
Pipeline approach used for recognition of dynamic
meshes

Milan Frank•, Libor Váša†, Václav Skala‡

(mfrank|lvasa|skala@kiv.zcu.cz)

Abstract
In this paper we discuss an application of our MVE-2 project in a research experiment. The
MVE-2 stands for “Modular Visualization Environment version 2”. It is our grass root effort to
create a general and easy to use pipeline based environment. These days we are in the stage of
first real-world research experiments. Following text contains an introduction to the system and
its possibilities. Second part illustrates how our environment was used in a nontrivial recognition
method research.

1 Introduction and motivation
Pipeline data processing is a very efficient and
intuitive way to experiment with data and data
processing methods. This approach pays off
due to flexibility and straightforward
reusability of already existing processing code.

2 MVE-2
Modular Visualization Environment 2 project
has been started several years ago. It has been
driven by enthusiasm about advantages of
pipeline data processing and about modern
programming techniques. It allowed us to
create general intuitive environment that is
friendly for the users as well as for the
programmers of modules.

The whole project is based on the .NET
technology, a major platform for Windows
programming with hi-end programming
features (garbage collector, metadata, ...).

Important features of the system include the
following:
● general core, ready for modules and data

types from various application areas,
● module-map that supports cycles and sub-

branches,

● intuitive and friendly API for modules and
data structures,

● automatic generation of basic module GUI
● automatic generation of module library

documentation,
● very simple creation of modules
● built in XML export/import of all data

types and module-maps. (very efficient
way to check and modify data manually).

2.1 Core
Main part of the environment is the MveCore.
It provides runtime and module management.
Functionality of the core is accessed by a GUI
and a command line frond-end.

2.2 Front ends
MapEditor is a GUI front end of MVE-2. It
allows intuitive module map editing, module
configuration and execution. Screenshot of the
GUI with convolution can be seen on Figure 1.

The program window contains an edit window
with a simple pipeline using two sources
(PictureLoader, ConvolutionMask) and two
sinks (RegGrid2DRenderer). A ModuleView
dialog contains list modules available, ordered
according to namespace. The standard output is

Project supported by Microsoft Research 2003-178•
6FP EU 3DTV No 511568†, MSMT Czech Republic project LC06008‡

3AI int.conf. Limoges, pp.219-224, ISBN 2-914256-08-6, France, 2006

redirected to the output console, which usually
displays messages from modules and core. The
two green cars in the center are the original and
the filtered image rendered by renderers. In the
bottom left corner a setup dialog of the
convolution source module is shown. User can
define the convolution mask via this dialog.

The second front end of the system is a simple
command line utility called Runmap. It allows
execution of maps stored in XML files without
any user interaction, which is useful for batch
tasks.

2.3 Module libraries
The core and front end only creates an empty
space for modules. Adding modules to the
system is very simple and only requires the
user to copy a .NET DLL that contains the

modules into a directory where it is found by
the core. All public subclasses of the
MveCore.Module class are interpreted as
modules and added into the GUI.

Adding a data structure to be passed between
modules is similar, all public subclasses of
MveCore.DataObject can be passed from one
module to another.

2.4 Standard pipeline execution
If not specified otherwise, a standard pipeline
execution is performed when a map is started.
This involves determining terminal modules
and propagating a request for data from the top
of the map to the bottom. When all terminal
modules have obtained input data and
performed their task, then that map run is
finished.

Figure 1: Screenshot of MapEditor. The GUI front end of MVE-2. It shows a simple convolution
scheme.

3AI int.conf. Limoges, pp.219-224, ISBN 2-914256-08-6, France, 2006

2.5 Advanced pipeline examples
Execution mechanism implemented in the core
can do more than simple pipeline execution.
We support multiple execution, module driven
execution and cycles. Any map can be run
N - times. Module can run a subbranch to
provide its data more than once. It is also
possible to create cycles in module map graph.

Sinus is an example of sub-branch
construction. Execution of Sinus module is
controlled by GenerateGraph module. In this
particular case the module-map runs only once
while the Sinus module runs 100 times. (See
Figure 2)

Counter is an example of DelayModule
usage. The DelayModule acts as a single place
memory with initialization. It returns data form
previous (N-1) step. In the first step it returns
data from initialization port, allowing cycles in
module-map graph. This example counts from
zero to number of runs minus one. The delay
modules can be chained. (See Figure 3)

2.6 Module creation
Simple creation of modules is one of the most
interesting features of our system. By
inheriting a new class from the
MveCore.Module abstract class, a fully
functional module is created.

There are only two methods that have to be
overridden. The first one is the constructor,

which creates ports and defines their names
and accepted data types. The second one is
Execute method that represents the activity of
module.

We are using features of the .NET system to
provide comfort to module authors. For
example any public property of a module is
automatically displayed in a module setup
dialog, and saved/restored with the module
map. Adding a user-editable parameter is
therefore a matter of exposing it using the
property mechanism.

There is a set of advanced methods that can be
called and set of events that can be handled by
a module. These additional methods make it
possible to create a module with advanced
features, such as immediate reaction on
incoming data, advanced module GUI creation,
execution of subbranch etc.

2.7 Documenting MVE-2
Documentation for MVE-2 module libraries
can be generated automatically using the
MMDOC utility that is part of the system. It
uses attribute classes and comments that
describe modules, ports and data types, and
generates electronic documentation in a
number of formats (html, chm, ...). It can be
also used to generate a list of uncommented
entities (methods, modules etc.), thus enforcing
careful commenting.

Figure 2: (left) Simple example of module driven subbranch execution.
Figure 3: (right) Simple example of loop with delay module.

3AI int.conf. Limoges, pp.219-224, ISBN 2-914256-08-6, France, 2006

3 Application of MVE-2 for AI and CG
The recognition task was one of the main
topics of AI research in the past decades. Many
efforts appeared in the field of voice
recognition, image recognition and mesh
recognition, as this task is crucial for
understanding the environment. Recognition
algorithms allow the AI to reduce the amount
of information to be processed; it allows to
understand the relations in the environment
and to make correct decisions quickly.

The task we are addressing using MVE-2 is
recognition of dynamic meshes, i.e. animations
in surface representation. Our goal is to
provide not only static information (i.e. like
“the object in front of the camera is a human”),
but also dynamic (“the object in front of the
camera is a human, who is jumping”). This
will not only allow the system to better analyze
the scene in current time, but it will also help
the system to predict future states of its
environment.

The task of dynamic mesh extraction is one of
the state of the art problems that is being
investigated by many recent papers ([3], [4]),
but for our purposes we can assume that the
extraction was already performed. Our input is
therefore a dynamic mesh M, that consists of n
static meshes. Our task is to qualitatively
evaluate the dynamic mesh and to produce
information about it that will help an AI system
to plan its actions.

Our approach is based on template
comparison. We suppose that there is a library
of dynamic meshes that represent actions
known to the system. The information we are
extracting is the correspondence of the given
dynamic mesh M to the meshes present in the
library. Namely we want to create a metric in
the space of dynamic meshes, that will tell us
which of the known animations is most similar
to the one extracted from the environment of
the system.

Our method is based on the approach used for
static mesh comparison ([1], [2]), i.e. using the
Hausdorff distance of two objects. We
represent each dynamic mesh in E3 by a static
tetrahedral mesh in 4D, subsequently we
compute the approximate Hausdorff distance
of given mesh to each of the library meshes,
and finally we pick the one with the smallest
distance. Following this scheme however
requires addressing some non trivial issues,
which will be briefly discussed in the
following paragraphs.

3.1 Dynamic mesh representation
Our approach is to represent a dynamic triangle
mesh by a static tetrahedral mesh in space-
time. This can be easily done for meshes of
constant connectivity (i.e. where each triangle
corresponds to exactly one triangle in any
frame of the animation). In such a case we can
see the evolution of a triangle between two
frames as a prism in 4D. We can now break
this prism into three tetrahedra. If implemented
carefully, this approach leads to consistent
tetrahedral mesh representation, even though
the faces of the 4D prism are non-planar.

Another issue to be addressed is the used units.
We must use consistent units for all the
meshes, and we must define relation between
time and space units.

In order to unify space units we have decided
to use relative lengths only, i.e. all sizes and
positions are expressed as fractions of the body
diagonal of the object. This allows us to
measure spatial difference consistently for all
meshes.

On the other hand, time can be measured
absolutely and should never be scaled. The
only thing that needs to be done is to relate the
time units to spatial units in order to produce
the Euclidean metric in space-time that will be
needed for the Hausdorff distance
computation.

3AI int.conf. Limoges, pp.219-224, ISBN 2-914256-08-6, France, 2006

The purpose of the space-time representation is
to find how similar two animations are. In
other words, distance in the space should
represent difference between meshes.
Therefore the distance represented by a single
unit in each direction should represent equal
difference. We wish to find a constant that will
relate time (measured absolutely in seconds)
and space (measured as a fraction of the main
diagonal). We don’t know the value of this
constant, but we can do following
considerations in order to estimate its value:

1. time span of 1/100s is almost
unrecognizable for a human observer,
while spatial shifts of 10% is on the limit
of acceptability, therefore we expect the
constant to be larger than 0.01/0.1 = 0.1

2. time spans of units of seconds are on the
limit of acceptability, while spatial shift of
0.1% is almost unrecognizable, therefore
we expect the constant to be smaller than
1/0.001 = 1000

Saying that, we can guess the value of the
relation coefficient to be about 10, i.e. time
span of 100ms is equal to spatial shift of 1%.

3.2 Implementation
We have implemented the proposed method in
a set of MVE-2 modules. First, we have
debugged a simple module for computation of
a distance from a point to a tetrahedron in 4D.
Constructing a module that composes a set of
triangular meshes into a space-time tetrahedral
mesh was very easy thanks to the generality of
data structures provided by the Visualization
library. It is also easy to use a variety of input
formats.

In order to speed the computation up we have
also constructed a module called
AnimationDistanceEvaluator that
encapsulates the distance evaluation from each
vertex of one mesh to each tetrahedron of the
other. This module provides a significant
speedup of the process by using advanced
acceleration techniques (spatial subdivision

etc.), while it preserves reusability of code,
because it calls public methods of the
PointToTetrahedronDistanceEvalu
ator module.

A typical map may consist of two loops that
compose two space-time tetrahedral meshes.
For each of them a new point attribute is
computed using the PointToTetrahedron
DistanceEvaluator module that
represents the distance from each point to the
other mesh. A general AttributeMax
module can then be used for computing the
one-way mesh distance, and a general
ScalarMax module finally produces the
symmetric estimate of Hausdorff distance.

The resulting point attribute can also be used in
other ways. We may display its value
distribution by the standard Attribute
Histogram and CurveRenderer
modules. Such visualization helps when
considering similarity of animations.

We can also transform this attribute into color
attribute and display it using some MVE-2
renderer. It allows us to see exactly where and
when the two animations are similar or
distinct. Such information can be also very
useful in many AI tasks, for example machine
learning, where a trainee can see how precisely
she follows some pattern.

4 Conclusions
We have shown a method for comparing
dynamic meshes. This method can be used for
a variety of AI applications, from animation
recognition to automated learning or teaching.
The implementation in the MVE-2
environment allows easy experimenting with
the method in various setups and algorithms.

The current implementation is still not fast
enough to compare moderately complex
animations in real time, but we are still
working on speeding the method up. We
believe that the performance of the optimized

3AI int.conf. Limoges, pp.219-224, ISBN 2-914256-08-6, France, 2006

algorithm and future hardware will allow to
employ our approach in real-time applications.

5 Acknowledgements
The authors of this paper would like to thank
all the contributors of the MVE-2 system, who

put lots of effort to make it better. Namely
following people contributed significantly:
Miroslav Vavruška, Petr Dvořák, Zdeněk
Češka, Petr Vaněček and Václav Mikolášek.

6 References
1. Cignoni, P., Rochini, C., Scopigno, R.: Metro: measuring error on simplified surfaces.

Technical Report B4-01-01-96, Istituto I.E.I. - C.N.R., Pisa, Italy, January 1996.
2. Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using

the hausdorff distance. In Proceedings of the IEEE International Conference on
Multimedia and Expo, volume I, pages 705--708, 2002.

3. Anuar, N., Guskov, I.: Extracting Animated Meshes with Adaptive Motion Estimation.
Proc. of the 9th International Fall Workshop on Vision, Modeling, and Visualization,
2004.

4. Sand, P., McMillan, L., Popovic, J.: Continuous Capture of Skin Deformation. ACM
Transactions on Graphics. 22(3), pp. 578-586, 2003.

5. Home pages of MVE-2. http://herakles.zcu.cz/research/mve2/

Figure 4: Distance distributions. Human jump ([3], [4]) sequence was used to show results of
animation comparison. The jump/jump curve shows the distance distribution when comparing
two jumps contained in the sequence (the animations are not equal!). The other curve shows the
distance distribution when a jump sequence is compared to a walk sequence of the same length.
It can be clearly seen that comparing the jumps produces more small distances, while comparing
non-equal animations produces more bigger distances.

Animation comparisons

0

0,01

0,02

0,03

0,04

0,05

0,06

0,07

0,08

0,09

0,00E+00 2,00E-02 4,00E-02 6,00E-02 8,00E-02 1,00E-01 1,20E-01 1,40E-01 1,60E-01 1,80E-01 2,00E-01

distance

re
la

tiv
e

oc
cu

rr
ec

e

jump/jump jump/walk

3AI int.conf. Limoges, pp.219-224, ISBN 2-914256-08-6, France, 2006

http://herakles.zcu.cz/research/mve2/

	1 Introduction and motivation
	2 MVE-2
	2.1 Core
	2.2 Front ends
	2.3 Module libraries
	2.4 Standard pipeline execution
	2.5 Advanced pipeline examples
	2.6 Module creation
	2.7 Documenting MVE-2

	3 Application of MVE-2 for AI and CG
	3.1 Dynamic mesh representation
	3.2 Implementation

	4 Conclusions
	5 Acknowledgements
	6 References

