensional problems in the case of HPO. The Figure 1 

depicts the situation for one single row of a hologram.  

If a HPO hologram is considered, then triangle mesh objects are 

reduced into a set of planar polygons or polylines if mesh is not 

manifold. The bipolar intensity of a hologram’s sample is then 
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obtained as an integral of contributions from all polygon edges 

over half a circle, see Figure 1, providing the edges faces the 

sampled point. However, the problem of such integration is that 

the integrated function is quite complex. More over, this function 

must exclude those edge parts, which are occluded by closer 

edges and thus are invisible from the sample’s position. 

 
Figure 1: Rendering of the HPO hologram. 

The integral can, however, be guessed by sampling the scene 

angularly. This sampling is depicted in the Figure 5. The 

integration is then substituted by a summation. Since this 

summation has to be performed for each hologram sample, it has 

to be as efficient as possible. Fortunately, we have developed 

a method which performs this summation very efficiently and it is 

described in detail in the following sections. 

3.1 Geometry Slicing 

First of all, the scene slice corresponding to the currently 

evaluated hologram row has to be computed. This task is quite 

easy and can be performed in a similar way as the triangle scan 

line conversion. Scanning is performed in the Y axis direction. 

Vertices of each triangle have to be sorted by their Y coordinate. 

The first and the last vertex define the leading edge, the first and 

the second one define the top edge and the second and the third 

one define the bottom edge. A step vector corresponding to the 

scan line spacing is computed for each of the triangle’s edges. 

Then the initial intersection of the edge with the nearest scan line 

is computed, after that all consequent intersections are computed 

simply by adding the step vector to the previous intersection. 

 
Figure 2: Modified triangle scanline slicing. 

The slice of a triangle, which is a line, is defined by the 

intersection points of the current scan line with the leading edge 

and the currently active opposing edge. The acquired line is 

required to be oriented in such a way that its first vertex is on the 

left side and the second one on the right side. The left respective 

right side is derived from the triangle normal.  

An easy way to find out if the leading edge determines the first or 

the second vertex of a slice line is to use some vector algebra. One 

has to compute a dot product of a triangle’s normal and a vector 

product of the leading edge and the top edge considered as 

vectors. The sign of the dot product determines if the vertex 

obtained from the leading edge is the first one or the second one. 

This method of course requires uniform orientation of all 

triangles. 

In the current method’s implementation, each triangle is treated 

individually so if two triangles share one edge then this edge is 

actually processed two times. This can be optimized by taking the 

triangles adjacency into consideration. 

3.2 Lines Visibility Preprocessing 

The result of the slicing is a set of oriented lines. The situation is 

depicted in the Figure 1. It is obvious that some of the lines are 

invisible from every sample point of the current row. The question 

is how to detect invisibility from a given point. Once this question 

is sorted out then the line is a potential contributor if it is visible 

from at least one of the hologram extremes. See Figure 3 for 

reference. 

 
Figure 3: Candidate lines are those visible from at least one 

hologram row extreme. 

And now, let’s deal with the question of visibility. Because the 

lines have uniform orientation their visibility is computed from 

the angles between the line’s vertices and the positive X axis in 

respect to the sample point position. If the angle  corresponding 

to the first vertex of then line is larger then the angle  

corresponding to the second vertex then the line is visible from 

the sample point and invisible otherwise. See Figure 4 for a 

reference. 

The angles are recomputed for each processed sample thus their 

computation must be as efficient as possible. One way to achieve 

such efficiency is to pre-compute a huge table which returns the 

angle directly from the provided offset from a sampled point at 

the X axis and the vertex’s z coordinate. 

Now, all the lines that never contribute to any hologram sample 

points have been removed. Everything is set for the next, most 

computationally demanding phase, which is angular sampling. 
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Figure 4: Before angular sampling all lines invisible from 

currently evaluated sample are removed. 

3.3 Angular Scene Sampling 

One more preprocessing task, which is the lines length 

computation, has to be done. The direct distance computation, 

utilizing the square root operation, is performed because the lines’ 

length has to be computed only once for each row. The length 

information is reused later on for indirect distance computation. 

Now everything is ready for computing the hologram samples at 

the current row. 

The angles for each line have to be computed with respect to the 

current sample x position. This can be done again using the pre-

computed table of angles. Once the angles are acquired, the lines 

have to be sorted by the  angle of the second vertex. This sorting 

does not have to be so terrible operation to do because the angles 

are changing slowly since the sample position is changing slowly 

as well. The intensive sorting has to be therefore done for the first 

sample point only. The quick sort algorithm is used in this case. 

However, from this sample point a further one can use a bubble 

sort, which is very efficient in sorting almost sorted set, which is 

our case. 

The sorted list of lines is then used for maintaining the list of 

active lines, which is a list of lines that are potential contributors 

to the currently sampled angle, as the angle of angular sampling is 

growing. Whenever the angle is increased, all the lines, with the  

angle smaller then the currently sampled angle, are moved from 

the sorted list into the list of active lines. Then the lines with the  

angle smaller then the currently sampled angle are removed from 

the list of active lines. It should be noted, that the lines which are 

invisible from the current sample point are ignored, it is those 

where angle  is smaller than the angle . 

 
Figure 5: Angular sampling of a scene. Only the closest angular 

samples are accumulated. 

For each line in the active lines list the distance of the current 

angular sample to the hologram sample is computed. Then the 

closest sample is eventually accumulated because it is the non-

occluded one. This is repeated for each sampled angle and in the 

end the phase and intensity at the sampled hologram position is 

evaluated and written into an output. The bottleneck of this 

process is the distance evaluation. But it can be significantly 

accelerated using the method described in the following section. 

The advantage of this angular sampling is that the lines, which are 

facing to the hologram and are closer, are sampled more densely 

then the tilted or distant ones. This complies with the fact that less 

area is visible from the tilted or distant triangles and therefore 

such triangles contribute less to the final sample value. One can 

object that this is only two-dimensional case but in three 

dimensions triangles may tilt in two directions. But this is actually 

handled during the scan line conversion. Tilted triangles end up 

with less scan lines then those facing the hologram plane more 

directly. 

This angular sampling also provides uniform sampling for the 

whole scene. As a result, one can use radiance values obtained 

from illumination model as the amplitude value. And because the 

hologram is normalized at the end, the intensity distribution of a 

scene is maintained and it is independent on the angular sampling 

step. 

3.4 Faster Distance Evaluation 

So far so good, the last remaining problem is the distance 

evaluation. The distance evaluation needs that nasty square root 

operation and since distance computation is the most frequent 

operation during hologram rendering one should avoid direct 

distance computation whenever it is possible. 

 
Figure 6: Sine law is used for computing the line samples' 

distance to the hologram’s sample. 

The solution is to use the sine law which states that the ratio of 

sine of an angle and the length of a line which subtends this angle 

is constant in a triangle: sin:sin:sin:: cba . Our 

triangle is depicted in the Figure 6. L is the length of a line 

segment, which was computed in the preprocessing step, d is the 

distance we want to know, C is constant length for a given sample 

position and line.  

The  is already known, it is the difference of the end points’ 

angles used for visibility check. The triangle ratio can be already 

evaluated from L and . The distance C is the only one computed 

using the square root because there is no other option. Now we 

have all the information needed for computing the  and  angles 

and eventually d. The triangle ratio r is then sin/Lr . The  

is computed as )/arcsin( rC  and the  angle is what is left 

to : . Finally, the desired d is computed 

as: sinrd . There is, however, one little glitch, witch is that 
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sine of  and is the same value therefore one can never 

know if the  is correct or not. This can be solved using the dot 

product: 

CL

ASAB
cos . (9) 

We can now compute the  directly using the arccos function but 

since we already know the angles. It is better to use only the sign 

of the cosine to determine the correct values of the already 

computed  and  angles. 

Since we know all the required parameters we can compute d for 

each sampled angle using the sine law. To compute d for the next 

angular sample, we just have to re-compute the triangle ratio and 

from this ratio and the sine of  angle, which is constant for this 

triangle, we can compute d just by one multiplication. To compute 

the ratio we need the sine function call, but the sampling angle is 

changing with the constant step (the angular sampling step) and 

therefore so does the  and  For each angle step,  is decreased 

for the amount of the angle step and  is increased for the same 

amount. One can easily utilize a differential method to compute 

the new value from the old ones. 

3.5 Scene sampling 

During the testing of our algorithm we have experienced a rather 

strange behavior in the reconstructed image. If a scene that 

consists of a vertical line or several distinguishable lines with 

thickness equals to a sampling step of the HPO with distance to 

the hologram of N,5.0 nnz , a line and/or lines of such 

thickness are reconstructed. However, as the thickness of the line 

increases, the intensity of the reconstructed line compared to the 

background decreases. At a certain point, the reconstructed image 

resembled a scene consisting of an object that shadows a reference 

planar wave, see the Figure 7. 

 
Figure 7: Line of various thicknesses measured in hologram 

samples at distance N,5.0 nnz . 

Nevertheless, this behavior was not observed when the line is 

positioned at N, nnz . This ensures that a constructive 

interference appears at a point of its orthogonal projection to a 

hologram plate. Based on that observation, we have adjusted the 

rendering method to displace the position of the angular samples 

so that to the z position is the nearest smaller integer multiple of 

the recording wavelength. 

3.6 Results 

A knot mesh consisting of 2880 faces was used as a test scene. 

The model has about 6 mm in diameter and was placed about 20 

cm from the hologram plane. The computed HPO hologram plate 

was 12 x 6 mm and samples pitch in both directions was set to 

10 m, which is a reasonable value for an inline hologram. The 

computed images had therefore resolution 1200 600. Wavelength 

used for rendering was 633 nm. 

 
Figure 8: Input object mesh 

 
Figure 9: Object's hologram 

 

 
Figure 10: Reconstructed image (top) and its close up (bottom). 
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4 Numerical Reconstruction 

The reconstruction approach we utilized in order to validate our 

results resembles an approach of Esmer et al. [2004]. It is based 

on the same assumption, i.e. that FT of the original optical field 

decomposes such field to a set of plane waves of different 

propagation direction and complex amplitude.  

In order to simulate basic optical system we have incorporated 

a lens to the reconstruction process in a setup depicted in the 

Figure 11. 

z

lens
hologram

reference
wave

 
Figure 11: Reconstruction setup with lens, see Goodman [2004]. 

If the hologram’s extent in the X and Y axis is smaller then the 

extent in the Z axis, then the lens in a spatial space is defined by 

an equation that contains two components: a constant phase 

modification and source plane dependent phase modification, see 

Goodman [2004]. Due to the fact that the constant phase 

modification is applied over the whole plane it is usually omitted 

and thus one gets: 

f

yx
ikyxl

2
exp,

~ 2

0

2

0

00 , (10) 

where f is a focal distance. In order to obtain image without 

disturbance caused by magnification, the focal distance is set to 

2/zf . We also tried to apply non-approximated version of the 

lens equation as described in Goodman [2004]. but we did not 

recognize any differences in the range of distances we have used 

in performed computations. 

Due to the fact that we are both computing and reconstructing 

HPO, we have decided to omit the Y-axis completely and thus 

threat each line individually. This assumption is based on a 

definition of the HPO and a construction of a device capable of 

displaying the HPO, see Lucente [1994]. For such device, the 

viewpoint moving along a vertical line sees always the same 

image and thus there is no need for performing propagation in the 

Y-axis similar to the case of full-parallax holograms. Also, this 

approach allows us to parallelize the reconstruction pretty simply, 

if speedup is required. 

However, this simplification may be a problem in a case of a lens 

because omitting y coordinate would define a cylindrical lens 

instead of a spherical one and thus define a visual system different 

from a common human one. Therefore, we have tried to 

implement both spherical and cylindrical lens and we found out 

that the difference between resulting images is not recognizable 

when converted to 8-bit depth. 

This effect is caused by the maximum extent in the X- and Y-axis 

compared to a distance from the hologram plane to the area of 

interest. We assume that, if 22 yxz  then the change in X and 

Y axis has only a little influence on outcome of the Equation (10) 

and thus it is possible to approximate 22 yx  by 2x  only. This 

allows us to pre-compute the Equation (10) and apply such values 

for each line independently in order to gain a little speedup of 

algorithm implementation. 

As it is common in the reconstruction process, see Goodman 

[2004], lens is applied in a spatial space by multiplying original 

optical field by the Equation (10). Afterwards, the resulting 

optical field is treated similarly to that of Esmer et al. [2004]. The 

approach is described by the following: 

zikyxlyxuzyxu zexp,
~

,~FTFT,,~
000

1

0
, (11) 

where 0
~u  is the optical field of a hologram, 0

~
l  is a lens defined 

by the Equation (10), 
22
xz kkk , and z is a distance to the 

viewer plane. 

During the testing of the reconstruction algorithm’s performance 

we have observed a disturbance caused by the lens component as 

it can be seen in the Figure 12, right column. Due to that and the 

fact that lenses application did not brought any additional quality 

to the image, we have decided to omit the lens for reconstruction 

purposes even though this would cause a loss of perspective. For a 

comparison of the reconstruction with/without lenses see the 

Figure 12. 

 
Figure 12: Image of recorded objects (2 half disc, smaller at 

distance 250 mm, larger at distance 200 mm) with horizontal 

sample pitch of 5×10–3 mm reconstructed at 200 mm (a), at 250 

mm (b), and at 1200 mm (c). 

5 Summary 

We have presented a comprehensive method for computing a 

digital hologram of a triangle mesh scene. There are no 

restrictions on the scene content, except for the mesh face 

orientation which should be counter clockwise. Objects may 

intersect each other and our method will produce correct results 

too. 

The rendering part successfully solves visibility issues very 

efficiently and gracefully. Although the sampling rates have to be 

quite high there is nothing one can do to reduce them. This is due 

to the diffraction nature of the whole thing. 
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The most important result we have obtained during the 

development of this method is the necessity to align the scene 

samples at the z positions, which are multiplications of the 

wavelength.  

To be able to present the results of the proposed approach, 

numerical reconstruction approaches, which were also introduced 

in this paper, have to be used. We perform research in this area as 

well, but it is a little bit aside from rendering. 

6 Future Work 

There are a lot of areas in the described method’s implementation, 

where more efficient approaches or preprocessing can be used. 

We will try to make the implementation as efficient as possible to 

find out, if real time version can be achieved. 

At the moment, the presented method computes only simple 

constant shading and diffuse illumination. This will be improved 

in the following versions of the proposed approach. 

We would like to include other features of rendering such as 

advanced illumination models, texture mapping, or transparency 

handling. These features greatly improve quality of images and 

thus are the very next improvements of the method. 

The inline HPO holograms are easy to process and compute. We 

do not intend to restrict our work to such holograms only and we 

plan to create methods for full parallax hologram rendering 

including the off-axis one. 
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